1
|
Ibrahim ESM, Pagmajav O, Yamaguchi T, Matsumura T, Fukushi H. Growth and Virulence Alterations of Equine Herpesvirus 1 by Insertion of a Green Fluorescent Protein Gene in the Intergenic Region between ORFs 62 and 63. Microbiol Immunol 2013; 48:831-42. [PMID: 15557741 DOI: 10.1111/j.1348-0421.2004.tb03615.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleotide sequences of the intergenic region between ORF 62 and ORF 63 of equine herpesvirus 1 (EHV-1) isolates were analyzed. The sequences of this region consisted of variable and conserved domains among EHV-1 isolates. An EHV-1 mutant, Ab4-GFP, was constructed by inserting a green fluorescent protein (GFP) expression cassette flanked by lox P at both ends into the intergenic region between ORF 62 and ORF 63. Another mutant, Ab4-loxP, which contains one lox P site, was constructed by excision of the GFP cassette from the Ab4-GFP virus genome by cre enzyme. The recombinant Ab4-GFP formed smaller plaques than the wild type in MDBK cells. Virus production also decreased for Ab4-GFP in multistep growth analyses. Virulence of Ab4-GFP in both mice and hamsters was weaker than that of the wild type. Ab4-loxP exhibited properties similar to those of the wild type. These results suggest that the intergenic region between ORF 62 and ORF 63 plays various roles in the virus growth.
Collapse
Affiliation(s)
- El Sayed Moustafa Ibrahim
- Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, Japan
| | | | | | | | | |
Collapse
|
2
|
Pathogenic potential of equine alphaherpesviruses: The importance of the mononuclear cell compartment in disease outcome. Vet Microbiol 2010; 143:21-8. [DOI: 10.1016/j.vetmic.2010.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
HAN XJ, WANG JW, MA B. Cloning and Sequence of Glycoprotein H Gene of Duck Plague Virus. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1671-2927(06)60067-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Pasieka TJ, Maresova L, Grose C. A functional YNKI motif in the short cytoplasmic tail of varicella-zoster virus glycoprotein gH mediates clathrin-dependent and antibody-independent endocytosis. J Virol 2003; 77:4191-204. [PMID: 12634377 PMCID: PMC150655 DOI: 10.1128/jvi.77.7.4191-4204.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trafficking of varicella-zoster virus (VZV) gH was investigated under both infection and transfection conditions. In initial endocytosis assays performed in infected cells, the three glycoproteins gE, gI, and gB served as positive controls for internalization from the plasma membrane. Subsequently, we discovered that gH in VZV-infected cells was also internalized and followed a similar trafficking pattern. This observation was unexpected because all herpesvirus gH homologues have short endodomains not known to contain trafficking motifs. Further investigation demonstrated that VZV gH, when expressed alone with its chaperone gL, was capable of endocytosis in a clathrin-dependent manner, independent of gE, gI, or gB. Upon inspection of the short gH cytoplasmic tail, we discovered a putative tyrosine-based endocytosis motif (YNKI). When the tyrosine was replaced with an alanine, endocytosis of gH was blocked. Utilizing an endocytosis assay dependent on biotin labeling, we further documented that endocytosis of VZV gH was antibody independent. In control experiments, we showed that gE, gI, and gB also internalized in an antibody-independent manner. Alignment analysis of the VZV gH cytoplasmic tail to other herpesvirus gH homologues revealed two important findings: (i) herpes simplex virus type 1 and 2 homologues lacked an endocytosis motif, while all other alphaherpesvirus gH homologues contained a potential motif, and (ii) the VZV gH and simian varicella virus gH cytoplasmic tails were likely longer in length (18 amino acids) than predicted in the original sequence analyses (12 and 16 amino acids, respectively). The longer tails provided the proper context for a functional endocytosis motif.
Collapse
|
5
|
Mitchell BM, Bloom DC, Cohrs RJ, Gilden DH, Kennedy PGE. Herpes simplex virus-1 and varicella-zoster virus latency in ganglia. J Neurovirol 2003; 9:194-204. [PMID: 12707850 DOI: 10.1080/13550280390194000] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Revised: 11/11/2002] [Accepted: 11/13/2002] [Indexed: 01/07/2023]
Abstract
Two human alpha-herpesviruses, herpes simplex virus (HSV)-1 and varicella zoster virus (VZV), account for the most frequent and serious neurologic disease caused by any of the eight human herpesviruses. Both HSV-1 and VZV become latent in ganglia. In this review, the authors describe features of latency for these viruses, such as distribution, prevalence, abundance, and configuration of viral DNA in latently infected human ganglia, as well as transcription, translation, and cell type infected. Studies of viral latency in animal models are also discussed. For each virus, remaining questions and future studies to understand the mechanism of latency are discussed with respect to prevention of serious cutaneous, ocular, and neurologic disease produced by virus reactivation.
Collapse
Affiliation(s)
- Bradley M Mitchell
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
6
|
Varrasso A, Dynon K, Ficorilli N, Hartley CA, Studdert MJ, Drummer HE. Identification of equine herpesviruses 1 and 4 by polymerase chain reaction. Aust Vet J 2001; 79:563-9. [PMID: 11599819 DOI: 10.1111/j.1751-0813.2001.tb10751.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To develop and validate specific, sensitive and rapid (< 8 hour) diagnostic tests using polymerase chain reaction (PCR) for the diagnosis of abortion and respiratory disease caused by equine herpesvirus 1 (EHV1; equine abortion virus) and EHV4 (equine rhinopneumonitis virus). DESIGN Primer sets based on nucleotide sequences encoding glycoprotein H (gH) of EHV1 and gB of EHV4 were designed and used in single round and second round (seminested) PCRs, and in a multiplex PCR for the diagnosis of EHV1 and EHV4 infections. METHODS Oligonucleotide primers were designed for each virus, PCR conditions were defined and the specificity and sensitivity of the assays were determined. The tests were applied to tissue samples from aborted equine foetuses and to nasopharyngeal swabs from horses with acute febrile respiratory disease. RESULTS Individual single round and a second round (seminested) EHV1 and EHV4 PCRs were specific in that EHV1 primers amplified all (n = 30) EHV1 isolates and did not amplify EHV4. Similarly EHV4 primers amplified all (n = 6) EHV4 isolates and did not amplify EHV1. Both PCRs were sensitive in that the first round EHV1 PCR detected 1220 molecules of EHV1 plasmid DNA and the first round EHV4 PCR detected 7280 molecules of EHV4 plasmid DNA. The EHV1 second round PCR was 100 times more sensitive in that it detected 12 molecules of EHV1 DNA and the EHV4 second round PCR was 1000 times more sensitive in that it detected 8 molecules of EHV4 DNA. There was a high correlation between detection of EHV1 by virus isolation and PCR when tissue samples from 71 aborted foetuses were examined; all samples positive by virus isolation were positive by PCR. Similarly the EHV4 PCR was at least as sensitive as virus isolation when applied to nasaopharyngeal swabs from horses with respiratory disease in that all samples positive by virus isolation were also positive by PCR. CONCLUSION Individual single round and second round (seminested) PCRs and a seminested multiplex PCR were developed that enabled reliable, rapid detection of EHV1 and EHV4 in aborted foetal tissues and nasopharyngeal swab samples.
Collapse
Affiliation(s)
- A Varrasso
- Centre for Equine Virology, School of Veterinary Science, The University of Melbourne, Parkville, Victoria
| | | | | | | | | | | |
Collapse
|
7
|
Peng T, Ponce de Leon M, Novotny MJ, Jiang H, Lambris JD, Dubin G, Spear PG, Cohen GH, Eisenberg RJ. Structural and antigenic analysis of a truncated form of the herpes simplex virus glycoprotein gH-gL complex. J Virol 1998; 72:6092-103. [PMID: 9621073 PMCID: PMC110415 DOI: 10.1128/jvi.72.7.6092-6103.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The herpes simplex virus (HSV) gH-gL complex is essential for virus infectivity and is a major antigen for the host immune system. The association of gH with gL is required for correct folding, cell surface trafficking, and membrane presentation of the complex. Previously, a mammalian cell line was constructed which produces a secreted form of gHt-gL complex lacking the transmembrane and cytoplasmic tail regions of gH. gHt-gL retains a conformation similar to that of its full-length counterpart in HSV-infected cells. Here, we examined the structural and antigenic properties of gHt-gL. We first determined its stoichiometry and carbohydrate composition. We found that the complex consists of one molecule each of gH and gL. The N-linked carbohydrate (N-CHO) site on gL and most of the N-CHO sites on gH are utilized, and both proteins also contain O-linked carbohydrate and sialic acid. These results suggest that the complex is processed to the mature form via the Golgi network prior to secretion. To determine the antigenically active sites of gH and gL, we mapped the epitopes of a panel of gH and gL monoclonal antibodies (MAbs), using a series of gH and gL C-terminal truncation variant proteins produced in transiently transfected mammalian cells. Sixteen gH MAbs (including H6 and 37S) reacted with the N-terminal portion of gH between amino acids 19 and 276. One of the gH MAbs, H12, reacted with the middle portion of gH (residues 476 to 678). Nine gL MAbs (including 8H4 and VIII 62) reacted with continuous epitopes within the C-terminal portion of gL, and this region was further mapped within amino acids 168 to 178 with overlapping synthetic peptides. Finally, plasmids expressing the gH and gL truncations were employed in cotransfection assays to define the minimal regions of both gH and gL required for complex formation and secretion. The first 323 amino acids of gH and the first 161 amino acids of gL can form a stable secreted hetero-oligomer with gL and gH792, respectively, while gH323-gL168 is the smallest secreted hetero-oligomer. The first 648 amino acids of gH are required for reactivity with MAbs LP11 and 53S, indicating that a complex of gH648-gL oligomerizes into the correct conformation. The data suggest that both antigenic activity and oligomeric structure require the amino-terminal portions of gH and gL.
Collapse
Affiliation(s)
- T Peng
- School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kukreja A, Love DN, Whalley JM, Field HJ. Study of the protective immunity of co-expressed glycoprotein H and L of equine herpesvirus-1 in a murine intranasal infection model. Vet Microbiol 1998; 60:1-11. [PMID: 9595623 DOI: 10.1016/s0378-1135(97)00201-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Equine herpesvirus-1 (EHV-1) glycoproteins H, and L (gH and gL) expressed individually or co-expressed by recombinant baculoviruses were used to immunise BALB/c mice prior to intranasal challenge in a murine model of respiratory infection. Only the co-expressed material (EHV-1 gH/gL) induced neutralising antibody (low levels). The same immunogen also produced the strongest cellular responses. Immunisation with gH/gL and, to a lesser extent, with gH alone was associated with a reduction of virus load in nasal turbinates and olfactory bulbs after challenge infection. Viraemia, detected by polymerase chain reaction, was also reduced. No such protective effects were observed for gL alone. Adoptive transfer of lymphocytes from gH/gL-immunised mice to näive mice subsequently challenged with EHV-1 indicated that both CD4+ and CD8+ cells had a role in protective immunity. Although clearance of EHV-1 from respiratory tissue was not as effective as previously found for glycoproteins D or C, these experiments provide evidence that the co-expression of EHV-1 gL with gH generates a conformational neutralising epitope which is not present in either molecule alone, and suggests that gH/gL antigen may have a better potential as a component of an EHV-1 vaccine than gH alone.
Collapse
Affiliation(s)
- A Kukreja
- Centre for Veterinary Science, University of Cambridge, UK
| | | | | | | |
Collapse
|
9
|
Stokes A, Cameron RS, Marshall RN, Killington RA. High level expression of equine herpesvirus 1 glycoproteins D and H and their role in protection against virus challenge in the C3H (H-2Kk) murine model. Virus Res 1997; 50:159-73. [PMID: 9282781 DOI: 10.1016/s0168-1702(97)00067-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
N and C-terminal truncated forms of equine herpesvirus 1 (EHV 1) glycoproteins gD and gH were expressed in baculovirus resulting in the production of secreted recombinant proteins. A carboxy-terminal histidine tag was included on each of the genes for protein isolation by nickel affinity chromatography. Recombinant gD was recognized by three gD specific monoclonal antibodies, 20C4, 5H6 and F3132. F3132 is a conformationally dependent monoclonal antibody with virus neutralizing activity. Expression of gH was confirmed by reacting the protein with the gH peptide specific antiserum R319. The truncated gD gene was also expressed as a beta-galactosidase fusion protein which was purified from E. coli by nickel affinity chromatography. C3H mice were inoculated with purified recombinant gD or gH or insect cells which had been infected with recombinant baculoviruses. Mice were subsequently challenged with EHV 1. Purified recombinant baculovirus gD provided the most protection and produced high levels of virus neutralizing antibodies. The gD fusion protein was less effective at protecting mice and insect cells infected with either of the recombinant baculoviruses or purified recombinant gH were poor at conferring protection. The results emphasize the importance of using purified proteins in vaccine formulations and of including EHV 1 gD as a component of a subunit vaccine.
Collapse
Affiliation(s)
- A Stokes
- Molecular Virology Group, Department of Microbiology, University of Leeds, UK.
| | | | | | | |
Collapse
|
10
|
Shimojima Y, Jang HK, Ono M, Kai C, Mikami T. Identification and DNA sequence analysis of the Marek's disease virus serotype 2 gene homologous to the herpes simplex virus type 1 glycoprotein H. J Vet Med Sci 1997; 59:629-34. [PMID: 9300357 DOI: 10.1292/jvms.59.629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Marek's disease virus (MDV) serotype 2 (MDV2) gene homologous to the glycoprotein H (gH) gene of herpes simplex virus type 1 was identified and sequenced. The predicted region encoding for the MDV2 gH gene was 2436 nucleotide and the primary translation product was 812 amino acids with a molecular weight of 89.4 kDa. The protein encoded by MDV2 gH gene has a number of features characteristic of a membrane-associated glycoprotein. First, there are 9 potential N-linked glycosylation sites and 11 cysteine residues, and 6 of the sites and 8 of the residues were conserved among all of the three MDV serotypes. Second, this protein had N-terminal and C-terminal hydrophobic regions, which were a signal sequence and a transmembrane-anchor domain, respectively. From the northern blot analysis, it was suggested that a transcript encoding MDV2 gH and a poly-cistronic transcript encoding MDV2 thymidine kinase, gH, and possibly other genes of downstream on this strand existed. Alignment of the amino acid sequences of the gH homologues among the three MDV serotypes showed 57.5% (MDV1 and MDV2), 56.2% (MDV1 and HVT), and 50.1% (MDV2 and HVT) identities.
Collapse
Affiliation(s)
- Y Shimojima
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
11
|
Galdiero M, Whiteley A, Bruun B, Bell S, Minson T, Browne H. Site-directed and linker insertion mutagenesis of herpes simplex virus type 1 glycoprotein H. J Virol 1997; 71:2163-70. [PMID: 9032350 PMCID: PMC191323 DOI: 10.1128/jvi.71.3.2163-2170.1997] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gH-gL complex of herpes simplex virus type 1 (HSV-1) is essential for virion infectivity and virus-induced cell fusion, but functional domains of the gH molecule remain to be defined. We have addressed this question by mutagenesis. A set of linker insertion mutants in HSV-1 gH was generated and tested in transient assays for their ability to complement a gH-negative virus. Insertions at three sites in the C-terminal third of the external domain affected the ability of gH to function in cell-cell fusion and virus entry, while insertions at six sites in the N-terminal half of the external domain induced conformational changes in gH such that it was not recognized by monoclonal antibody LP11, although expression at the cell surface was unchanged. A recombinant virus in which a potential integrin-binding motif, RGD, in gH was changed to the triplet RGE entered cells as efficiently as the wild type, indicating that HSV-1 entry is not mediated by means of the gH-RGD motif binding to cell surface integrins. Furthermore, mutagenesis of the glycosylation site which is positionally conserved in all herpesvirus gH sequences in close proximity to the transmembrane domain generated a recombinant virus that grew in vitro with wild-type single-step kinetics.
Collapse
Affiliation(s)
- M Galdiero
- Department of Pathology, University of Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Osterrieder N, Neubauer A, Brandmuller C, Braun B, Kaaden OR, Baines JD. The equine herpesvirus 1 glycoprotein gp21/22a, the herpes simplex virus type 1 gM homolog, is involved in virus penetration and cell-to-cell spread of virions. J Virol 1996; 70:4110-5. [PMID: 8648751 PMCID: PMC190297 DOI: 10.1128/jvi.70.6.4110-4115.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Experiments to analyze the function of the equine herpesvirus 1 (EHV-1) glycoprotein gM homolog were conducted. To this end, an Rk13 cell line (TCgM) that stably expressed EHV-1 gM was constructed. Proteins with apparent M(r)s of 46,000 to 48,000 and 50,000 to 55,000 were detected in TCgM cells with specific anti-gM antibodies, and the gM protein pattern was indistinguishable from that in cells infected with EHV-1 strain RacL11. A viral mutant (L11deltagM) bearing an Escherichia coli lacZ gene inserted into the EHV-1 strain RacL11 gM gene (open reading frame 52) was purified, and cells infected with L11deltagM did not contain detectable gM. L11deltagM exhibited approximately 100-fold lower titers and a more than 2-fold reduction in plaque size relative to wild-type EHV-1 when grown and titrated on noncomplementing cells. Viral titers were reduced only 10-fold when L11deltagM was grown on the complementing cell line TCgM and titrated on noncomplementing cells. L11deltagM also exhibited slower penetration kinetics compared with those of the parental EHV-1 RacL11. It is concluded that EHV-1 gM plays important roles in the penetration of virus into the target cell and in spread of EHV-1 from cell to cell.
Collapse
Affiliation(s)
- N Osterrieder
- Institute for Medical Microbiology, Infectious and Epidemic Diseases, Ludwig-Maximilians-Universität München, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Stokes A, Alber DG, Greensill J, Amellal B, Carvalho R, Taylor LA, Doel TR, Killington RA, Halliburton IW, Meredith DM. The expression of the proteins of equine herpesvirus 1 which share homology with herpes simplex virus 1 glycoproteins H and L. Virus Res 1996; 40:91-107. [PMID: 8725124 DOI: 10.1016/0168-1702(95)01256-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Several expression systems were used in studies aimed at characterizing the equine herpesvirus 1 (EHV-1) glycoprotein H and L homologues of HSV-1 (EHV-1 gH and gL) and the products were compared to the authentic proteins synthesized in virus infected cells. Using an in vitro transcription/translation system two gH species were detected (an unprocessed 89 kDa and a processed 116 kDa product). Three low molecular weight proteins were found in the case of gL (21.8 kDa, 22.9 kDa and 26.9 kDa) and these showed a slight reduction in mobility on the addition of microsomal membranes to the reactions. A gL fusion protein was produced in pGEX-2T, expression being confirmed by Western blotting using a gL-specific antiserum raised against a peptide incorporating the 13 carboxyl terminal amino acids of the protein. A gH specific peptide antiserum precipitated both gH and two smaller proteins from EHV-1 infected cells thought to be two forms of gL. Insect cells infected with gH or gL baculovirus recombinants were used to vaccinate C3H (H-2k) mice. Some protection against EHV-1 infection was conferred to the gH inoculated mice. The results will enable further studies on the importance of the gH and gL interaction in the pathogenesis of EHV-1 to be evaluated and their potential in contributing to a subunit vaccine to be assessed.
Collapse
Affiliation(s)
- A Stokes
- Department of Microbiology, University of Leeds, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Whalley JM, Love DN, Tewari D, Field HJ. Characteristics of equine herpesvirus 1 glycoproteins expressed in insect cells. Vet Microbiol 1995; 46:193-201. [PMID: 8545956 DOI: 10.1016/0378-1135(95)00083-m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A series of recombinant baculoviruses containing genes for glycoproteins C, D, H and L of equine herpesvirus 1 (EHV-1) have been constructed, and the EHV-1 products characterised by gel electrophoresis and immunoblotting. The EHV-1 glycoproteins expressed in insect cells were similar but not identical in apparent sizes to those expressed in EHV-1 infected mammalian cells. Each of the EHV-1 products was recognised by convalescent equine sera, indicating that they were all targets for an equine immune response. Mice immunised with baculovirus-expressed EHV-1 gD and gC acquired an enhanced ability to clear challenge EHV-1 from respiratory tissues, in association with both neutralising antibody and cell mediated immune responses.
Collapse
Affiliation(s)
- J M Whalley
- School of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
15
|
Crabb BS, Studdert MJ. Equine herpesviruses 4 (equine rhinopneumonitis virus) and 1 (equine abortion virus). Adv Virus Res 1995; 45:153-90. [PMID: 7793324 DOI: 10.1016/s0065-3527(08)60060-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- B S Crabb
- Centre for Equine Virology, School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
16
|
Wilson DW, Davis-Poynter N, Minson AC. Mutations in the cytoplasmic tail of herpes simplex virus glycoprotein H suppress cell fusion by a syncytial strain. J Virol 1994; 68:6985-93. [PMID: 7933080 PMCID: PMC237135 DOI: 10.1128/jvi.68.11.6985-6993.1994] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have developed a complementation assay, using transiently transfected COS cells, to facilitate a molecular analysis of the herpes simplex virus type 1 glycoprotein gH. When infected by a gH-null syncytial virus, COS cells expressing wild-type gH generate infectious progeny virions and form a syncytium with neighboring cells. By deletion and point mutagenesis, we have found particular residues in the gH cytoplasmic tail to be essential for generation of a syncytium but apparently dispensable for production of infectious virions. This study emphasizes the different requirements for cell-cell and cell-envelope fusion and demonstrates that changes in the non-syn locus UL22-gH can reverse the syncytial phenotype.
Collapse
Affiliation(s)
- D W Wilson
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
17
|
McGowan EM, Hayden MB, Edwards SJ, Pye D, Love DN, Whalley JM. Expression and characterisation of equine herpesvirus 1 glycoprotein H using a recombinant baculovirus. Arch Virol 1994; 137:389-95. [PMID: 7944958 DOI: 10.1007/bf01309484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A recombinant baculovirus capable of expressing the glycoprotein H (gH) gene of equine herpesvirus 1 (EHV-1) was constructed. EHV-1 gH gene products in recombinant baculovirus infected insect cells were identified as 105 kDa and 110 kDa species compared with a 115 kDa product detected in EHV-1 infected mammalian cells. The extent of N-glycosylation of EHV-1 gH in both insect and mammalian cells was indicated by a shift in apparent molecular weights after PNGase F treatment to 90 kDa and 95 kDa forms, which compared with the predicted value of 90 kDa for the unglycosylated polypeptide. The recombinant EHV-1 gH was recognised by equine sera demonstrating that EHV-1 gH is a target for the immune system of the natural host. However, while the recombinant EHV-1 gH product from infected insect cells was immunogenic in mice, it did not induce a neutralizing antibody response against EHV-1.
Collapse
Affiliation(s)
- E M McGowan
- School of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Jacobs L. Glycoprotein E of pseudorabies virus and homologous proteins in other alphaherpesvirinae. Arch Virol 1994; 137:209-28. [PMID: 7944945 DOI: 10.1007/bf01309470] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper reviews biological properties of glycoprotein E (gE) of pseudorabies virus (Aujeszky's disease virus) and homologous proteins in other alphaherpesvirinae. It focuses on the gene encoding gE, conserved regions in the gE protein and its homologs, the complex of gE and gI, biological functions of gE in vitro and in vivo, the role of gE in latency and the role of gE in the induction of humoral and cellular immune responses. Special emphasis is placed on the use of gE as a marker protein in the control and eradication of pseudorabies virus.
Collapse
Affiliation(s)
- L Jacobs
- Central Veterinary Institute (CDI-DLO), Lelystad, The Netherlands
| |
Collapse
|
19
|
Abstract
Equine herpesvirus 1 (EHV-1) is an important pathogen of horses and is closely related to several important human pathogens, herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) and varicella-zoster virus. The EHV-1 genome contains open reading frames similar in sequence to the HSV-1 replication genes. PCR was used to clone EHV-1 gene 53, which is similar in sequence to the HSV-1 UL9 gene. The gene 53 product has regions of striking similarity to the HSV-1 UL9 and VZV gene 51 products. In vitro transcription and translation of this gene generated a protein of 87 kDa as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Further characterization of this protein was accomplished through the use of gel shift analysis. The in vitro-synthesized protein bound sequence specifically to EHV-1 OriS as well as HSV-1 OriS. A site was used in gel shift analysis to show that the EHV-1 origin-binding protein bound to the same consensus site as the HSV-1 origin-binding protein, 5'-CGTTCGCACTT-3'. Using a nuclear extract of EHV-1-infected RK13 cells, we have identified an activity that interacts similarly with this consensus site. In gel shift assays, the retarded band arising from the nuclear extract migrated similarly to the retarded band arising from in vitro-translated EHV-1 gene 53. An N-terminal deletion of EHV-1 gene 53 was also created, expressed in vitro, and used in gel shift assays to localize the DNA-binding domain. Results of these experiments indicated that amino acids 1 to 499 were dispensable for binding and that the C-terminal fragment (amino acids 500 to 888) recognized the same consensus site as did the wild-type protein. Thus, the product of EHV-1 gene 53 is an origin-binding protein with a high degree of similarity to the HSV-1 and varicella-zoster virus origin-binding proteins and possibly serves as the initiator of DNA replication in EHV-1.
Collapse
Affiliation(s)
- D W Martin
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284
| | | |
Collapse
|
20
|
Lawrence GL, Gilkerson J, Love DN, Sabine M, Whalley JM. Rapid, single-step differentiation of equid herpesviruses 1 and 4 from clinical material using the polymerase chain reaction and virus-specific primers. J Virol Methods 1994; 47:59-72. [PMID: 8051234 DOI: 10.1016/0166-0934(94)90066-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sets of primers were designed which enabled specific amplification of homologous regions of the glycoprotein C and gene 76 genetic loci of equine herpesviruses 1 and 4 (EHV-1 and EHV-4). The resultant virus-specific polymerase chain reaction (PCR) products arising from each loci could be discriminated easily on the basis of size on an agarose gel, allowing rapid differentiation of the two equine herpesviruses. Specificity of the amplifications were confirmed by Southern hybridization and restriction endonuclease digestion. The PCR test was applied to nasal swab samples from weanling foals and to archival aborted fetal tissue samples and the results compared to those obtained by virus isolation. A strong correlation was found between this PCR assay and virus isolation methods of EHV-1 and EHV-4 detection and discrimination.
Collapse
Affiliation(s)
- G L Lawrence
- School of Biological Sciences, Macquarie University, Sydney, N.S.W., Australia
| | | | | | | | | |
Collapse
|
21
|
Bell CW, Whalley JM. Herpesvirus ICP18.5 and DNA-binding protein genes are conserved in equine herpesvirus-1. Virus Genes 1993; 7:219-28. [PMID: 8279122 DOI: 10.1007/bf01702583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genome of equine herpesvirus-1 (EHV-1) contained three open reading frames (ORFs) in a 3.9 kbp BamHI-SmaI fragment at 0.38-0.41 map units in the long unique region. The most 5' ORF encoded the carboxy terminus of a protein with 45-55 percent amino acid homology to the DNA-binding proteins (ICP8-DBP) of four other alpha-herpesviruses. The middle ORF translated to a polypeptide of 775 residues with 43-55% homology to the ICP18.5 proteins. The most 3' ORF encoded the EHV-1 glycoprotein B (gB) gene. Three mRNAs of 4.3, 4.4-4.8, and 3.5-3.9 kb (corresponding to the three sequenced ORFs) were all transcribed from the same strand. The gene order of this group was conserved in all herpesviruses examined.
Collapse
Affiliation(s)
- C W Bell
- School of Biological Sciences, Macquarie University, Sydney, N.S.W., Australia
| | | |
Collapse
|
22
|
Nagesha HS, Crabb BS, Studdert MJ. Analysis of the nucleotide sequence of five genes at the left end of the unique short region of the equine herpesvirus 4 genome. Arch Virol 1993; 128:143-54. [PMID: 8380320 DOI: 10.1007/bf01309795] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Eco RI fragment G of equine herpesvirus 4 strain 405/76 (EHV 4.405/76) is located at the left end of the unique short region close to or extending into the internal repeat region of the prototypic arrangement of the genome. The nucleotide sequence of two subclones designated HS and G 19, contiguous within Eco RI fragment G, was determined for each strand by obtaining a nested set of deletion clones of these double-stranded DNA plasmids. Analysis of the nucleotide sequence revealed that the two subclones contain 5449 base pairs with four complete open reading frames (ORFs) and part of a fifth ORF. Comparison of the predicted amino acid sequences of these reading frames showed that they correspond to ORFs 67, 68, 69, 70, and 71 of equine herpesvirus type 1 (EHV 1) [41], of which ORFs 68, 69, and 70 are homologous to human herpes simplex virus (HSV) genes in the unique short (US) region, i.e., US 2, US 3, and US 4. ORF 67' of EHV 4 and ORF 67 of EHV 1 are homologous (65.7%) but these genes have no homologue in HSV 1.
Collapse
Affiliation(s)
- H S Nagesha
- School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
23
|
Kirisawa R, Ohmori H, Iwai H, Kawakami Y. The genomic diversity among equine herpesvirus-1 strains isolated in Japan. Arch Virol 1993; 129:11-22. [PMID: 8385910 DOI: 10.1007/bf01316881] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The DNAs from nine Japanese field isolates of equine herpesvirus-1 (EHV-1) were analyzed by digestion with the restriction endonuclease Bam HI and Southern hybridization. Comparing restriction profiles among the EHV-1 strains, there was no considerable difference between isolates before and after vaccine application, but some minor variations in the mobility of Bam HI fragments were observed. To identify these variable fragments, all genomic DNA sequences of the Japanese prototype of EHV-1 have been cloned as Bam HI restriction fragments into the plasmid pUC-18. Physical maps of the virus DNA were constructed by a combination of Southern blot analysis and double enzyme digestion of the cloned fragments. By using these cloned fragments as probes in Southern blot analysis, the areas of heterogeneity observed among the field EHV-1 isolates were located in both terminals of UL, the center of UL, IR, US and TR regions of the genome.
Collapse
Affiliation(s)
- R Kirisawa
- Department of Veterinary Microbiology, Rakuno Gakuen University, Hokkaido, Japan
| | | | | | | |
Collapse
|
24
|
Maeda K, Kawaguchi Y, Kamiya N, Ono M, Tohya Y, Kai C, Mikami T. Identification and nucleotide sequence of a gene in feline herpesvirus type 1 homologous to the herpes simplex virus gene encoding the glycoprotein H. Arch Virol 1993; 132:183-91. [PMID: 8394688 DOI: 10.1007/bf01309852] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A gene encoding the glycoprotein H (gH) homologue of feline herpesvirus type 1 was identified and sequenced. It was located immediately downstream of the thymidine kinase gene within an EcoRI 6.6 kbp fragment. In addition, a partial UL21 homologous gene was located downstream of the gH homologous gene. The primary translation product of the gH homologous gene is predicted to consist of 821 amino acids with a molecular weight of 92.5 kDa. It possesses several characteristics typical of transmembrane glycoproteins, including a N-terminal hydrophobic signal sequence, C-terminal transmembrane domain, and putative N-linked glycosylation sites. Analysis of this protein revealed amino acid sequence homologies of 33.1% with equine herpesvirus type 1 (EHV-1) gH, 32.6% with EHV-4 gH, 29.1% with varicella-zoster virus gIII, 28.5% with pseudorabies virus gH, and 25.1% with herpes simplex virus type 1 gH. By Northern blot analysis, one of the transcripts specific for the gH homologous gene might be a mRNA of approximately 3.0 kb.
Collapse
Affiliation(s)
- K Maeda
- Department of Veterinary Microbiology, Faculty of Agriculture, University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhao Y, Holden VR, Harty RN, O'Callaghan DJ. Identification and transcriptional analyses of the UL3 and UL4 genes of equine herpesvirus 1, homologs of the ICP27 and glycoprotein K genes of herpes simplex virus. J Virol 1992; 66:5363-72. [PMID: 1323700 PMCID: PMC289092 DOI: 10.1128/jvi.66.9.5363-5372.1992] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The DNA sequence of 3,240 nucleotides of the XbaI G fragment located in the unique long (UL) region of the equine herpesvirus 1 genome revealed two major open reading frames (ORFs) designated UL3 and UL4. The UL3 ORF of 470 amino acids (aa) maps at nucleotides (nt) 4450 to 3038 from the long terminus, and its predicted 51.4-kDa protein product exhibits significant homology to the ICP27 alpha regulatory protein of herpes simplex virus type 1 (HSV-1; 32% identity) and to the ORF4 protein of varicella-zoster virus (13% identity). Interestingly, a zinc finger motif is conserved in the C-terminal domains of both ICP27 of HSV-1 (aa 483 to 508) and UL3 of equine herpesvirus 1 (aa 441 to 466). The UL4 ORF of 343 aa maps at nt 5618 to 4587 and could encode a protein of 38.1 kDa which exhibits significant homology to the UL53 protein (cell fusion protein or glycoprotein K) of HSV-1 (26% identity) and to the ORF5 protein of varicella-zoster virus (33% identity). Analyses of the UL4 amino acid sequence revealed domains characteristic of a membrane-bound glycoprotein and included potential signature sequences for (i) a signal sequence, (ii) two N-linked glycosylation sites, and (iii) four transmembrane domains. Nucleotide sequence analyses also revealed potential TATA boxes located upstream of the UL3 and UL4 ORFs. However, only a single polyadenylation signal (nt 2988 to 2983) was detected downstream of the UL3 ORF. Northern (RNA) blot hybridization and S1 nuclease analyses were used to map and characterize the UL3 and UL4 mRNAs. Metabolic inhibitors were used to identify the kinetic class of these two genes. The data revealed that UL3 is an early gene that encodes a 1.6-kb mRNA, while UL4 is a late gene encoding a 3.8-kb mRNA that overlaps the UL3 transcript. Both transcripts were shown by S1 nuclease analyses to initiate 24 to 26 nt downstream of their respective TATA boxes and to have a common transcription termination signal as a pair of 3'-coterminal mRNAs.
Collapse
Affiliation(s)
- Y Zhao
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130-3932
| | | | | | | |
Collapse
|
26
|
Crabb BS, Nagesha HS, Studdert MJ. Identification of equine herpesvirus 4 glycoprotein G: a type-specific, secreted glycoprotein. Virology 1992; 190:143-54. [PMID: 1529525 DOI: 10.1016/0042-6822(92)91200-e] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Equine herpesvirus 4 (EHV4) glycoproteins of M(r) 63K and 250K were identified in the supernatant of infected cell cultures. The 63K glycoprotein was type-specific; that is, it reacted with monospecific sera from horses that had been immunized or infected with EHV4, but not with monospecific sera from horses immunized or infected with EHV1, a closely related alphaherpesvirus. It was postulated that the secreted protein may be the homologue of similarly secreted glycoproteins of herpes simplex virus 2 glycoprotein G (HSV2 gG) and pseudorabies virus (PRV) gX, which is the homologue of HSV2 gG. The US region of the EHV4 genome, toward the internal repeat structure, was sequenced. Four open reading frames (ORFs) were identified of which ORF4 showed 52% similarity to the gene-encoding PRV gX in a 650-nucleotide region. ORF4 coded for a primary translational product of 405 amino acids which has a predicted size of 44K. The amino acid sequence of ORF4 showed 28% identity with PRV gX and 16% identity with HSV2 gG, although significantly greater identity was observed in the N-terminal region including the conservation of 4 cysteine residues. Accordingly, we designate ORF4 as EHV4 gG. The predicted amino acid sequence of the EHV4 gG showed characteristics of an envelope glycoprotein. Expression of the entire EHV4 gG gene in the bacterial expression vector pGEX-3X produced a type-specific fusion protein of M(r) 70K of which the gG portion composes 43K. Antibody that was affinity purified from selected portions of Western blots containing the 70K gG fusion protein reacted with the 63K secreted glycoprotein. Conversely, antibody affinity purified to the 63K secreted product reacted with the 70K gG fusion protein. These results showed that the EHV4 63K secreted glycoprotein was EHV4 gG, the third alphaherpesvirus gG homologue known to be, at least in part, secreted. The type-specificity of this glycoprotein provides, for the first time, the opportunity to differentiate between antibodies present in polyclonal sera from EHV4, EHV1, and dual-infected horses and this has important implications for understanding the epidemiology of these viruses.
Collapse
Affiliation(s)
- B S Crabb
- School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
27
|
Abstract
The complete DNA sequence was determined of a pathogenic British isolate of equine herpesvirus-1, a respiratory virus which can cause abortion and neurological disease. The genome is 150,223 bp in size, has a base composition of 56.7% G + C, and contains 80 open reading frames likely to encode protein. Since four open reading frames are duplicated in the major inverted repeat, two are probably expressed as a spliced mRNA, and one may contain an internal transcriptional promoter, the genome is considered to contain 76 distinct genes. The genes are arranged collinearly with those in the genomes of the two previously sequenced alphaherpesviruses, varicella-zoster virus, and herpes simplex virus type-1, and comparisons of predicted amino acid sequences allowed the functions of many equine herpesvirus 1 proteins to be assigned.
Collapse
Affiliation(s)
- E A Telford
- Institute of Virology, University of Glasgow, United Kingdom
| | | | | | | |
Collapse
|
28
|
Love DN, Bell CW, Whalley JM. Characterization of the glycoprotein D gene products of equine herpesvirus 1 using a prokaryotic cell expression vector. Vet Microbiol 1992; 30:387-94. [PMID: 1316667 DOI: 10.1016/0378-1135(92)90024-n] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The gene encoding equine herpesvirus 1 (equine abortion virus; EHV-1) glycoprotein D was engineered into the prokaryotic vector pEX, and expressed as a beta-galactosidase fusion product, which was recognized by pooled equine sera and anti-EHV-1 rabbit sera. Antibodies raised against the EHV-1 gD fusion product identified strong bands in infected cells at 66 and 68 K and at 138 K in purified virus, thus characterizing the several forms of this major envelope glycoprotein which is an important candidate for inclusion in subunit vaccines.
Collapse
|