1
|
Gourisankar S, Krokhotin A, Ji W, Liu X, Chang CY, Kim SH, Li Z, Wenderski W, Simanauskaite JM, Yang H, Vogel H, Zhang T, Green MR, Gray NS, Crabtree GR. Rewiring cancer drivers to activate apoptosis. Nature 2023; 620:417-425. [PMID: 37495688 DOI: 10.1038/s41586-023-06348-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 06/20/2023] [Indexed: 07/28/2023]
Abstract
Genes that drive the proliferation, survival, invasion and metastasis of malignant cells have been identified for many human cancers1-4. Independent studies have identified cell death pathways that eliminate cells for the good of the organism5,6. The coexistence of cell death pathways with driver mutations suggests that the cancer driver could be rewired to activate cell death using chemical inducers of proximity (CIPs). Here we describe a new class of molecules called transcriptional/epigenetic CIPs (TCIPs) that recruit the endogenous cancer driver, or a downstream transcription factor, to the promoters of cell death genes, thereby activating their expression. We focused on diffuse large B cell lymphoma, in which the transcription factor B cell lymphoma 6 (BCL6) is deregulated7. BCL6 binds to the promoters of cell death genes and epigenetically suppresses their expression8. We produced TCIPs by covalently linking small molecules that bind BCL6 to those that bind to transcriptional activators that contribute to the oncogenic program, such as BRD4. The most potent molecule, TCIP1, increases binding of BRD4 by 50% over genomic BCL6-binding sites to produce transcriptional elongation at pro-apoptotic target genes within 15 min, while reducing binding of BRD4 over enhancers by only 10%, reflecting a gain-of-function mechanism. TCIP1 kills diffuse large B cell lymphoma cell lines, including chemotherapy-resistant, TP53-mutant lines, at EC50 of 1-10 nM in 72 h and exhibits cell-specific and tissue-specific effects, capturing the combinatorial specificity inherent to transcription. The TCIP concept also has therapeutic applications in regulating the expression of genes for regenerative medicine and developmental disorders.
Collapse
MESH Headings
- Humans
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Cycle Proteins/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Proto-Oncogene Proteins c-bcl-6/genetics
- Proto-Oncogene Proteins c-bcl-6/metabolism
- Transcription Factors/metabolism
- Epigenesis, Genetic/drug effects
- Promoter Regions, Genetic
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
Collapse
Affiliation(s)
- Sai Gourisankar
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | | - Wenzhi Ji
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | - Xiaofan Liu
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Samuel H Kim
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Zhengnian Li
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | | | - Haopeng Yang
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA.
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Nguyen K, Hebert K, McConnell E, Cullen N, Cheng T, Awoyode S, Martin E, Chen W, Wu T, Alahari SK, Izadpanah R, Collins-Burow BM, Lee SB, Drewry DH, Burow ME. LKB1 Signaling and Patient Survival Outcomes in Hepatocellular Carcinoma. Pharmacol Res 2023; 192:106757. [PMID: 37023992 DOI: 10.1016/j.phrs.2023.106757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
The liver is a major organ that is involved in essential biological functions such as digestion, nutrient storage, and detoxification. Furthermore, it is one of the most metabolically active organs with active roles in regulating carbohydrate, protein, and lipid metabolism. Hepatocellular carcinoma is a cancer of the liver that is associated in settings of chronic inflammation such as viral hepatitis, repeated toxin exposure, and fatty liver disease. Furthermore, liver cancer is the most common cause of death associated with cirrhosis and is the 3rd leading cause of global cancer deaths. LKB1 signaling has been demonstrated to play a role in regulating cellular metabolism under normal and nutrient deficient conditions. Furthermore, LKB1 signaling has been found to be involved in many cancers with most reports identifying LKB1 to have a tumor suppressive role. In this review, we use the KMPlotter database to correlate RNA levels of LKB1 signaling genes and hepatocellular carcinoma patient survival outcomes with the hopes of identifying potential biomarkers clinical usage. Based on our results STRADß, CAB39L, AMPKα, MARK2, SIK1, SIK2, BRSK1, BRSK2, and SNRK expression has a statistically significant impact on patient survival.
Collapse
Affiliation(s)
- Khoa Nguyen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Katherine Hebert
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Emily McConnell
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicole Cullen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Thomas Cheng
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Susanna Awoyode
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Elizabeth Martin
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, USA
| | - Reza Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Sean B Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - David H Drewry
- UNC Eshelman School of Pharmacy and UNC Lineberger Comprehensive Cancer Center, Chemical Biology and Medicinal Chemistry Division, SGC-UNC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
3
|
Inferring tumor-specific cancer dependencies through integrating ex vivo drug response assays and drug-protein profiling. PLoS Comput Biol 2022; 18:e1010438. [PMID: 35994503 PMCID: PMC9436053 DOI: 10.1371/journal.pcbi.1010438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/01/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
The development of cancer therapies may be improved by the discovery of tumor-specific molecular dependencies. The requisite tools include genetic and chemical perturbations, each with its strengths and limitations. Chemical perturbations can be readily applied to primary cancer samples at large scale, but mechanistic understanding of hits and further pharmaceutical development is often complicated by the fact that a chemical compound has affinities to multiple proteins. To computationally infer specific molecular dependencies of individual cancers from their ex vivo drug sensitivity profiles, we developed a mathematical model that deconvolutes these data using measurements of protein-drug affinity profiles. Through integrating a drug-kinase profiling dataset and several drug response datasets, our method, DepInfeR, correctly identified known protein kinase dependencies, including the EGFR dependence of HER2+ breast cancer cell lines, the FLT3 dependence of acute myeloid leukemia (AML) with FLT3-ITD mutations and the differential dependencies on the B-cell receptor pathway in the two major subtypes of chronic lymphocytic leukemia (CLL). Furthermore, our method uncovered new subgroup-specific dependencies, including a previously unreported dependence of high-risk CLL on Checkpoint kinase 1 (CHEK1). The method also produced a detailed map of the kinase dependencies in a heterogeneous set of 117 CLL samples. The ability to deconvolute polypharmacological phenotypes into underlying causal molecular dependencies should increase the utility of high-throughput drug response assays for functional precision oncology. As survival and proliferation of cancer cells depend on molecular aberrations that can be highly specific to cancer types and individual tumors, identifying such dependence is pivotal to designing individualized tumor therapy. Chemical perturbations, through screening of bioactive compounds using primary cancer cells, provide an important tool for identifying tumor-specific dependencies. However, many chemical compounds bind multiple proteins, which complicates interpreting screening results and pinpointing the phenotype-causing target. To overcome this challenge and increase the utility of drug screening approaches for functional precision medicine, we developed a computational framework, DepInfeR, to identify tumor-specific dependencies on druggable proteins through integrating two sources of information: drug sensitivity assays and drug-protein affinity profiling. Our approach correctly identifies known kinase dependencies, which validates our approach. Furthermore, by integrating a newly generated drug screening dataset on primary tumor samples, we discovered a previously unreported survival dependence on Checkpoint kinase 1 (CHEK1) by a molecular subgroup of chronic lymphocytic leukemia samples, highlighting the clinical potential of our method.
Collapse
|
4
|
Tesch R, Rak M, Raab M, Berger LM, Kronenberger T, Joerger AC, Berger BT, Abdi I, Hanke T, Poso A, Strebhardt K, Sanhaji M, Knapp S. Structure-Based Design of Selective Salt-Inducible Kinase Inhibitors. J Med Chem 2021; 64:8142-8160. [PMID: 34086472 DOI: 10.1021/acs.jmedchem.0c02144] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Salt-inducible kinases (SIKs) are key metabolic regulators. The imbalance in SIK function is associated with the development of diverse cancers, including breast, gastric, and ovarian cancers. Chemical tools to clarify the roles of SIK in different diseases are, however, sparse and are generally characterized by poor kinome-wide selectivity. Here, we have adapted the pyrido[2,3-d]pyrimidin-7-one-based p21-activated kinase (PAK) inhibitor G-5555 for the targeting of SIK, by exploiting differences in the back-pocket region of these kinases. Optimization was supported by high-resolution crystal structures of G-5555 bound to the known off-targets, MST3 and MST4, leading to a chemical probe, MRIA9, with dual SIK/PAK activity and excellent selectivity over other kinases. Furthermore, we show that MRIA9 sensitizes ovarian cancer cells to treatment with the mitotic agent paclitaxel, confirming earlier data from genetic knockdown studies and suggesting a combination therapy with SIK inhibitors and paclitaxel for the treatment of paclitaxel-resistant ovarian cancer.
Collapse
Affiliation(s)
- Roberta Tesch
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Marcel Rak
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Lena M Berger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Thales Kronenberger
- Dept. of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Str. 14, Tübingen 72076, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio 70210, Finland
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Ismahan Abdi
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Antti Poso
- Dept. of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Str. 14, Tübingen 72076, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio 70210, Finland
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Mourad Sanhaji
- Department of Obstetrics and Gynaecology, School of Medicine, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
- German Translational Cancer Network (DKTK) and Frankfurt Cancer Institute (FCI), Frankfurt am Main 60438, Germany
| |
Collapse
|
5
|
Shi M, Wang L, Li P, Liu J, Chen L, Xu D. Dasatinib-SIK2 Binding Elucidated by Homology Modeling, Molecular Docking, and Dynamics Simulations. ACS OMEGA 2021; 6:11025-11038. [PMID: 34056256 PMCID: PMC8153941 DOI: 10.1021/acsomega.1c00947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
![]()
Salt-inducible kinases
(SIKs) are calcium/calmodulin-dependent
protein kinase (CAMK)-like (CAMKL) family members implicated in insulin
signal transduction, metabolic regulation, inflammatory response,
and other processes. Here, we focused on SIK2, which is a target of
the Food and Drug Administration (FDA)-approved pan inhibitor N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide
(dasatinib), and constructed four representative SIK2 structures by
homology modeling. We investigated the interactions between dasatinib
and SIK2 via molecular docking, molecular dynamics simulation, and
binding free energy calculation and found that dasatinib showed strong
binding affinity for SIK2. Binding free energy calculations suggested
that the modification of various dasatinib regions may provide useful
information for drug design and to guide the discovery of novel dasatinib-based
SIK2 inhibitors.
Collapse
Affiliation(s)
- Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lun Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Penghui Li
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jiang Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
6
|
Sun Z, Jiang Q, Li J, Guo J. The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis. Signal Transduct Target Ther 2020; 5:150. [PMID: 32788639 PMCID: PMC7423983 DOI: 10.1038/s41392-020-00265-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023] Open
Abstract
Salt-inducible kinases (SIKs) belong to AMP-activated protein kinase (AMPK) family, and functions mainly involve in regulating energy response-related physiological processes, such as gluconeogenesis and lipid metabolism. However, compared with another well-established energy-response kinase AMPK, SIK roles in human diseases, especially in diabetes and tumorigenesis, are rarely investigated. Recently, the pilot roles of SIKs in tumorigenesis have begun to attract more attention due to the finding that the tumor suppressor role of LKB1 in non-small-cell lung cancers (NSCLCs) is unexpectedly mediated by the SIK but not AMPK kinases. Thus, here we tend to comprehensively summarize the emerging upstream regulators, downstream substrates, mouse models, clinical relevance, and candidate inhibitors for SIKs, and shed light on SIKs as the potential therapeutic targets for cancer therapies.
Collapse
Affiliation(s)
- Zicheng Sun
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.,Department of Breast and Thyroid Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Qiwei Jiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| |
Collapse
|
7
|
Tasoulas J, Rodon L, Kaye FJ, Montminy M, Amelio AL. Adaptive Transcriptional Responses by CRTC Coactivators in Cancer. Trends Cancer 2019; 5:111-127. [PMID: 30755304 DOI: 10.1016/j.trecan.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 01/09/2023]
Abstract
Adaptive stress signaling networks directly influence tumor development and progression. These pathways mediate responses that allow cancer cells to cope with both tumor cell-intrinsic and cell-extrinsic insults and develop acquired resistance to therapeutic interventions. This is mediated in part by constant oncogenic rewiring at the transcriptional level by integration of extracellular cues that promote cell survival and malignant transformation. The cAMP-regulated transcriptional coactivators (CRTCs) are a newly discovered family of intracellular signaling integrators that serve as the conduit to the basic transcriptional machinery to regulate a host of adaptive response genes. Thus, somatic alterations that lead to CRTC activation are emerging as key driver events in the development and progression of many tumor subtypes.
Collapse
Affiliation(s)
- Jason Tasoulas
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; These authors contributed equally
| | - Laura Rodon
- Peptide Biology Laboratories, Salk Institute, La Jolla, CA, USA; These authors contributed equally
| | - Frederic J Kaye
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA; UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Marc Montminy
- Peptide Biology Laboratories, Salk Institute, La Jolla, CA, USA
| | - Antonio L Amelio
- Department of Oral and Craniofacial Health Sciences, UNC School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, Cancer Cell Biology Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Mareschal S, Ruminy P, Alcantara M, Villenet C, Figeac M, Dubois S, Bertrand P, Bouzelfen A, Viailly PJ, Penther D, Tilly H, Bastard C, Jardin F. Application of the cghRA framework to the genomic characterization of Diffuse Large B-Cell Lymphoma. Bioinformatics 2018; 33:2977-2985. [PMID: 28481978 DOI: 10.1093/bioinformatics/btx309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/06/2017] [Indexed: 12/15/2022] Open
Abstract
Motivation Although sequencing-based technologies are becoming the new reference in genome analysis, comparative genomic hybridization arrays (aCGH) still constitute a simple and reliable approach for copy number analysis. The most powerful algorithms to analyze such data have been freely provided by the scientific community for many years, but combining them is a complex scripting task. Results The cghRA framework combines a user-friendly graphical interface and a powerful object-oriented command-line interface to handle a full aCGH analysis, as is illustrated in an original series of 107 Diffuse Large B-Cell Lymphomas. New algorithms for copy-number calling, polymorphism detection and minimal common region prioritization were also developed and validated. While their performances will only be demonstrated with aCGH, these algorithms could actually prove useful to any copy-number analysis, whatever the technique used. Availability and implementation R package and source for Linux, MS Windows and MacOS are freely available at http://bioinformatics.ovsa.fr/cghRA. Contact mareschal@ovsa.fr or fabrice.jardin@chb.unicancer.fr. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sylvain Mareschal
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Philippe Ruminy
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Marion Alcantara
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Céline Villenet
- Plate-Forme de Génomique Fonctionnelle et Structurale, Université de Lille II, 59000 Lille, France
| | - Martin Figeac
- Plate-Forme de Génomique Fonctionnelle et Structurale, Université de Lille II, 59000 Lille, France.,Cellule de Bioinformatique du Plateau Commun de Séquençage, CHRU de Lille, 59000 Lille, France
| | - Sydney Dubois
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Philippe Bertrand
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Abdelilah Bouzelfen
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Pierre-Julien Viailly
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Dominique Penther
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Hervé Tilly
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France
| | - Christian Bastard
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Fabrice Jardin
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| |
Collapse
|
9
|
Zhou J, Alfraidi A, Zhang S, Santiago-O'Farrill JM, Yerramreddy Reddy VK, Alsaadi A, Ahmed AA, Yang H, Liu J, Mao W, Wang Y, Takemori H, Vankayalapati H, Lu Z, Bast RC. A Novel Compound ARN-3236 Inhibits Salt-Inducible Kinase 2 and Sensitizes Ovarian Cancer Cell Lines and Xenografts to Paclitaxel. Clin Cancer Res 2016; 23:1945-1954. [PMID: 27678456 DOI: 10.1158/1078-0432.ccr-16-1562] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Purpose: Salt-inducible kinase 2 (SIK2) is a centrosome kinase required for mitotic spindle formation and a potential target for ovarian cancer therapy. Here, we examine the effects of a novel small-molecule SIK2 inhibitor, ARN-3236, on sensitivity to paclitaxel in ovarian cancer.Experimental Design: SIK2 expression was determined in ovarian cancer tissue samples and cell lines. ARN-3236 was tested for its efficiency to inhibit growth and enhance paclitaxel sensitivity in cultures and xenografts of ovarian cancer cell lines. SIK2 siRNA and ARN-3236 were compared for their ability to produce nuclear-centrosome dissociation, inhibit centrosome splitting, block mitotic progression, induce tetraploidy, trigger apoptotic cell death, and reduce AKT/survivin signaling.Results: SIK2 is overexpressed in approximately 30% of high-grade serous ovarian cancers. ARN-3236 inhibited the growth of 10 ovarian cancer cell lines at an IC50 of 0.8 to 2.6 μmol/L, where the IC50 of ARN-3236 was inversely correlated with endogenous SIK2 expression (Pearson r = -0.642, P = 0.03). ARN-3236 enhanced sensitivity to paclitaxel in 8 of 10 cell lines, as well as in SKOv3ip (P = 0.028) and OVCAR8 xenografts. In at least three cell lines, a synergistic interaction was observed. ARN-3236 uncoupled the centrosome from the nucleus in interphase, blocked centrosome separation in mitosis, caused prometaphase arrest, and induced apoptotic cell death and tetraploidy. ARN-3236 also inhibited AKT phosphorylation and attenuated survivin expression.Conclusions: ARN-3236 is the first orally available inhibitor of SIK2 to be evaluated against ovarian cancer in preclinical models and shows promise in inhibiting ovarian cancer growth and enhancing paclitaxel chemosensitivity. Clin Cancer Res; 23(8); 1945-54. ©2016 AACR.
Collapse
Affiliation(s)
- Jinhua Zhou
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Albandri Alfraidi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shu Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Abdulkhaliq Alsaadi
- The Nuffield Department of Obstetrics and Gynecology, University of Oxford, Oxford, United Kingdom
| | - Ahmed A Ahmed
- The Nuffield Department of Obstetrics and Gynecology, University of Oxford, Oxford, United Kingdom
| | - Hailing Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiqun Mao
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yan Wang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hiroshi Takemori
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | | | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
10
|
|
11
|
Bon H, Wadhwa K, Schreiner A, Osborne M, Carroll T, Ramos-Montoya A, Ross-Adams H, Visser M, Hoffmann R, Ahmed AA, Neal DE, Mills IG. Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer. Mol Cancer Res 2014; 13:620-635. [PMID: 25548099 DOI: 10.1158/1541-7786.mcr-13-0182-t] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 12/02/2014] [Indexed: 11/16/2022]
Abstract
UNLABELLED Salt-inducible kinase 2 (SIK2) is a multifunctional kinase of the AMPK family that plays a role in CREB1-mediated gene transcription and was recently reported to have therapeutic potential in ovarian cancer. The expression of this kinase was investigated in prostate cancer clinical specimens. Interestingly, auto-antibodies against SIK2 were increased in the plasma of patients with aggressive disease. Examination of SIK2 in prostate cancer cells found that it functions both as a positive regulator of cell-cycle progression and a negative regulator of CREB1 activity. Knockdown of SIK2 inhibited cell growth, delayed cell-cycle progression, induced cell death, and enhanced CREB1 activity. Expression of a kinase-dead mutant of SIK2 also inhibited cell growth, induced cell death, and enhanced CREB1 activity. Treatment with a small-molecule SIK2 inhibitor (ARN-3236), currently in preclinical development, also led to enhanced CREB1 activity in a dose- and time-dependent manner. Because CREB1 is a transcription factor and proto-oncogene, it was posited that the effects of SIK2 on cell proliferation and viability might be mediated by changes in gene expression. To test this, gene expression array profiling was performed and while SIK2 knockdown or overexpression of the kinase-dead mutant affected established CREB1 target genes; the overlap with transcripts regulated by forskolin (FSK), the adenylate cyclase/CREB1 pathway activator, was incomplete. IMPLICATIONS This study demonstrates that targeting SIK2 genetically or therapeutically will have pleiotropic effects on cell-cycle progression and transcription factor activation, which should be accounted for when characterizing SIK2 inhibitors.
Collapse
Affiliation(s)
- Hélène Bon
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Karan Wadhwa
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Alexander Schreiner
- Microscopy and Imaging Core, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Michelle Osborne
- Genomics Core, Cambridge Research Institute, Cambridge, CB2 ORE, UK
| | - Thomas Carroll
- Bioinformatics Core, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | | | - Helen Ross-Adams
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Matthieu Visser
- Health Care Innovation, Philips Research, Eidhoven, Netherlands
| | - Ralf Hoffmann
- Molecular Diagnostics, Philips Research, Eindhoven, Netherlands
| | - Ahmed Ashour Ahmed
- Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS and Nuffield Department of Obstetrics and Gynaecology, University of Oxford, OX3 9DU, UK
| | - David E Neal
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK.,Department of Urology, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK.,Department of Oncology, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Ian G Mills
- Uro-oncology Research Group, Cambridge Research Institute, Cambridge, CB2 0RE, UK.,Department of Urology, Oslo University Hospital, 0424 Oslo, Norway.,Department of Cancer Prevention, Oslo University Hospital, 0424 Oslo, Norway.,Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo and Oslo University Hospital, N-0349, Oslo, Norway
| |
Collapse
|
12
|
Role of the SIK2-p35-PJA2 complex in pancreatic β-cell functional compensation. Nat Cell Biol 2014; 16:234-44. [PMID: 24561619 DOI: 10.1038/ncb2919] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/22/2014] [Indexed: 02/08/2023]
Abstract
Energy sensing by the AMP-activated protein kinase (AMPK) is of fundamental importance in cell biology. In the pancreatic β-cell, AMPK is a central regulator of insulin secretion. The capacity of the β-cell to increase insulin output is a critical compensatory mechanism in prediabetes, yet its molecular underpinnings are unclear. Here we delineate a complex consisting of the AMPK-related kinase SIK2, the CDK5 activator CDK5R1 (also known as p35) and the E3 ligase PJA2 essential for β-cell functional compensation. Following glucose stimulation, SIK2 phosphorylates p35 at Ser 91, to trigger its ubiquitylation by PJA2 and promote insulin secretion. Furthermore, SIK2 accumulates in β-cells in models of metabolic syndrome to permit compensatory secretion; in contrast, β-cell knockout of SIK2 leads to accumulation of p35 and impaired secretion. This work demonstrates that the SIK2-p35-PJA2 complex is essential for glucose homeostasis and provides a link between p35-CDK5 and the AMPK family in excitable cells.
Collapse
|
13
|
Abstract
The AMP-activated protein kinase (AMPK) functions to monitor and maintain energy homeostasis at the cellular and organism level. AMPK was perceived historically primarily as a component of the LKB1/STK11 tumor suppressor (LKB1 mutations cause the Peutz-Jegher cancer predisposition syndrome) cascade upstream of the TSC1/2/mTOR pathway and thus likely to be a tumor suppressor. However, AMPK has recently been shown to promote cancer cell survival in the face of extrinsic and intrinsic stressors including bioenergetic, growth factor, and oncogene stress compatible with studies showing that AMPK is required for oncogenic transformation. Thus, whether AMPK acts as a bona fide tumor suppressor or a contextual oncogene and, of particular importance, whether AMPK should be targeted for activation or inhibition during cancer therapy, is controversial and requires clarification. We aim to initiate discussions of these critical questions by reviewing the role of AMPK with an emphasis on cancer cell adaptation to microenvironment stress and therapeutic intervention.
Collapse
Affiliation(s)
- Jiyong Liang
- Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
14
|
Salaverria I, Martin‐Guerrero I, Burkhardt B, Kreuz M, Zenz T, Oschlies I, Arnold N, Baudis M, Bens S, García‐Orad A, Lisfeld J, Schwaenen C, Szczepanowski M, Wessendorf S, Pfreundschuh M, Trümper L, Klapper W, Siebert R. High resolution copy number analysis of
IRF4
translocation‐positive diffuse large B‐cell and follicular lymphomas. Genes Chromosomes Cancer 2012; 52:150-5. [DOI: 10.1002/gcc.22014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/04/2012] [Indexed: 01/08/2023] Open
Affiliation(s)
- Itziar Salaverria
- Institute of Human Genetics, University Hospital Schleswig‐Holstein Campus Kiel/Christian‐Albrechts University, Kiel, Germany
| | - Idoia Martin‐Guerrero
- Institute of Human Genetics, University Hospital Schleswig‐Holstein Campus Kiel/Christian‐Albrechts University, Kiel, Germany
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Bizkaia, Spain
| | - Birgit Burkhardt
- NHL‐BFM Study Center, Department of Pediatric Hematology and Oncology, Justus‐Liebig‐University, Giessen, Germany
- Pediatric Hematology and Oncology, University Hospital Münster, Münster, Germany
| | - Markus Kreuz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Thorsten Zenz
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine V, University Hospital Heidelberg, Germany
| | - Ilske Oschlies
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Christian‐Albrechts University, Kiel, Germany
| | - Norbert Arnold
- Department of Gynecology and Obstetrics, University Hospital Schleswig‐Holstein Campus Kiel/Christian‐Albrechts University, Kiel, Germany
| | - Michael Baudis
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Susanne Bens
- Institute of Human Genetics, University Hospital Schleswig‐Holstein Campus Kiel/Christian‐Albrechts University, Kiel, Germany
| | - Africa García‐Orad
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Bizkaia, Spain
| | - Jasmin Lisfeld
- NHL‐BFM Study Center, Department of Pediatric Hematology and Oncology, Justus‐Liebig‐University, Giessen, Germany
| | | | - Monika Szczepanowski
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Christian‐Albrechts University, Kiel, Germany
| | - Swen Wessendorf
- Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | | | - Lorenz Trümper
- Department of Hematology and Oncology, Georg‐August University of Göttingen, Göttingen, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Christian‐Albrechts University, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University Hospital Schleswig‐Holstein Campus Kiel/Christian‐Albrechts University, Kiel, Germany
| |
Collapse
|
15
|
Poretti G, Kwee I, Bernasconi B, Rancoita PMV, Rinaldi A, Capella C, Zucca E, Neri A, Tibiletti MG, Bertoni F. Chromosome 11q23.1 is an unstable region in B-cell tumor cell lines. Leuk Res 2011; 35:808-13. [PMID: 21420167 DOI: 10.1016/j.leukres.2010.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/18/2010] [Accepted: 10/31/2010] [Indexed: 01/08/2023]
Abstract
Chromosome 11q23 region is a frequent target of chromosome aberrations in B-cell lymphoid tumors. Here, we present the cytogenetic and molecular characterization of an amplification affecting 11q23.1 in four cell lines derived from B-cell lymphoid tumors. A minimal common region of amplification of 330 kb was identified in three cell lines using Affymetrix Human Mapping 250K arrays. When analyzed with three BAC clones, the amplifications appeared different at cytogenetic level in each cell line. Possibly affected transcripts were evaluated using tiling arrays, and validated by real time PCR. Since no effect of the amplification at the local transcription level was observed, it is possible that 11q23 amplification might mainly represent the effect of unstable chromosomal region.
Collapse
Affiliation(s)
- Giulia Poretti
- Laboratory of Experimental Oncology and Lymphoma Unit, Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|