1
|
Nicholson R, Menezes AC, Azevedo A, Leckenby A, Davies S, Seedhouse C, Gilkes A, Knapper S, Tonks A, Darley RL. Protein Kinase C Epsilon Overexpression Is Associated With Poor Patient Outcomes in AML and Promotes Daunorubicin Resistance Through p-Glycoprotein-Mediated Drug Efflux. Front Oncol 2022; 12:840046. [PMID: 35707351 PMCID: PMC9191576 DOI: 10.3389/fonc.2022.840046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
The protein kinase C (PKC) family of serine/threonine kinases are pleiotropic signaling regulators and are implicated in hematopoietic signaling and development. Only one isoform however, PKCϵ, has oncogenic properties in solid cancers where it is associated with poor outcomes. Here we show that PKCϵ protein is significantly overexpressed in acute myeloid leukemia (AML; 37% of patients). In addition, PKCϵ expression in AML was associated with a significant reduction in complete remission induction and disease-free survival. Examination of the functional consequences of PKCϵ overexpression in normal human hematopoiesis, showed that PKCϵ promotes myeloid differentiation, particularly of the monocytic lineage, and decreased colony formation, suggesting that PKCϵ does not act as an oncogene in hematopoietic cells. Rather, in AML cell lines, PKCϵ overexpression selectively conferred resistance to the chemotherapeutic agent, daunorubicin, by reducing intracellular concentrations of this agent. Mechanistic analysis showed that PKCϵ promoted the expression of the efflux pump, P-GP (ABCB1), and that drug efflux mediated by this transporter fully accounted for the daunorubicin resistance associated with PKCϵ overexpression. Analysis of AML patient samples also showed a link between PKCϵ and P-GP protein expression suggesting that PKCϵ expression drives treatment resistance in AML by upregulating P-GP expression.
Collapse
Affiliation(s)
- Rachael Nicholson
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ana Catarina Menezes
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Aleksandra Azevedo
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Adam Leckenby
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sara Davies
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Claire Seedhouse
- Academic Haematology, Nottingham University Hospitals and University of Nottingham, Nottingham, United Kingdom
| | - Amanda Gilkes
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Steve Knapper
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Alex Tonks
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard L. Darley
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
2
|
Tsujimura S, Tanaka Y. Potential of B-cell-targeting therapy in overcoming multidrug resistance and tissue invasiveness associated with P-glycoprotein expressing-B cell compartments. Immunol Med 2020; 44:142-151. [PMID: 33017281 DOI: 10.1080/25785826.2020.1825276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune mediated inflammatory disease characterized by progressive joint damage and extra-articular organ manifestations. Among the effector pathways and cells involved in the development of RA, activated B cells play a pivotal role in the pathological process of RA. P-glycoprotein (P-gp), a member of ATP-binding cassette transporters, is induced on the cell membrane by certain stimuli. P-gp transports various drugs from the cytoplasm to the cell exterior, resulting in the development of drug resistance. P-gp expression on B cells appears in patients with RA as the disease activity increases, and treatment of these patients' results in modification of over-expression of P-gp on activated B cells. Evidence suggests that P-gp expressing-activated B cells play important roles in the pathogenesis and treatment resistance in RA through the efflux of intracellular drugs and progression of infiltration in inflammatory lesions. Therapies designed to target activated B cells might overcome refractory RA. Identification of the subsets of peripheral activated B cells that express P-gp in RA patients might help the selection of suitable treatment strategy.
Collapse
Affiliation(s)
- Shizuyo Tsujimura
- The First Department of Internal Medicine, University of Occupational & Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational & Environmental Health, School of Medicine, Kitakyushu, Japan
| |
Collapse
|
3
|
Zhou Y, Du B, Kan M, Chen S, Tang BH, Nie AQ, Ye PP, Shi HY, Hao GX, Guo XL, Han QJ, Zheng Y, Zhao W. Drug Elimination Alteration in Acute Lymphoblastic Leukemia Mediated by Renal Transporters and Glomerular Filtration. Pharm Res 2020; 37:158. [PMID: 32743772 DOI: 10.1007/s11095-020-02896-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Drug elimination alteration has been well reported in acute lymphoblastic leukemia (ALL). Considering that transporters and glomerular filtration influence, to different extents, the drug disposition, and possible side effects, we evaluated the effects of ALL on major renal transporters and glomerular filtration mediated pharmacokinetic changes, as well as expression of renal drug transporters. METHODS ALL xenograft models were established and intravenously injected with substrates of renal transporters and glomerular filtration separately in NOD/SCID mice. The plasma concentrations of substrates, after single doses, were determined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). RESULTS With the development of ALL, protein expression of MDR1, OAT3 and OCT2 were increased by 2.62-fold, 1.70-fold, and 1.45-fold, respectively, whereas expression of MRP2 and MRP4 were significantly decreased by 30.98% and 45.28% in the kidney of ALL groups compared with control groups. Clearance of MDR1-mediated digoxin, OAT3-mediated furosemide, and OCT2-mediated metformin increased by 3.04-fold, 1.47-fold, and 1.26-fold, respectively. However, clearance of MRPs-mediated methotrexate was reduced by 39.5%. These results are consistent with mRNA expression. Clearance of vancomycin and amikacin, as markers of glomerular filtration rate, had a 2.14 and 1.64-fold increase in ALL mice, respectively. CONCLUSIONS The specific alteration of renal transporters and glomerular filtration in kidneys provide a rational explanation for changes in pharmacokinetics for ALL.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Du
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Kan
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shang Chen
- Institute of Biochemical and Biotechnological Drug, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo-Hao Tang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ai-Qing Nie
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pan-Pan Ye
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Hai-Yan Shi
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiu-Ju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
4
|
Pan S, Leng J, Deng X, Ruan H, Zhou L, Jamal M, Xiao R, Xiong J, Yin Q, Wu Y, Wang M, Yuan W, Shao L, Zhang Q. Nicotinamide increases the sensitivity of chronic myeloid leukemia cells to doxorubicin via the inhibition of SIRT1. J Cell Biochem 2019; 121:574-586. [PMID: 31407410 DOI: 10.1002/jcb.29303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
The NAD-dependent deacetylase Sirtuin 1 (SIRT1) plays a vital role in leukemogenesis. Nicotinamide (NAM) is the principal NAD+ precursor and a noncompetitive inhibitor of SIRT1. In our study, we showed that NAM enhanced the sensitivity of chronic myeloid leukemia (CML) to doxorubicin (DOX) via SIRT1. We found that SIRT1 high expression in CML patients was associated with disease progression and drug resistance. Exogenous NAM efficiently repressed the deacetylation activity of SIRT1 and induced the apoptosis of DOX-resistant K562 cells (K562R) in a dose-dependent manner. Notably, the combination of NAM and DOX significantly inhibited tumor cell proliferation and induced cell apoptosis. The knockdown of SIRT1 in K562R cells enhanced NAM+DOX-induced apoptosis. SIRT1 rescue in K562R reduced the NAM+DOX-induced apoptosis. Mechanistically, the combinatory treatment significantly increased the cleavage of caspase-3 and PARP in K562R in vitro and in vivo. These results suggest the potential role of NAM in increasing the sensitivity of CML to DOX via the inhibition of SIRT1.
Collapse
Affiliation(s)
- Shan Pan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jun Leng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xinzhou Deng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Honggang Ruan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Lu Zhou
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ruijing Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qian Yin
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yingjie Wu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Meng Wang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wen Yuan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Zhang HD, Jiang LH, Sun DW, Li J, Ji ZL. The role of miR-130a in cancer. Breast Cancer 2017; 24:521-527. [PMID: 28477068 DOI: 10.1007/s12282-017-0776-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRs) are short and highly conserved non-coding RNAs molecules consisting of 18-25 nucleotides that regulate gene expression at post-transcriptional level by direct binding to complementary binding sites within the 3'untranslated region (3'UTR) of target mRNAs. New evidences have demonstrated that miRNAs play an important role in diverse physiological processes, including regulating cell growth, apoptosis, metastasis, drug resistance, and invasion. In chromosomes 11 and 22 of the miR-130 family, paralogous miRNA sequences, miR-130a and miR-130b are situated, respectively. MiR-130a has participated in different pathogenesis, including hepatocellular carcinoma, cervical cancer, ovarian cancer, glioblastoma, prostate carcinoma, leukemia, etc. Most important of all, more and more evidences indicate that miR-130a is associated with drug resistance and acts as an intermediate in PI3 K/Akt/PTEN/mTOR, Wnt/β-catenin and NF-kB/PTEN drug resistance signaling pathways. Drug resistance has emerged as a major obstacle to successful treatment of cancer nowadays and in this review, we will reveal the function of miR-130a in cancer, especially in drug resistance. Therefore, it will provide a new therapeutic target for the treatment of cancer, especially in chemotherapy.
Collapse
Affiliation(s)
- He-da Zhang
- Department of General Surgery, Southeast University Medical School, 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
| | - Lin-Hong Jiang
- Xuzhou Infectious Disease Hospital, Xuzhou, Jiangsu, China
| | - Da-Wei Sun
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jian Li
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Zhen-Ling Ji
- Department of General Surgery, Southeast University Medical School, 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China.
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Chen JR, Jia XH, Wang H, Yi YJ, Li YJ. With no interaction, knockdown of Apollon and MDR1 reverse the multidrug resistance of human chronic myelogenous leukemia K562/ADM cells. Oncol Rep 2017; 37:2735-2742. [PMID: 28358418 DOI: 10.3892/or.2017.5535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/22/2016] [Indexed: 11/06/2022] Open
Abstract
Chemotherapy is the main treatment method for patients with chronic myeloid leukemia (CML) and has achieved marked results. However, the acquisition of multidrug resistance (MDR) has seriously affected the quality of life and survival rate of patients. The overexpression of the inhibitors of apoptosis proteins (IAPs) and the adenosine triphosphate (ATP)-dependent binding cassette (ABC) transporters are the two main causes of MDR. Apollon and MDR1 are the most important and representative members, respectively, among the IAPs and ABC transporters. In the present study, we investigated the role of Apollon and MDR1 in chemotherapy resistance and their mechanism of interaction. We respectively knocked down the expression of Apollon and MDR1 using short hairpin RNA (shRNA) in adriamycin (ADM) resistant human CML K562 cells and examined the drug sensitivity, the consequences with regard to ADM accumulation and the alterations in the expression of Apollon and MDR1. The expression levels of Apollon and MDR1 mRNA were higher in the K562/ADM cells compared with the parental K562 cells as determined by reverse transcription‑polymerase chain reaction (RT-PCR). The plasmids of Apollon and MDR1 shRNA were respectively stably transfected into K562/ADM cells using Lipofectamine 2000. The transfection efficiency was detected by fluorescence microscopy. Cell Counting Kit-8 (CCK-8) assay revealed that Apollon or MDR1 knockdown significantly increased the chemosensitivity of the K562/ADM cells to ADM. Flow cytometric assay revealed that K562/ADM/shMDR1 cells exhibited a significantly increased intracellular accumulation of ADM, and that changes were not found in the K562/ADM/shApollon cells. Compared with the parental K562/ADM cells, a significantly decreased expression of Apollon mRNA and protein was determined in the K562/ADM/shApollon cells without affecting the expression of MDR1 as determined by RT-PCR and western blotting. Likewise, the expression levels of MDR1 mRNA and protein also markedly downregulated in the K562/ADM/shMDR1 cells had no effect on Apollon expression. Collectively, our findings demonstrated, for the first time, that downregulation of Apollon or MDR1 through stable transfection with the Apollon- or MDR1-targeting shRNA induced MDR reversal through respective inhibition of Apollon or MDR1 expression and function. However, the reversal mechanism of Apollon and MDR1 revealed no direct interaction with each other.
Collapse
Affiliation(s)
- Jie-Ru Chen
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Xiu-Hong Jia
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Hong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Ying-Jie Yi
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumour Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
7
|
Yang Y, Wu N, Wang Z, Zhang F, Tian R, Ji W, Ren X, Niu R. Rack1 Mediates the Interaction of P-Glycoprotein with Anxa2 and Regulates Migration and Invasion of Multidrug-Resistant Breast Cancer Cells. Int J Mol Sci 2016; 17:ijms17101718. [PMID: 27754360 PMCID: PMC5085749 DOI: 10.3390/ijms17101718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/18/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022] Open
Abstract
The emergence of multidrug resistance is always associated with more rapid tumor recurrence and metastasis. P-glycoprotein (P-gp), which is a well-known multidrug-efflux transporter, confers enhanced invasion ability in drug-resistant cells. Previous studies have shown that P-gp probably exerts its tumor-promoting function via protein-protein interaction. These interactions were implicated in the activation of intracellular signal transduction. We previously showed that P-gp binds to Anxa2 and promotes the invasiveness of multidrug-resistant (MDR) breast cancer cells through regulation of Anxa2 phosphorylation. However, the accurate mechanism remains unclear. In the present study, a co-immunoprecipitation coupled with liquid chromatography tandem mass spectrometry-based interactomic approach was performed to screen P-gp binding proteins. We identified Rack1 as a novel P-gp binding protein. Knockdown of Rack1 significantly inhibited proliferation and invasion of MDR cancer cells. Mechanistic studies demonstrated that Rack1 functioned as a scaffold protein that mediated the binding of P-gp to Anxa2 and Src. We showed that Rack1 regulated P-gp activity, which was necessary for adriamycin-induced P-gp-mediated phosphorylation of Anxa2 and Erk1/2. Overall, the findings in this study augment novel insights to the understanding of the mechanism employed by P-gp for promoting migration and invasion of MDR cancer cells.
Collapse
Affiliation(s)
- Yi Yang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Na Wu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Xiubao Ren
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| |
Collapse
|
8
|
Loi TH, Dai P, Carlin S, Melo JV, Ma DDF. Pro-survival role of protein kinase C epsilon in Philadelphia chromosome positive acute leukemia. Leuk Lymphoma 2015; 57:411-418. [DOI: 10.3109/10428194.2015.1043545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Hung TH, Chen CM, Tseng CP, Shen CJ, Wang HL, Choo KB, Chong KY. FZD1 activates protein kinase C delta-mediated drug-resistance in multidrug-resistant MES-SA/Dx5 cancer cells. Int J Biochem Cell Biol 2014; 53:55-65. [PMID: 24814288 DOI: 10.1016/j.biocel.2014.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/16/2014] [Accepted: 04/10/2014] [Indexed: 12/13/2022]
Abstract
Multidrug-resistant (MDR) cancer is a major clinical problem in chemotherapy of cancer patients. We have noted inappropriate PKCδ hypomethylation and overexpression of genes in the PKCδ/AP-1 pathway in the human uterus sarcoma drug-resistant cell line, MES-SA/Dx5 cells, which also overexpress p-glycoprotein (ABCB1). Recent studies have indicated that FZD1 is overexpressed in both multidrug-resistant cancer cell lines and in clinical tumor samples. These data have led us to hypothesize that the FZD1-mediated PKCδ signal-transduction pathway may play an important role in drug resistance in MES-SA/Dx5 cells. In this work, the PKCδ inhibitor Rottlerin was found to reduce ABCB1 expression and to inhibit the MDR drug pumping ability in the MES-SA/Dx5 cells when compared with the doxorubicin-sensitive parental cell line, MES-SA. PKCδ was up-regulated with concurrent up-regulation of the mRNA levels of the AP-1-related factors, c-JUN and c-FOS. Activation of AP-1 also correlated with up-regulation of the AP-1 downstream genes HGF and EGR1. Furthermore, AP-1 activities were reduced and the AP-1 downstream genes were down-regulated in Rottlerin-treated or PKCδ shRNA-transfected cells. MES-SA/Dx5 cells were resensitized to doxorubicin-induced toxicity by co-treatment with doxorubicin and Rottlerin or PKCδ shRNA. In addition, cell viability and drug pump-out ability were significantly reduced in the FZD1 inhibitor curcumin-treated and FZD1 shRNA-knockdown MES-SA/Dx5 cells, indicating involvement of PKCδ in FZD1-modulated ABCB1 expression pathway. Taken together, our data demonstrate that FZD1 regulates PKCδ, and the PKCδ/AP-1 signalling transduction pathway plays an important role in drug resistance in MES-SA/Dx5 cells.
Collapse
Affiliation(s)
- Tsai-Hsien Hung
- Graduate Institute of Biomedical Sciences, Division of Biotechnology College of medicine, Chang Gung University,Tao-Yuan, Taiwan, Republic of China
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Graduate Institute of Biomedical Sciences, Division of Biotechnology College of medicine, Chang Gung University,Tao-Yuan, Taiwan, Republic of China; Department of Medical Biotechnology and Laboratory Science, College of medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China; Molecular Medicine Research Center, College of medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Chih-Jie Shen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Hui-Ling Wang
- Department of Medical Biotechnology and Laboratory Science, College of medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Kong-Bung Choo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences and Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Kowit Yu Chong
- Graduate Institute of Biomedical Sciences, Division of Biotechnology College of medicine, Chang Gung University,Tao-Yuan, Taiwan, Republic of China; Department of Medical Biotechnology and Laboratory Science, College of medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China; Molecular Medicine Research Center, College of medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
| |
Collapse
|
10
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
11
|
Multidrug resistance in chronic myeloid leukaemia: how much can we learn from MDR-CML cell lines? Biosci Rep 2013; 33:BSR20130067. [PMID: 24070327 PMCID: PMC3839595 DOI: 10.1042/bsr20130067] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The hallmark of CML (chronic myeloid leukaemia) is the BCR (breakpoint cluster region)-ABL fusion gene. CML evolves through three phases, based on both clinical and pathological features: a chronic phase, an accelerated phase and blast crisis. TKI (tyrosine kinase inhibitors) are the treatment modality for patients with chronic phase CML. The therapeutic potential of the TKI imatinib is affected by BCR-ABL dependent an independent mechanisms. Development of MDR (multidrug resistance) contributes to the overall clinical resistance. MDR involves overexpression of ABC -transporters (ATP-binding-cassette transporter) among other features. MDR studies include the analysis of cancer cell lines selected for resistance. CML blast crisis is accompanied by increased resistance to apoptosis. This work reviews the role played by the influx transporter OCT1 (organic cation transporter 1), by efflux ABC transporters, molecules involved in the modulation of apoptosis (p53, Bcl-2 family, CD95, IAPs (inhibitors of apoptosis protein)], Hh and Wnt/β-catenin pathways, cytoskeleton abnormalities and other features described in leukaemic cells of clinical samples and CML cell lines. An MDR cell line, Lucena-1, generated from K562 by stepwise exposure to vincristine, was used as our model and some potential anticancer drugs effective against the MDR cell line and patients' samples are presented.
Collapse
|
12
|
Xia CQ, Smith PG. Drug efflux transporters and multidrug resistance in acute leukemia: therapeutic impact and novel approaches to mediation. Mol Pharmacol 2012; 82:1008-21. [PMID: 22826468 DOI: 10.1124/mol.112.079129] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Multidrug resistance (MDR), which is mediated by multiple drug efflux ATP-binding cassette (ABC) transporters, is a critical issue in the treatment of acute leukemia, with permeability glycoprotein (P-gp), multidrug resistance-associated protein 1, and breast cancer resistance protein (i.e., ABCG2) consistently being shown to be key effectors of MDR in cell line studies. Studies have demonstrated that intrinsic MDR can arise as a result of specific gene expression profiles and that drug-induced overexpression of P-gp and other MDR proteins can result in acquired resistance, with multiple ABC transporters having been shown to be overexpressed in cell lines selected for resistance to multiple drugs used to treat acute leukemia. Furthermore, numerous anticancer drugs, including agents commonly used for the treatment of acute leukemia (e.g., doxorubicin, vincristine, mitoxantrone, and methotrexate), have been shown to be P-gp substrates or to be susceptible to efflux mediated by other MDR proteins, and multiple clinical studies have demonstrated associations between P-gp or other MDR protein expression and responses to therapy or survival rates in acute leukemia. Here we review the importance of MDR in cancer, with a focus on acute leukemia, and we highlight the need for rapid accurate assessment of MDR status for optimal treatment selection. We also address the latest research on overcoming MDR, from inhibition of P-gp and other MDR proteins through various approaches (including direct antagonism and gene silencing) to the design of novel agents or novel delivery systems for existing therapeutic agents, to evade cellular efflux.
Collapse
Affiliation(s)
- Cindy Q Xia
- Millennium Pharmaceuticals, Inc., Cambridge, MA 02139, USA.
| | | |
Collapse
|
13
|
Yang L, Li N, Wang H, Jia X, Wang X, Luo J. Altered microRNA expression in cisplatin-resistant ovarian cancer cells and upregulation of miR-130a associated with MDR1/P-glycoprotein-mediated drug resistance. Oncol Rep 2012; 28:592-600. [PMID: 22614869 DOI: 10.3892/or.2012.1823] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/02/2012] [Indexed: 01/18/2023] Open
Abstract
microRNAs (miRNAs) are short non-coding RNA molecules which are involved in the regulation of various biological processes. Drug resistance has become a major obstacle to successful chemotherapy of ovarian cancer. The aim of this study was to investigate microRNA expression profiles in cisplatin-resistant ovarian cancer cells and the role of miR-130a in regulating drug resistance. Analysis of differentially expressed miRNAs between SKOV3 and SKOV3/CIS cells was assessed by miRNA microarrays. Target prediction of miRNAs was determined with the help of PicTar or TargetScan. Among these miRNAs, the expression of miR‑130a was verified using qRT-PCR. The expression of MDR1 mRNA and P-glycoprotein (P-gp) after cellular transfection was examined using qRT-PCR and western blotting, respectively. Cisplatin sensitivity was detected by the MTT assay. We indentified 35 downregulated and 54 upregulated miRNAs in SKOV3/CIS compared to those in SKOV3. We found that miR-130a was upregulated in SKOV3/CIS compared to the parental SKOV3 cells, and PTEN was predicted to be the potential target of miR-130a. Moreover, downregulation of miR-130a could inhibit MDR1 mRNA and P-gp expression and overcome the cisplatin resistance in SKOV3/CIS cells, which indicated that miR-130a may be associated with MDR1/P-gp-mediated drug resistance and plays the role of an intermediate in drug-resistance pathways of PI3K/Akt/PTEN/mTOR and ABC superfamily drug transporters in SKOV3/CIS cells. This study provides important information for the development of targeted gene therapy for reversing cisplatin resistance in ovarian cancer.
Collapse
Affiliation(s)
- Lingyun Yang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | | | | | | | | | | |
Collapse
|
14
|
Alcolea MP, Casado P, Rodríguez-Prados JC, Vanhaesebroeck B, Cutillas PR. Phosphoproteomic analysis of leukemia cells under basal and drug-treated conditions identifies markers of kinase pathway activation and mechanisms of resistance. Mol Cell Proteomics 2012; 11:453-66. [PMID: 22547687 DOI: 10.1074/mcp.m112.017483] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein kinase signaling is fundamental to cell homeostasis and is deregulated in all cancers but varies between patients. Understanding the mechanisms underlying this heterogeneity is critical for personalized targeted therapies. Here, we used a recently established LC-MS/MS platform to profile protein phosphorylation in acute myeloid leukemia cell lines with different sensitivities to kinase inhibitors. The compounds used in this study were originally developed to target Janus kinase, phosphatidylinositol 3-kinase, and MEK. After further validation of the technique, we identified several phosphorylation sites that were inhibited by these compounds but whose intensities did not always correlate with growth inhibition sensitivity. In contrast, several hundred phosphorylation sites that correlated with sensitivity/resistance were not in general inhibited by the compounds. These results indicate that markers of pathway activity may not always be reliable indicators of sensitivity of cancer cells to inhibitors that target such pathways, because the activity of parallel kinases can contribute to resistance. By mining our data we identified protein kinase C isoforms as one of such parallel pathways being more active in resistant cells. Consistent with the view that several parallel kinase pathways were contributing to resistance, inhibitors that target protein kinase C, MEK, and Janus kinase potentiated each other in arresting the proliferation of multidrug-resistant cells. Untargeted/unbiased approaches, such as the one described here, to quantify the activity of the intended target kinase pathway in concert with the activities of parallel kinase pathways will be invaluable to personalize therapies based on kinase inhibitors.
Collapse
Affiliation(s)
- Maria P Alcolea
- Analytical Signalling Group, Centre for Cell Signalling, Barts Cancer Institute, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London EC1M 6BQ, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Song M, Zang W, Zhang B, Cao J, Yang G. GCS overexpression is associated with multidrug resistance of human HCT-8 colon cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:23. [PMID: 22424291 PMCID: PMC3325898 DOI: 10.1186/1756-9966-31-23] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/16/2012] [Indexed: 11/26/2022]
Abstract
Purpose Multidrug resistance is one of the main impediments to the successful treatment of colon cancer. Glucosylceramide synthase (GCS) which is related to multidrug resistance (MDR) can reduce the level of ceramide and can help cells escape from the ceramide-induced cell apoptosis. However, the underlying mechanism is still unclear. Methods The cell proliferation and cell toxicity were measured with Cell Counting Kit-8 (CCK-8). The mRNA levels of GCS and MDR1 were detected by semiquantitative reverse transcription-PCR amplification, the protein levels of GCS, caspase-3 and P-gp proteins were indicated by Western blotting. The apoptosis rates of cells were measured with flow cytometry. Results The relative mRNA levels of GCS in HCT-8, HCT-8/VCR, HCT-8/VCR- sh-mock and HCT-8/VCR-sh-GCS were 71.4 ± 1.1%, 95.1 ± 1.2%, 98.2 ± 1.5%, and 66.6 ± 2.1% respectively. The mRNA levels of MDR1 were respectively 61.3 ± 1.1%, 90.5 ± 1.4%, 97.6 ± 2.2% and 56.1 ± 1.2%. The IC50 of Cisplatin complexes were respectively 69.070 ± 0.253 μg/ml, 312.050 ± 1.46 μg/ml, 328.741 ± 5.648 μg/ml, 150.792 ± 0.967 μg/ml in HCT-8, HCT-8/VCR, HCT-8/VCR-sh-mock and HCT-8/VCR-sh-GCS. The protein levels of caspase-3 were 34.2 ± o.6%, 93.0 ± 0.7%, 109.09 ± 0.7%, 42.7 ± 1.3% respectively. The apoptosis rates of cells were 8.77 ± 0.14%, 12.75 ± 0.54%, 15.39 ± 0.41% and 8.49 ± 0.23% respectively. Conclusion In conclusion, our research indicated that suppression of GCS restores the sensitivity of multidrug resistance colon cancer cells to drug treatment.
Collapse
Affiliation(s)
- Min Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, P.R. China
| | | | | | | | | |
Collapse
|