1
|
Al-Khatib SM, Ababneh O, Abushukair H, Abdo N, Al-Eitan LN. The impact of IDH and NAT2 gene polymorphisms in acute myeloid leukemia risk and overall survival in an Arab population: A case-control study. PLoS One 2023; 18:e0289014. [PMID: 37478088 PMCID: PMC10361469 DOI: 10.1371/journal.pone.0289014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignancy of the myeloid cells due to the clonal and malignant proliferation of blast cells. The etiology of AML is complex and involves environmental and genetic factors. Such genetic aberrations include FLT3, DNMT3, IDH1, IDH2, NAT2, and WT. In this study, we analyzed the relationship between five, not previously studied in any Arab population, single nucleotide polymorphisms (SNPs) and the risk and overall survival of AML in Jordanian patients. The SNPs are NAT2 (rs1799930 and rs1799931), IDH1 (rs121913500), and IDH2 (rs121913502 and rs1057519736). A total number of 30 AML patients and 225 healthy controls were included in this study. Females comprised 50% (n = 15) and 65.3% (n = 147) of patients and controls, respectively. For AML patients (case group) Genomic DNA was extracted from formalin-fixed paraffin-embedded tissues and from peripheral blood samples for the control subjects group. Genotyping of the genetic polymorphisms was conducted using a sequencing protocol. Our study indicates that NAT2 rs1799930 SNP had a statistically significant difference in genotype frequency between cases and controls (p = 0.023) while IDH mutations did not correlate with the risk and survival of AML in the Jordanian population. These results were also similar in the TCGA-LAML cohorts with the notable exception of the rare NAT2 mutation. A larger cohort study is needed to further investigate our results.
Collapse
Affiliation(s)
- Sohaib M. Al-Khatib
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Obada Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hassann Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour Abdo
- Department of Public Health, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Laith N. Al-Eitan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
2
|
Hernández-González O, Herrera-Vargas DJ, Martínez-Leija ME, Zavala-Reyes D, Portales-Pérez DP. The role of arylamine N-acetyltransferases in chronic degenerative diseases: Their possible function in the immune system. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119297. [PMID: 35588943 DOI: 10.1016/j.bbamcr.2022.119297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Since their discovery, arylamine N-acetyltransferases 1 and 2 (NAT1 and NAT2, respectively) have been associated with the metabolism of xenobiotics. NAT2 is the main factor in the therapeutic success of tuberculosis treatment due to its role in the biotransformation of isoniazid. However, researchers have started to investigate the possible participation of NAT1 and NAT2 (NATs) in carcinogenesis, although the mechanisms have not been elucidated fully. NATs enzymatic activity is essential in some types of cancer, such as breast cancer and acute lymphoblastic leukemia. Whether NAT1 and/or NAT2 participate in insulin resistance level in diabetes mellitus or in the immune system remains to be explored. Therefore, it is clear that its role in cell physiology has more implications than just metabolizing compounds.
Collapse
Affiliation(s)
| | | | - Miguel Ernesto Martínez-Leija
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Mexico; Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico
| | - Daniel Zavala-Reyes
- Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico
| | - Diana Patricia Portales-Pérez
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Mexico; Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico.
| |
Collapse
|
3
|
Medina-Sanson A, Núñez-Enríquez JC, Hurtado-Cordova E, Pérez-Saldivar ML, Martínez-García A, Jiménez-Hernández E, Fernández-López JC, Martín-Trejo JA, Pérez-Lorenzana H, Flores-Lujano J, Amador-Sánchez R, Mora-Ríos FG, Peñaloza-González JG, Duarte-Rodríguez DA, Torres-Nava JR, Flores-Bautista JE, Espinosa-Elizondo RM, Román-Zepeda PF, Flores-Villegas LV, González-Ulivarri JE, Martínez-Silva SI, Espinoza-Anrubio G, Almeida-Hernández C, Ramírez-Colorado R, Hernández-Mora L, García-López LR, Cruz-Ojeda GA, Godoy-Esquivel AE, Contreras-Hernández I, Medina-Hernández A, López-Caballero MG, Hernández-Pineda NA, Granados-Kraulles J, Rodríguez-Vázquez MA, Torres-Valle D, Cortés-Reyes C, Medrano-López F, Pérez-Gómez JA, Martínez-Ríos A, Aguilar-De Los Santos A, Serafin-Díaz B, Bekker-Méndez VC, Mata-Rocha M, Morales-Castillo BA, Sepúlveda-Robles OA, Ramírez-Bello J, Rosas-Vargas H, Hidalgo-Miranda A, Mejía-Aranguré JM, Jiménez-Morales S. Genotype-Environment Interaction Analysis of NQO1, CYP2E1, and NAT2 Polymorphisms and the Risk of Childhood Acute Lymphoblastic Leukemia: A Report From the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia. Front Oncol 2020; 10:571869. [PMID: 33072605 PMCID: PMC7537417 DOI: 10.3389/fonc.2020.571869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/17/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Acute lymphoblastic leukemia (ALL) is the main type of cancer in children. In Mexico and other Hispanic populations, the incidence of this neoplasm is one of the highest reported worldwide. Functional polymorphisms of various enzymes involved in the metabolism of xenobiotics have been associated with an increased risk of developing ALL, and the risk is different by ethnicity. The aims of the present study were to identify whether NQO1, CYP2E1, and NAT2 polymorphisms or some genotype-environmental interactions were associated with ALL risk in Mexican children. Methods: We conducted a case-control study including 478 pediatric patients diagnosed with ALL and 284 controls (children without leukemia). Ancestry composition of a subset of cases and controls was assessed using 32 ancestry informative markers. Genetic-environmental interactions for the exposure to hydrocarbons were assessed by logistic regression analysis. Results: The polymorphisms rs1801280 (OR 1.54, 95% CI 1.21–1.93), rs1799929 (OR 1.96, 95% CI 1.55–2.49), and rs1208 (OR 1.44, 95% CI 1.14–1.81) were found to increase the risk of ALL; being the risks higher under a recessive model (OR 2.20, 95% CI 1.30–1.71, OR 3.87, 95% CI 2.20–6.80, and OR 2.26, 95% CI 1.32–3.87, respectively). Gene-environment interaction analysis showed that NAT2 rs1799929 TT genotype confers high risk to ALL under exposure to fertilizers, insecticides, hydrocarbon derivatives, and parental tobacco smoking. No associations among NQO1, CYP2E1, and ALL were observed. Conclusion: Our study provides evidence for the association between NAT2 polymorphisms/gene-environment interactions, and the risk of childhood ALL in Mexican children.
Collapse
Affiliation(s)
- Aurora Medina-Sanson
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico.,Programa de Maestría y Doctorado en Ciencias Médicas de la Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM)Mexico City, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eduardo Hurtado-Cordova
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.,Universidad Xochicalco, Campos Tijuana, Tijuana, Mexico
| | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Anayeli Martínez-García
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.,Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Centro Médico Nacional "La Raza", Hospital General "Gaudencio González Garza", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología Pediátrica, Centro Médico Nacional "Siglo XXI", UMAE Hospital de Pediatría "Dr. Silvestre Frenk Freund", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Héctor Pérez-Lorenzana
- Servicio de Cirugía Pediátrica, Hospital General "Gaudencio González Garza", Centro Médico Nacional Siglo XXI (CMN) "La Raza", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Raquel Amador-Sánchez
- Servicio de Hematología Pediátrica, Hospital General Regional "Carlos McGregor Sánchez Navarro", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Felix Gustavo Mora-Ríos
- Cirugía Pediátrica del Hospital Regional "General Ignacio Zaragoza", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | | | | | - Pedro Francisco Román-Zepeda
- Coordinación Clínica y Servicio de Cirugía pediátrica, Hospital General Regional (HGR) No. 1 "Dr. Carlos Mac Gregor Sánchez Navarro", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Juana Esther González-Ulivarri
- Jefatura de Enseñanza, Hospital Pediátrico de Iztacalco, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Sofía Irene Martínez-Silva
- Jefatura de Enseñanza, Hospital Pediátrico de Iztapalapa, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Gilberto Espinoza-Anrubio
- Servicio de Pediatría, Hospital General Zona (HGZ) No. 8 "Dr. Gilberto Flores Izquierdo", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Carolina Almeida-Hernández
- Jefatura de Enseñanza, Hospital General de Ecatepec "Las Américas", Instituto de Salud del Estado de México (ISEM), Mexico City, Mexico
| | - Rosario Ramírez-Colorado
- Jefatura de Enseñanza, Hospital Pediátrico La Villa, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Luis Hernández-Mora
- Jefatura de Enseñanza, Hospital Pediátrico San Juan de Aragón, Secretaría de Salud (SS), Mexico City, Mexico
| | - Luis Ramiro García-López
- Servicio de Pediatría, Hospital Pediátrico de Tacubaya, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Gabriela Adriana Cruz-Ojeda
- Coordinación Clínica de Educación e Investigación en Salud, Hospital General de Zona (HGZ) No. 47, IMSS, Mexico City, Mexico
| | - Arturo Emilio Godoy-Esquivel
- Servicio de Cirugía Pediátrica, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Iris Contreras-Hernández
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Abraham Medina-Hernández
- Pediatría, Hospital Materno-Pediátrico de Xochimilco, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - María Guadalupe López-Caballero
- Jefatura de Enseñanza, Hospital Pediátrico de Coyoacán, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Norma Angélica Hernández-Pineda
- Coordinación Clínica y Pediatría del Hospital General de Zona 76, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jorge Granados-Kraulles
- Coordinación Clínica y Pediatría del Hospital General de Zona 76, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María Adriana Rodríguez-Vázquez
- Coordinación Clínica y Pediatría del Hospital General de Zona 68, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Delfino Torres-Valle
- Coordinación Clínica y Pediatría del Hospital General de Zona 71, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Carlos Cortés-Reyes
- Pediatría, Hospital General Dr. Darío Fernández Fierro, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Francisco Medrano-López
- Coordinación Clínica y Servicio de Pediatría, Hospital General Regional (HGR) No. 72 "Dr. Vicente Santos Guajardo", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jessica Arleet Pérez-Gómez
- Coordinación Clínica y Servicio de Pediatría, Hospital General Regional (HGR) No. 72 "Dr. Vicente Santos Guajardo", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Annel Martínez-Ríos
- Cirugía Pediátrica del Hospital Regional "General Ignacio Zaragoza", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Antonio Aguilar-De Los Santos
- Coordinación Clínica y Pediatría del Hospital General de Zona 98, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Berenice Serafin-Díaz
- Coordinación Clínica y Pediatría del Hospital General de Zona 57, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Vilma Carolina Bekker-Méndez
- Hospital de Infectología "Dr. Daniel Méndez Hernández", "La Raza", Instituto Mexicano del Seguro Social (IMSS), Unidad de Investigación Médica en Inmunología e Infectología, Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Blanca Angélica Morales-Castillo
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
4
|
Study on Genotyping Polymorphism and Sequencing of N-Acetyltransferase 2 (NAT2) among Al-Ahsa Population. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8765347. [PMID: 32626768 PMCID: PMC7312966 DOI: 10.1155/2020/8765347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
One of the well-studied phase II drug metabolizing enzymes is N-acetyltransferase 2 (NAT2) which has an essential role in the detoxification and metabolism of several environmental toxicants and many therapeutic drugs like isoniazid (antituberculosis, TB) and antimicrobial sulfonamides. According to the variability in the acetylation rate among different ethnic groups, individuals could be classified into slow, intermediate, and fast acetylators; these variabilities in the acetylation rate are a result of single nucleotide polymorphisms (SNPs) in the coding sequence of NAT2. The variety of NAT2 acetylation status is associated with some diseases such as bladder cancer, colorectal cancer, rheumatoid arthritis, and diabetes mellitus. The main objectives of this research are to describe the genetic profile of NAT2 gene among the people of the Al-Ahsa region, to detect the significant SNPs of this gene, to determine the frequency of major NAT2 alleles and genotypes, and then categorize them into fast, intermediate, and slow acetylators. Blood samples were randomly collected from 96 unrelated people from Al-Ahsa population, followed by DNA extraction then amplifying the NAT2 gene by polymerase chain reaction (PCR); finally, functional NAT2 gene (exon 2) was sequenced using the Sanger sequencing method. The well-known seven genetic variants of NAT2 gene are 191G>A, 282C>T, 341T>C, 481C>T, 590G>A, 803A>G, and 857G>A were detected with allele frequencies 1%, 35.4%, 42.7%, 41.1%, 29.2%, 51%, and 5.7%, respectively. The most common NAT2 genetic variant among Al-Ahsa population was 803A>G with a high frequency 0.510 (95% confidence interval 0.44-0.581) followed by 341T>C 0.427 (95% confidence interval 0.357-0.497). The most frequent two haplotypes of NAT2 were NAT2∗6C (25.00%) and NAT2∗5A (22.92%) which were classified as a slow acetylators. According to trimodal distribution of acetylation activity, the predicted phenotype of Al-Ahsa population was found to be 5.21% rapid acetylators, 34.38% intermediate acetylators, and 60.42% were slow acetylators. In addition, this study found four novel haplotypes NAT2∗5TB, NAT2∗5AB, NAT2∗5ZA, and NAT2∗6W which were slow acetylators. This study revealed a high frequency of the NAT2 gene with slow acetylators (60.42%) in Al-Ahsa population, which might alter the drug's efficacy and vulnerability to some diseases.
Collapse
|
5
|
Zhu X, Liu Y, Chen G, Guo Q, Zhang Z, Zhao L, Wei R, Yin X, Zhang Y, Wang B, Li X. Association between NAT2 polymorphisms and acute leukemia risk: A meta-analysis. Medicine (Baltimore) 2019; 98:e14942. [PMID: 30896661 PMCID: PMC6709067 DOI: 10.1097/md.0000000000014942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND N-acetyl-transferase 2 (NAT2) polymorphisms have been demonstrated to be associated with acute leukemia (AL); however, the results remain controversial. The present meta-analysis was performed to provide more precise results. METHODS Pubmed, Embase, Cochrane Library, China National Knowledge Infrastructure, and Wanfang databases were used to identify eligible studies. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association between NAT2 polymorphisms and AL risk. RESULTS Increased risk was found under both heterozygous (OR 1.24, 95% CI 1.02-1.51) and recessive model (OR 1.28, 95% CI 1.06-1.55) for rs1801280. The slow acetylator phenotype (OR 1.22, 95% CI 1.07-1.40) also increased AL risk. Subgroup analysis demonstrated that rs1801280 increased AL risk under the recessive model (OR 1.14, 95% CI 0.93-1.41) in Caucasian population and the co-dominant (OR 1.77, 95% CI 1.40-2.23), homozygous (OR 3.06, 95% CI 1.88-4.99), dominant (OR 2.22, 95% CI 1.56-3.17), recessive model (OR 2.06, 95% CI 1.35-3.16) in the Mixed populations. Association between rs1799929 and decreased AL risk was found in the co-dominant (OR 0.82, 95% CI 0.70-0.97), homozygous (OR 0.65, 95% CI 0.46-0.93), heterozygous (OR 0.71, 95% CI 0.51-1.00), and the recessive model (OR 0.68, 95% CI 0.49-0.94) in the Caucasian group. As for rs1799931, the same effects were found in the co-dominant (OR 0.68, 95% CI 0.49-0.94) and the dominant model (OR 0.68, 95% CI 0.48-0.97) in the mixed group. CONCLUSION rs1801280 and the slow acetylator phenotype are risk factors for AL.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- Laboratory for molecular immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences
| | - Yanbing Liu
- Breast Cancer Center, Shandong Cancer Hospital Affiliated to Shandong University
| | | | - Qiang Guo
- Laboratory for molecular immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences
| | - Zhen Zhang
- Laboratory for molecular immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences
| | - Lin Zhao
- Laboratory for molecular immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences
| | - Ran Wei
- Laboratory for molecular immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences
| | - Xunqiang Yin
- Laboratory for molecular immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences
| | - Yunhong Zhang
- Laboratory for molecular immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences
| | - Bin Wang
- Department of peripheral vascular disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xia Li
- Laboratory for molecular immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences
| |
Collapse
|
6
|
Hernández-González O, Ortiz-Zamudio JJ, Rodríguez-Pinal CJ, Alvarado-Morales I, Martínez-Jiménez VDC, Salazar-González RA, Correa-González LC, Gómez R, Portales-Pérez DP, Milán-Segovia RDC. Genetic polymorphisms of arylamine N-acetyltransferases 1 and 2 and the likelihood of developing pediatric acute lymphoblastic leukemia. Leuk Lymphoma 2017; 59:1968-1975. [DOI: 10.1080/10428194.2017.1406090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Oswaldo Hernández-González
- Laboratorio de Biofarmacia y Farmacocinética, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | | | - Cristian Jazmín Rodríguez-Pinal
- Laboratorio de Biofarmacia y Farmacocinética, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Ildemar Alvarado-Morales
- Laboratorio de Biofarmacia y Farmacocinética, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Verónica del Carmen Martínez-Jiménez
- Laboratorio de Biofarmacia y Farmacocinética, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Raúl Alejandro Salazar-González
- Laboratorio de Biofarmacia y Farmacocinética, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | | | - Rocío Gómez
- Departamento de Toxicología, Cinvestav-IPN, Ciudad de México, México
| | - Diana Patricia Portales-Pérez
- Laboratorio de Biofarmacia y Farmacocinética, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Rosa del Carmen Milán-Segovia
- Laboratorio de Biofarmacia y Farmacocinética, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| |
Collapse
|
7
|
Pombo-de-Oliveira MS, Andrade FG, Brisson GD, Dos Santos Bueno FV, Cezar IS, Noronha EP. Acute myeloid leukaemia at an early age: Reviewing the interaction between pesticide exposure and KMT2A-rearrangement. Ecancermedicalscience 2017; 11:782. [PMID: 29225689 PMCID: PMC5718248 DOI: 10.3332/ecancer.2017.782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 12/29/2022] Open
Abstract
Acute myeloid leukaemia (AML) in early childhood is characterised by a high frequency of recurrent genomic aberrations associated with distinct myeloid subtypes, clinical outcomes and pathogenesis. Genomic instability is the first step of pathogenic mechanism in early childhood AML. A sum of adverse events is necessary to the development of infant AML (i-AML), which includes latency of biochemical-molecular and cellular effects. Inherited genetic susceptibility associated with exposures to biotransformation substances can modulate the risk of DNA damage and it is a very important piece in the pathogenic puzzle. In this review, we have aimed to explore the chain of events in the time-points of the natural history of i-AML, which includes maternal exposures during pregnancy, the speculations about the formation of somatic mutations during foetal life and the secondary genomic aberrations associated with i-AML. The modulation of risk conferred by xenobiotic metabolism´s genes variants is the bottom line of the pathogenic process. Since we have conducted observational and molecular investigations in early childhood leukaemia, the data focused here is based on Brazilian findings with summarised results of our experience with epidemiological and molecular studies in early-age leukaemia.
Collapse
Affiliation(s)
- Maria S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil
| | - Francianne Gomes Andrade
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil
| | - Gisele Dallapicola Brisson
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil
| | - Filipe Vicente Dos Santos Bueno
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil
| | - Ingrid Sardou Cezar
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil
| | - Elda Pereira Noronha
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil
| |
Collapse
|
8
|
Zou Y, Dong S, Xu S, Gong Q, Chen J. Genetic polymorphisms of NAT2 and risk of acute myeloid leukemia: A case-control study. Medicine (Baltimore) 2017; 96:e7499. [PMID: 29049179 PMCID: PMC5662345 DOI: 10.1097/md.0000000000007499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Our purpose was to investigate the possible associations between N-acetyltransferase-2 (NAT2) gene polymorphisms and the risk of acute myeloid leukemia (AML) in Chinese Han population.A case-control study was conducted including 98 AML cases and 112 healthy controls. NAT2 gene 2 polymorphisms rs1799930 and rs1799931 were genotyped using direct sequencing. Chi-square test was performed to compare the genotype and allele distribution differences between groups. Odds ratio (OR) with 95% confidence interval (CI) was calculated to estimate the association between NAT2 gene polymorphisms and AML onset.A remarkable decrease trend of rs1799931 GA genotype was detected in AML patients compared with controls, whereas the ancestral GG genotype frequency increased in cases (P < .05). And the mutant A allele of rs1799931 significantly reduced the risk of AML by 0.585-fold versus the ancestral G allele carriers (OR = 0.585, 95% CI = 0.361-0.950). But the distributions of rs1799930 genotype and allele were similar between groups (P > .05).Our findings suggested that NAT2 gene polymorphism rs1799931 was associated with decreased risk of AML and was likely to be a protective factor against AML development.
Collapse
|
9
|
Brisson GD, Alves LR, Pombo-de-Oliveira MS. Genetic susceptibility in childhood acute leukaemias: a systematic review. Ecancermedicalscience 2015; 9:539. [PMID: 26045716 PMCID: PMC4448992 DOI: 10.3332/ecancer.2015.539] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 11/06/2022] Open
Abstract
Acute leukaemias (AL) correspond to 25-35% of all cancer cases in children. The aetiology is still sheltered, although several factors are implicated in causality of AL subtypes. Childhood acute leukaemias are associated with genetic syndromes (5%) and ionising radiation as risk factors. Somatic genomic alterations occur during fetal life and are initiating events to childhood leukaemia. Genetic susceptibility has been explored as a risk factor, since environmental exposure of the child to xenobiotics, direct or indirectly, can contribute to the accumulation of somatic mutations. Hence, a systematic review was conducted in order to understand the association between gene polymorphisms and childhood leukaemia risk. The search was performed in the electronic databases PubMed, Lilacs, and Scielo, selecting articles published between 1995 and 2013. This review included 90 case-control publications, which were classified into four groups: xenobiotic system (n = 50), DNA repair (n = 16), regulatory genes (n = 15), and genome wide association studies (GWAS) (n = 9). We observed that the most frequently investigated genes were: NQO1, GSTM1, GSTT1, GSTP1, CYP1A1, NAT2, CYP2D6, CYP2E1, MDR1 (ABCB1), XRCC1, ARID5B, and IKZF1. The collected evidence suggests that genetic polymorphisms in CYP2E1, GSTM1, NQO1, NAT2, MDR1, and XRCC1 are capable of modulating leukaemia risk, mainly when associated with environmental exposures, such as domestic pesticides and insecticides, smoking, trihalomethanes, alcohol consumption, and x-rays. More recently, genome wide association studies identified significant associations between genetic polymorphisms in ARID5B e IKZF1 and acute lymphoblastic leukaemia, but only a few studies have replicated these results until now. In conclusion, genetic susceptibility contributes to the risk of childhood leukaemia through the effects of gene-gene and gene-environment interactions.
Collapse
Affiliation(s)
- Gisele D Brisson
- Paediatric Haematology-Oncology Programme, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil, 20231050
| | - Liliane R Alves
- Pharmacy Service, Multiprofessional Residency Programme, Instituto Nacional de Câncer, Rio de Janeiro, Brazil, 20231050
| | - Maria S Pombo-de-Oliveira
- Paediatric Haematology-Oncology Programme, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil, 20231050
| |
Collapse
|
10
|
Kamel AM, Ebid GTA, Moussa HS. N-Acetyltransferase 2 (NAT2) polymorphism as a risk modifier of susceptibility to pediatric acute lymphoblastic leukemia. Tumour Biol 2015; 36:6341-8. [PMID: 25804798 DOI: 10.1007/s13277-015-3320-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/12/2015] [Indexed: 12/18/2022] Open
Abstract
N-Acetyltransferases (NAT) have been known to modify the risk to a variety of solid tumors. However, the role of NAT2 polymorphism in risk susceptibility to childhood acute lymphoblastic leukemia (ALL) is still not well known. We performed a case-control study to determine if the common NAT2 polymorphisms play a role in altering susceptibility to pediatric ALL. DNA of 92 pediatric ALL patients and 312 healthy controls was analyzed for the NAT2 polymorphisms using the PCR-RFLP method. The wild-type NAT2*4 was encountered in 8.6 % of patients versus 11.8 % of controls (P = 0.23). The rapid acetylators NAT2*12 803A>G, AG, GG, and AG/GG were overrepresented in controls (P = 0.0001; odds ratio (OR) 0.22, 0.19, and 0.21 respectively). NAT2*5D 341T>C and NAT2*11A 481C>T were of comparable frequencies. For their combination, NAT2*5A, a slow acetylator, both TCTT and CCCT were overrepresented in patients (P < 0.001; OR 15.8 and 17.9 respectively). NAT2*5B (803A>G, 341T>C, 481C>T) was overrepresented in controls (P < 0.001; OR 0.12). Apparently, 803A>G ameliorated the combined effect of 341T>C and 481C>T. A similar effect was obtained with NAT2*5C (341T>A, 803A>G) (P < 0.0001; OR 0.11). For slow acetylator NAT2*7A 857G>A, GA and GA/AA were overrepresented in patients (P = 0.009 and 0.01; OR 2.74 and 2.72 respectively). NAT2*13 282C>T, NAT2*6B 590G>A, and NAT2*14A 191G>A were of comparable frequencies. NAT2 282C>A in combination with NAT2 857G>A (NAT2*7B) showed a synergistic effect in patients versus controls (P < 0.0001; OR 3.51). In conclusion, NAT2 gene polymorphism(s) with slow acetylator phenotype is generally associated with the risk of development of ALL in children.
Collapse
Affiliation(s)
- Azza M Kamel
- Clinical Pathology Department, NCI, Cairo University, Fom El-Khalig square, Kasr El-Aini St, Cairo, 11796, Egypt,
| | | | | |
Collapse
|
11
|
Tian FS, Shen L, Ren YW, Zhang Y, Yin ZH, Zhou BS. N-Acetyltransferase 2 Gene Polymorphisms are Associated with Susceptibility to Cancer: a Meta-analysis. Asian Pac J Cancer Prev 2014; 15:5621-6. [DOI: 10.7314/apjcp.2014.15.14.5621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
Bonaventure A, Rudant J, Goujon-Bellec S, Orsi L, Leverger G, Baruchel A, Bertrand Y, Nelken B, Pasquet M, Michel G, Sirvent N, Bordigoni P, Ducassou S, Rialland X, Zelenika D, Hémon D, Clavel J. Childhood acute leukemia, maternal beverage intake during pregnancy, and metabolic polymorphisms. Cancer Causes Control 2013; 24:783-93. [DOI: 10.1007/s10552-013-0161-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
|
13
|
Metayer C, Milne E, Clavel J, Infante-Rivard C, Petridou E, Taylor M, Schüz J, Spector LG, Dockerty JD, Magnani C, Pombo-de-Oliveira MS, Sinnett D, Murphy M, Roman E, Monge P, Ezzat S, Mueller BA, Scheurer ME, Armstrong BK, Birch J, Kaatsch P, Koifman S, Lightfoot T, Bhatti P, Bondy ML, Rudant J, O'Neill K, Miligi L, Dessypris N, Kang AY, Buffler PA. The Childhood Leukemia International Consortium. Cancer Epidemiol 2013; 37:336-47. [PMID: 23403126 DOI: 10.1016/j.canep.2012.12.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/17/2012] [Accepted: 12/29/2012] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute leukemia is the most common cancer in children under 15 years of age; 80% are acute lymphoblastic leukemia (ALL) and 17% are acute myeloid leukemia (AML). Childhood leukemia shows further diversity based on cytogenetic and molecular characteristics, which may relate to distinct etiologies. Case-control studies conducted worldwide, particularly of ALL, have collected a wealth of data on potential risk factors and in some studies, biospecimens. There is growing evidence for the role of infectious/immunologic factors, fetal growth, and several environmental factors in the etiology of childhood ALL. The risk of childhood leukemia, like other complex diseases, is likely to be influenced both by independent and interactive effects of genes and environmental exposures. While some studies have analyzed the role of genetic variants, few have been sufficiently powered to investigate gene-environment interactions. OBJECTIVES The Childhood Leukemia International Consortium (CLIC) was established in 2007 to promote investigations of rarer exposures, gene-environment interactions and subtype-specific associations through the pooling of data from independent studies. METHODS By September 2012, CLIC included 22 studies (recruitment period: 1962-present) from 12 countries, totaling approximately 31000 cases and 50000 controls. Of these, 19 case-control studies have collected detailed epidemiologic data, and DNA samples have been collected from children and child-parent trios in 15 and 13 of these studies, respectively. Two registry-based studies and one study comprising hospital records routinely obtained at birth and/or diagnosis have limited interview data or biospecimens. CONCLUSIONS CLIC provides a unique opportunity to fill gaps in knowledge about the role of environmental and genetic risk factors, critical windows of exposure, the effects of gene-environment interactions and associations among specific leukemia subtypes in different ethnic groups.
Collapse
Affiliation(s)
- Catherine Metayer
- University of California, Berkeley, School of Public Health, 1995 University Avenue, Suite 460, Berkeley, CA 94704-1070, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Current evidence for an inherited genetic basis of childhood acute lymphoblastic leukemia. Int J Hematol 2012; 97:3-19. [DOI: 10.1007/s12185-012-1220-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/31/2012] [Indexed: 11/30/2022]
|
15
|
Bonaventure A, Goujon-Bellec S, Rudant J, Orsi L, Leverger G, Baruchel A, Bertrand Y, Nelken B, Pasquet M, Michel G, Sirvent N, Bordigoni P, Ducassou S, Rialland X, Zelenika D, Hémon D, Clavel J. Maternal smoking during pregnancy, genetic polymorphisms of metabolic enzymes, and childhood acute leukemia: the ESCALE Study (SFCE). Cancer Causes Control 2011; 23:329-45. [DOI: 10.1007/s10552-011-9882-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
|