1
|
Gupta R, Jevremovic D, Mathew SJ, Kumar S. Multiparametric Flow Cytometry in the Evaluation of Plasma Cell Proliferative Disorders: Current Paradigms for Clinical Practice. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:e88-e95. [PMID: 38142203 DOI: 10.1016/j.clml.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/25/2023]
Abstract
Diagnosis of plasma cell proliferative disorders (PCPDs) is primarily based on the demonstration of monoclonal protein (M-Protein) in blood and/ or urine which often precedes clinical manifestations of the disease. The basic pathophysiology behind the M-protein presence is the proliferation of clonal plasma cells (PCs) in bone marrow or extramedullary sites and is assessed using cytomorphology and immunophenotyping. The role of multiparametric flow cytometry (MFC) for PC identification is technically the most valuable tool in this context as it characterizes as well as quantifies the clonal PCs based on differential expression of various immunophenotypic (IPT) markers. From a diagnostic perspective, MFC is critical in the definite identification of the clonal PCs and delineates benign and borderline entities at one end of the spectrum (MGUS, SMM) with lower clonal PC% and, malignant diseases at the other end (MM and PCL) with higher clonal PC fraction. The role of MFC in assessment of measurable residual disease (MRD) and monitoring of progression in MM and various PCPDs has been validated in multiple clinical studies and is probably one of the most promising tools for predicting treatment outcomes. Furthermore, MFC also plays a crucial role in disease prognostication based on specific IPT profiles. An additional role of MFC in the current clinical scenario is the evaluation of tumor microenvironment based on immune cell repertoire, which is reflecting encouraging results across. Thus, in the current review we concisely describe the role of MFC as a reliable and essential modality in PCPDs, from diagnosis to prediction of treatment outcome and disease monitoring.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India; Department of Hematology, Mayo Clinic, Rochester, MN.
| | - Dragan Jevremovic
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | | | - Shaji Kumar
- Department of Hematology, Mayo Clinic, Rochester, MN
| |
Collapse
|
2
|
Gupta L, Suku P, Dash A, Bose P, Sharma P, Mallik N, Sreedharanunni S, Varma N, Jandial A, Malhotra P, Sachdeva MUS. Detection of circulating normal and tumor plasma cells in newly diagnosed patients of multiple myeloma and their associations with clinical and laboratory parameters. Curr Probl Cancer 2024; 48:101025. [PMID: 37951052 DOI: 10.1016/j.currproblcancer.2023.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 11/13/2023]
Abstract
INTRODUCTION Circulating plasma cells (CPCs) are frequently noted in variable frequencies in the entire spectrum of plasma cells neoplasms. With advent of high sensitivity multi-parametric flow cytometry, it is not only possible to detect CPCs present in very low numbers, but also to categorise them into circulating tumor plasma cells (CTPCs) and circulating normal plasma cells (CNPCs), based on their marker-profile. This study used multi-colour flow cytometry to evaluate the load of both CTPCs & CNPCs at the time of diagnosis and at six months' time-point of therapy, and evaluated associations of both with clinical and laboratory parameters. METHODS Twenty one newly diagnosed MM patients were enrolled. Six to nine millilitres of EDTA-anticoagulated peripheral blood sample was used for flow cytometry. A ten colour antibody panel was used for analysis of CPCs, which were categorised further into CTPCs and CNPCs. Approximately 4.8 million events were acquired for the analysis. The percentage &absolute numbers of CTPCs and CNPCs were noted and the proportion of CTPCs out of all CPCs (CTPCs + CNPCs) were also calculated for evaluating their statistical associations. RESULTS All 21 patients of newly diagnosed MM showed presence of CPCs (CTPCs and/or CNPCs) at the time of diagnosis. The CTPCs were detected in 76 % of the study population. The median percentage and absolute counts of CTPCs were 0.52 % and 54.9 cells /µL, respectively. CNPCs were found in 95 % and the median percentage and absolute counts of CNPCs were 0.025 % and 2.66 cells/µL. After six months of therapy, CPCs (CTPCs and/or CNPCs) were found in all nine patients evaluated for this assay. CTPCs were found 33 %, with a median of 0.075 % and CNPCs were found in 89 % with a median of 0.01 %. Our study showed that the load of CTPCs was found to be higher in patients with presence of lytic bone lesions, plasmacytoma, presence of PCs on peripheral blood film by light microscopy, presence of Chr 1p32 deletion, expression of CD56 and CD81 on CTPCs, and in patients with absence of very good partial response (VGPR). Conversely, the load of CTPCs was significantly lower in patients with concomitant amyloidosis. Also, percentage of bone marrow plasma cells exhibited a significant positive correlation with the absolute count of CTPCs. We observed that the mean percentage of CNPCs was significantly higher in female patients. The load of CNPCs was lower in patients with thrombocytopenia and with hypoalbuminemia. CONCLUSION Increased burden of CTPCs was associated with presence of lytic lesions, plasmacytomas, Chr 1p32 deletion, expression of CD56 and CD81 on tumor cells and with failure to achieve very good partial response. The CNPCs were lower in patients with thrombocytopenia and with hypoalbuminemia. To best ot our knowledge, this is the first study from India on the relevance of circulating tumor plasma cells and the first study in the world to analyse the associations of circulating normal plasma cells in newly diagnosed patients of multiple myeloma. The study also highlights the utility of multi-parametric flow cytometry in identification and enumeration of circulating plasma cells. MICRO ABSTRACT Circulating plasma cells indicates poorer outcomes in patients of multiple myeloma. Twenty one newly diagnosed multiple myeloma patients were evaluated by flow cytometry to enumerate and characterise circulating tumor plasma cells (CTPCs) and circulating normal plasma cells (CNPCs). Higher load of CTPCs correlated with known poor prognostic markers and poor response to therapy.
Collapse
Affiliation(s)
- Leena Gupta
- Former Junior Resident, MD Pathology, Department of Hematology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pratibha Suku
- Junior Research Fellow, Department of Hematology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Aishwarya Dash
- PhD Scholar, Department of Hematology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Parveen Bose
- Senior Lab Technician, Department of Hematology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Praveen Sharma
- Assistant Professor, Department of Hematology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Nabhajit Mallik
- Assistant Professor, Department of Hematology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sreejesh Sreedharanunni
- Associate Professor, Department of Hematology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Neelam Varma
- Former Professor & Head, Department of Hematology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Aditya Jandial
- Former Senior Research Associate, Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pankaj Malhotra
- Professor and Head, Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Man Updesh Singh Sachdeva
- Professor, Department of Hematology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
3
|
Yao W, Yang H, You H, Shang J, Zhai Y, Yan Z, Yan S, Shi X, Yao Y, Wang J, Wang P, Xu Y, Jin S, Yan L, Wu D, Fu C. The prognostic significance of circulating plasma cells in newly diagnosed multiple myeloma patients. Front Oncol 2023; 13:1266868. [PMID: 37799469 PMCID: PMC10548821 DOI: 10.3389/fonc.2023.1266868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/25/2023] [Indexed: 10/07/2023] Open
Abstract
Objective Multiple myeloma (MM) is a highly characteristic tumor that is influenced by numerous factors that determine its prognosis. Studies indicate that the presence of circulating plasma cells (cPCs) is a detrimental factor that significantly impacts the prognosis of patients with MM. Methods This study retrospectively analyzed the prognostic value of cPCs quantified by 10-color flow cytometry in 145 newly diagnosed MM (NDMM) cases in the First Affiliated Hospital of Soochow University from November 2018 to February 2021. The study was approved by the Ethics Committee of the hospital (2021 No. 93). Results Of the 145 patients, 99 (68.2%) were detected cPCs. Through receiver operating characteristics (ROC) analysis, an optimal threshold of 0.165% was identified as a predictor for overall survival (OS). The median progression-free survival (PFS) was 33 months in patients with cPCs ≥0.165%, whereas those with cPCs <0.165% had a PFS of <33 months (p=0.001). The median OS was not reached for two groups; the 3-year OS for patients with cPCs ≥0.165% was 71% compared with 87% for those with cPCs <0.165% (p=0.003). In transplant patients, cPCs ≥0.165% also predicted worse prognosis. Similarly, when considering cytogenetic risk factors in conjunction with cPC levels, comparable results were obtained. To evaluate whether the Revised International Staging System (R-ISS) groups could be further stratified based on different prognostic factors related to cPCs, our study revealed similar median PFS and OS rates in R-ISS II stage patients with cPCs ≥0.165% compared to those in the III stage (p=0.659 and 0.249, respectively). Conclusion This study demonstrates that a high ratio of cPCs serves as a reliable indicator for predicting a poorer prognosis in MM cases. Furthermore, incorporating the R-ISS system and cytogenetic risk factors alongside the level of cPCs enhances the accuracy of prognostic predictions for patients with MM.
Collapse
Affiliation(s)
- Weiqin Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifei Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongying You
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Shang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yingying Zhai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi Yan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuang Yan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaolan Shi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Yao
- Suzhou Hongci, Hematology Hospital, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Wang
- Suzhou Hongci, Hematology Hospital, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Panfeng Wang
- Suzhou Hongci, Hematology Hospital, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Xu
- Suzhou Hongci, Hematology Hospital, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingzhi Yan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengcheng Fu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Xia Y, Shen N, Zhang R, Wu Y, Shi Q, Li J, Chen L, Xu M, Jin Y. High-risk multiple myeloma predicted by circulating plasma cells and its genetic characteristics. Front Oncol 2023; 13:1083053. [PMID: 36845679 PMCID: PMC9947848 DOI: 10.3389/fonc.2023.1083053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Circulating plasma cells (CPC) have been reported to be one of the indicators of high-risk multiple myeloma (MM), yet the prognostic significance of CPC in Chinese population and the genetic mechanisms underlying CPC formation have not been fully elucidated. Methods Patients with newly diagnosed MM were included in this study. We used multi-parameter flow cytometry (MFC) for CPC quantification and next-generation sequencing (NGS) technology for mutational landscape mapping to identify the correlation of CPC level with clinical characteristics and the mutations. Results A total of 301 patients were enrolled in this investigation. We demonstrated that CPC quantification could effectively mirror the tumor load, and CPC ≥ 0.105% at diagnosis or detectable CPC after therapy indicates poor treatment response and adverse outcome, and the introduction of CPC into the R-ISS enables a more accurate risk stratification. Interestingly, we noticed an elevated percentage of light-chain MM in patients with higher CPC. Mutational landscape revealed that patients harboring mutations in TP53, BRAF, DNMT3A, TENT5C, and IL-6/JAK/STAT3 pathway-related genes tended to have higher CPC levels. Gene enrichment analysis demonstrated that pathways involving chromosome regulation and adhesion may be potential mechanisms accounting for CPC formation. Discussion Accordingly, quantification of CPC may provide a less-invasive and reliable approach for identifying high-risk MM in Chinese population.
Collapse
Affiliation(s)
- Yuan Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China,Department of Hematology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Na Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Run Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yujie Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Qinglin Shi
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lijuan Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Min Xu
- Department of Hematology, Zhangjiagang First Affiliated Hospital of Soochow University, Zhangjiagang, China,*Correspondence: Yuanyuan Jin, ; Min Xu,
| | - Yuanyuan Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China,*Correspondence: Yuanyuan Jin, ; Min Xu,
| |
Collapse
|
5
|
Radzevičius M, Dirsė V, Klimienė I, Matuzevičienė R, Kučinskienė ZA, Pečeliūnas V. Multiple Myeloma Immunophenotype Related to Chromosomal Abnormalities Used in Risk Assessment. Diagnostics (Basel) 2022; 12:diagnostics12092049. [PMID: 36140450 PMCID: PMC9498268 DOI: 10.3390/diagnostics12092049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
(1) Background: At diagnosis, multiplemyeloma risk estimation includes disease burden, end-organ damage, and biomarkers, with increasing emphasis on genetic abnormalities. Multicolor flow cytometry (MFC) is not always considered in risk estimation. We demonstrate associations found between genetic abnormalities and antigen expression of plasma cells measured by MFC. (2) Methods: Single nucleotide polymorphism microarray (SNP-A) karyotyping as well as MFC using standardized next-generation flow (NGF) panels and instrument settings were performed from bone marrow aspirates at the time of diagnosis. (3) Results: We uncovered specific immunophenotype features related to different genetic risk factors. Specifically, we found higher malignant/normal plasma cell ratio and lower expression of CD27, CD38, CD45, CD56, CD117 and CD138 in higher-risk genetic groups or risk categories.
Collapse
Affiliation(s)
- Mantas Radzevičius
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Correspondence: ; Tel.: +370-656-87976
| | - Vaidas Dirsė
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Indrė Klimienė
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Rėda Matuzevičienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Center of Laboratory Medicine, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Zita Aušrelė Kučinskienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Valdas Pečeliūnas
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
- Clinic of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| |
Collapse
|
6
|
Kumar S, Baizer L, Callander NS, Giralt SA, Hillengass J, Freidlin B, Hoering A, Richardson PG, Schwartz EI, Reiman A, Lentzsch S, McCarthy PL, Jagannath S, Yee AJ, Little RF, Raje NS. Gaps and opportunities in the treatment of relapsed-refractory multiple myeloma: Consensus recommendations of the NCI Multiple Myeloma Steering Committee. Blood Cancer J 2022; 12:98. [PMID: 35768410 PMCID: PMC9243011 DOI: 10.1038/s41408-022-00695-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 01/05/2023] Open
Abstract
A wide variety of new therapeutic options for Multiple Myeloma (MM) have recently become available, extending progression-free and overall survival for patients in meaningful ways. However, these treatments are not curative, and patients eventually relapse, necessitating decisions on the appropriate choice of treatment(s) for the next phase of the disease. Additionally, an important subset of MM patients will prove to be refractory to the majority of the available treatments, requiring selection of effective therapies from the remaining options. Immunomodulatory agents (IMiDs), proteasome inhibitors, monoclonal antibodies, and alkylating agents are the major classes of MM therapies, with several options in each class. Patients who are refractory to one agent in a class may be responsive to a related compound or to a drug from a different class. However, rules for selection of alternative treatments in these situations are somewhat empirical and later phase clinical trials to inform those choices are ongoing. To address these issues the NCI Multiple Myeloma Steering Committee formed a relapsed/refractory working group to review optimal treatment choices, timing, and sequencing and provide recommendations. Additional issues considered include the role of salvage autologous stem cell transplantation, risk stratification, targeted approaches for genetic subsets of MM, appropriate clinical trial endpoints, and promising investigational agents. This report summarizes the deliberations of the working group and suggests potential avenues of research to improve the precision, timing, and durability of treatments for Myeloma.
Collapse
Affiliation(s)
- Shaji Kumar
- Hematologic Malignancies, Mayo Clinic College of Medicine and Science, Rochester, USA
| | - Lawrence Baizer
- Division of Lung Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Natalie S Callander
- Myeloma Clinical Program, University of Wisconsin Carbone Cancer Center, Madison, USA
| | - Sergio A Giralt
- Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, Madison, USA
| | - Jens Hillengass
- Oncology and Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Boris Freidlin
- Biometric Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Antje Hoering
- Cancer Research and Biostatistics and University of Washington School of Public Health, Seattle, USA
| | - Paul G Richardson
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, USA
| | - Elena I Schwartz
- Coordinating Center for Clinical Trials, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anthony Reiman
- University of New Brunswick, Department of Medicine, Dalhousie University Department of Oncology, Saint John Regional Hospital, Fredericton, Canada
| | - Suzanne Lentzsch
- Multiple Myeloma and Amyloidosis Service, Department of Medicine, Columbia University Medical Center, New York, USA
| | - Philip L McCarthy
- Department of Medicine, Oncology and Internal Medicine, Transplant & Cellular Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Sundar Jagannath
- Division of Hematology and Medical Oncology, Mount Sinai School of Medicine, Center of Excellence for Multiple Myeloma, New York, USA
| | - Andrew J Yee
- Department of Medicine, Harvard Medical School, Multiple Myeloma Program, Medical Oncology, Massachusetts General Hospital, Boston, USA
| | - Richard F Little
- Clinical Investigations Branch, Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Noopur S Raje
- Department of Medicine, Harvard Medical School, Multiple Myeloma Program, Medical Oncology, Massachusetts General Hospital, Boston, USA
| |
Collapse
|
7
|
Bertamini L, Oliva S, Rota-Scalabrini D, Paris L, Morè S, Corradini P, Ledda A, Gentile M, De Sabbata G, Pietrantuono G, Pascarella A, Tosi P, Curci P, Gilestro M, Capra A, Galieni P, Pisani F, Annibali O, Monaco F, Liberati AM, Palmieri S, Luppi M, Zambello R, Fazio F, Belotti A, Tacchetti P, Musto P, Boccadoro M, Gay F. High Levels of Circulating Tumor Plasma Cells as a Key Hallmark of Aggressive Disease in Transplant-Eligible Patients With Newly Diagnosed Multiple Myeloma. J Clin Oncol 2022; 40:3120-3131. [PMID: 35666982 DOI: 10.1200/jco.21.01393] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE High levels of circulating tumor plasma cells (CTC-high) in patients with multiple myeloma are a marker of aggressive disease. We aimed to confirm the prognostic impact and identify a possible cutoff value of CTC-high for the prediction of progression-free survival (PFS) and overall survival (OS), in the context of concomitant risk features and minimal residual disease (MRD) achievement. METHODS CTC were analyzed at diagnosis with two-tube single-platform flow cytometry (sensitivity 4 × 10-5) in patients enrolled in the multicenter randomized FORTE clinical trial (ClinicalTrials.gov identifier: NCT02203643). MRD was assessed by second-generation multiparameter flow cytometry (sensitivity 10-5). We tested different cutoff values in series of multivariate (MV) Cox proportional hazards regression analyses on PFS outcome and selected the value that maximized the Harrell's C-statistic. We analyzed the impact of CTC on PFS and OS in a MV analysis including baseline features and MRD negativity. RESULTS CTC analysis was performed in 401 patients; the median follow-up was 50 months (interquartile range, 45-54 months). There was a modest correlation between the percentage of CTC and bone marrow plasma cells (r = 0.38). We identified an optimal CTC cutoff of 0.07% (approximately 5 cells/µL, C-index 0.64). In MV analysis, CTC-high versus CTC-low patients had significantly shorter PFS (hazard ratio, 2.61; 95% CI, 1.49 to 2.97, P < .001; 4-year PFS 38% v 69%) and OS (hazard ratio, 2.61; 95% CI, 1.49 to 4.56; P < .001; 4-year OS 68% v 92%). The CTC levels, but not the bone marrow plasma cell levels, affected the outcome. The only factor that reduced the negative impact of CTC-high was the achievement of MRD negativity (interaction P = .039). CONCLUSION In multiple myeloma, increasing levels of CTC above an optimal cutoff represent an easy-to-assess, robust, and independent high-risk factor. The achievement of MRD negativity is the most important factor that modulates their negative prognostic impact.
Collapse
Affiliation(s)
- Luca Bertamini
- SSD Clinical Trial in Oncoematologia e Mieloma Multiplo, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Stefania Oliva
- SSD Clinical Trial in Oncoematologia e Mieloma Multiplo, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Delia Rota-Scalabrini
- Multidisciplinary Oncology Outpatient Clinic, Candiolo Cancer Institute, FPO - IRCCS, Torino, Italy
| | - Laura Paris
- Division of Hematology, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Sonia Morè
- Clinica di Ematologia, AOU Ospedali Riuniti di Ancona, Ancona, Italy
| | - Paolo Corradini
- Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, University of Milan, Milan, Italy
| | - Antonio Ledda
- Ematologia/CTMO, Ospedale "A. Businco," Cagliari, Italy
| | | | - Giovanni De Sabbata
- Ematologia, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Giuseppe Pietrantuono
- Hematology and Stem Cell Transplantation Unit, IRCCS Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | | | | | - Paola Curci
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, Bari, Italy
| | - Milena Gilestro
- SSD Clinical Trial in Oncoematologia e Mieloma Multiplo, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Andrea Capra
- SSD Clinical Trial in Oncoematologia e Mieloma Multiplo, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Piero Galieni
- UOC Ematologia e Terapia cellulare, Ospedale C. e G. Mazzoni, Ascoli Piceno, Italy
| | - Francesco Pisani
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ombretta Annibali
- Unit of Hematology, Stem Cell Transplantation, University Campus Bio-Medico, Rome, Italy
| | - Federico Monaco
- SC Ematologia, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Anna Marina Liberati
- Università degli Studi di Perugia, Azienda Ospedaliera Santa Maria, Terni, Italy
| | | | - Mario Luppi
- Dipartimento di Scienze Mediche e Chirurgiche Materno Infantili e dell'Adulto, UNIMORE, UOC Ematologia, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Renato Zambello
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padova University School of Medicine, Padova, Italy
| | - Francesca Fazio
- Hematology, Department of Translational and Precision Medicine, Azienda Ospedaliera Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Angelo Belotti
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Paola Tacchetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, Bari, Italy.,Department of Emergency and Organ Transplantation, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Mario Boccadoro
- SSD Clinical Trial in Oncoematologia e Mieloma Multiplo, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Francesca Gay
- SSD Clinical Trial in Oncoematologia e Mieloma Multiplo, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
8
|
Cengiz Seval G, Beksac M. Is Quantification of Measurable Clonal Plasma Cells in Stem Cell Grafts (gMRD) Clinically Meaningful? Front Oncol 2022; 12:800711. [PMID: 35280810 PMCID: PMC8904734 DOI: 10.3389/fonc.2022.800711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
With the introduction of more effective novel therapies, the prognosis of multiple myeloma (MM) has improved significantly over the past decade, resulting with a significant proportion of patients achieving durable remissions that may reach even more than 10 years. Several studies demonstrated that the real prognostic value of complete remission (CR) relies on sustained undetectable minimal residual disease (MRD). Additionally, advances in MRD detection methods used for the detection of clonal plasma cells (cPC) inside or outside the bone marrow have also improved the value of MRD. The use of peripheral blood for MRD detection could be an effective method that overcomes the spatial heterogeneity and invasive intervention with recurrent bone marrow aspirations. During the last two decades, many groups have investigated the role of circulating plasma cells (CPCs) at diagnosis. As also presented by multiple groups during the recent ASH 2021 annual meeting, CPCs are becoming recognized as an independent prognostic factor. In addition, measurement of post-induction residual plasma cells in the stem cell graft is identified as another option for MRD assessment. Earlier studies in the era of less intensive induction regimens attempts to analyze the level of CPC contamination in the graft was shown to contribute to myeloma relapse and progression. According to these recent results, higher graft purity has been found to be in concordance with deeper responses. As expected, graft minimal residual disease (gMRD) may reflect the efficacy of induction as an additional response assessment tool. Although gMRD is a non-invasive approach, it has not gained sufficient support for routine use. In view of the hurdles related to monoclonal protein assessments, high-sensitivity cellular component measurement continues to possess its value as an end point for therapeutic efficacy. In this review, we will present a structural framework for MRD testing in peripheral blood stem cell autografts in MM and review the clinical integration into MM management.
Collapse
Affiliation(s)
| | - Meral Beksac
- Department of Hematology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
9
|
Next-Generation Biomarkers in Multiple Myeloma: Understanding the Molecular Basis for Potential Use in Diagnosis and Prognosis. Int J Mol Sci 2021; 22:ijms22147470. [PMID: 34299097 PMCID: PMC8305153 DOI: 10.3390/ijms22147470] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is considered to be the second most common blood malignancy and it is characterized by abnormal proliferation and an accumulation of malignant plasma cells in the bone marrow. Although the currently utilized markers in the diagnosis and assessment of MM are showing promising results, the incidence and mortality rate of the disease are still high. Therefore, exploring and developing better diagnostic or prognostic biomarkers have drawn global interest. In the present review, we highlight some of the recently reported and investigated novel biomarkers that have great potentials as diagnostic and/or prognostic tools in MM. These biomarkers include angiogenic markers, miRNAs as well as proteomic and immunological biomarkers. Moreover, we present some of the advanced methodologies that could be utilized in the early and competent diagnosis of MM. The present review also focuses on understanding the molecular concepts and pathways involved in these biomarkers in order to validate and efficiently utilize them. The present review may also help in identifying areas of improvement for better diagnosis and superior outcomes of MM.
Collapse
|
10
|
Zeissig MN, Zannettino ACW, Vandyke K. Tumour Dissemination in Multiple Myeloma Disease Progression and Relapse: A Potential Therapeutic Target in High-Risk Myeloma. Cancers (Basel) 2020; 12:cancers12123643. [PMID: 33291672 PMCID: PMC7761917 DOI: 10.3390/cancers12123643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Like in solid cancers, the process of dissemination is a critical feature of disease progression in the blood cancer multiple myeloma. At diagnosis, myeloma patients have cancer that has spread throughout the bone marrow, with patients with more disseminatory myeloma having worse outcomes for their disease. In this review, we discuss the current understanding of the mechanisms that underpin the dissemination process in multiple myeloma. Furthermore, we discuss the potential for the use of therapies that target the dissemination process as a novel means of improving outcomes for multiple myeloma patients. Abstract Multiple myeloma (MM) is a plasma cell (PC) malignancy characterised by the presence of MM PCs at multiple sites throughout the bone marrow. Increased numbers of peripheral blood MM PCs are associated with rapid disease progression, shorter time to relapse and are a feature of advanced disease. In this review, the current understanding of the process of MM PC dissemination and the extrinsic and intrinsic factors potentially driving it are addressed through analysis of patient-derived MM PCs and MM cell lines as well as mouse models of homing and dissemination. In addition, we discuss how patient cytogenetic subgroups that present with highly disseminated disease, such as t(4;14), t(14;16) and t(14;20), suggest that intrinsic properties of MM PC influence their ability to disseminate. Finally, we discuss the possibility of using therapeutic targeting of tumour dissemination to slow disease progression and prevent overt relapse.
Collapse
Affiliation(s)
- Mara N. Zeissig
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Australia, Adelaide 5005, Australia; (M.N.Z.); (A.C.W.Z.)
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Andrew C. W. Zannettino
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Australia, Adelaide 5005, Australia; (M.N.Z.); (A.C.W.Z.)
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
- Central Adelaide Local Health Network, Adelaide 5000, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide 5000, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Australia, Adelaide 5005, Australia; (M.N.Z.); (A.C.W.Z.)
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
- Correspondence: ; Tel.: +61-8-8128-4694
| |
Collapse
|
11
|
Klimienė I, Radzevičius M, Matuzevičienė R, Sinkevič-Belliot K, Kučinskienė ZA, Pečeliūnas V. Adhesion molecule immunophenotype of bone marrow multiple myeloma plasma cells impacts the presence of malignant circulating plasma cells in peripheral blood. Int J Lab Hematol 2020; 43:403-408. [PMID: 33185981 DOI: 10.1111/ijlh.13387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Multiple myeloma (MM) patients with malignant plasma cells (MMPCs) in their bone marrow (BM) and malignant circulating plasma cells (MMCPCs) in the peripheral blood (PB) are an independent marker of a clinically aggressive disease, and it reflects a poor prognosis defined by a short time to progression and overall survival. We hypothesized that changes in ADM expression on BM MMPCs might contribute to MMCPC presence in the PB of relapsed/refractory multiple myeloma (RRMM) patients. METHODS We assessed the difference in expression of adhesion molecules and receptors related to cell-cell interaction: integrins, hyaluronic acid receptors, chemokine receptors and other proteins on healthy donor PCs, RRMM BM and PB MMPCs. RESULTS Adhesion immunophenotype showed a significant loss of many adhesion molecules when comparing BM MMPCs of MMCPC- and MMCPC+ MM patients (CD49d, CD49e, CD56, CD138). Further decrease of adhesion molecules was shown in MMCPCs (CD49d, CD49e, CD56, CD138, CD58), suggesting that loss of these molecules may allow cells to leave the BM. CONCLUSIONS Loss of adhesion molecule expression enables MMPCs to leave the BM milieu and enter the PB. These changes can be seen in both the PB and BM of MMCPC+ MM patient.
Collapse
Affiliation(s)
- Indrė Klimienė
- Hematology, Oncology and Transfusion Medicine Centre, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Mantas Radzevičius
- Institute of Biomedical Science, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Rėda Matuzevičienė
- Institute of Biomedical Science, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | | | - Valdas Pečeliūnas
- Hematology, Oncology and Transfusion Medicine Centre, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| |
Collapse
|
12
|
Circulating tumor cells for comprehensive and multiregional non-invasive genetic characterization of multiple myeloma. Leukemia 2020; 34:3007-3018. [PMID: 32475991 DOI: 10.1038/s41375-020-0883-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/19/2020] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) patients undergo repetitive bone marrow (BM) aspirates for genetic characterization. Circulating tumor cells (CTCs) are detectable in peripheral blood (PB) of virtually all MM cases and are prognostic, but their applicability for noninvasive screening has been poorly investigated. Here, we used next-generation flow (NGF) cytometry to isolate matched CTCs and BM tumor cells from 53 patients and compared their genetic profile. In eight cases, tumor cells from extramedullary (EM) plasmacytomas were also sorted and whole-exome sequencing was performed in the three spatially distributed tumor samples. CTCs were detectable by NGF in the PB of all patients with MM. Based on the cancer cell fraction of clonal and subclonal mutations, we found that ~22% of CTCs egressed from a BM (or EM) site distant from the matched BM aspirate. Concordance between BM tumor cells and CTCs was high for chromosome arm-level copy number alterations (≥95%) though not for translocations (39%). All high-risk genetic abnormalities except one t(4;14) were detected in CTCs whenever present in BM tumor cells. Noteworthy, ≥82% mutations present in BM and EM clones were detectable in CTCs. Altogether, these results support CTCs for noninvasive risk-stratification of MM patients based on their numbers and genetic profile.
Collapse
|
13
|
Wang N, Tesfaluul N, Li J, Gao X, Liu S, Yue B. Enrichment of circulating myeloma cells by immunomagnetic beads combined with flow cytometry for monitoring minimal residual disease and relapse in patients with multiple myeloma. Ann Hematol 2019; 98:2769-2780. [PMID: 31748925 DOI: 10.1007/s00277-019-03833-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Difficulty in regularly analyzing marrow myeloma cells (MMCs) and low frequency of circulating myeloma cells (CMCs) in blood presents challenges for monitoring minimal residual disease (MRD) in multiple myeloma (MM). We have developed a set of method for enrichment of CMCs by immunomagetic beads (IMB) combined with flow cytometry (IMB-FCM) based on CD38-APC/CD138-APC antibodies in U266-spiked samples and in 122 patient samples. U266 cell capture efficiency of CD38/CD138-IMB-FCM (6.960, 2.574) was 6- and 2-fold higher than that of FCM (1.032), and the sensitivity of FCM and IMB-FCM was 0.01% and 0.001%, respectively. In MM cohort, the positive rate of CMCs by IMB-FCM increased from 60.5~70.0 to 85~87.2% in newly diagnosed/relapsed and partial remission (PR) patients compared with by FCM (P < 0.05). Two complete remission (CR) patients contain certain amounts of CMCs by IMB-FCM while no CMCs and MMCs were detectable by FCM. Patients exhibiting PR and CR upon therapy had much lower CMC and MMC counts than newly diagnosed/relapsed patients (P < 0.005). Based on MRD measurement in BM and PB samples, all FCM-negative BM samples were also paired with FCM/IMB-FCM-negative PB samples among newly diagnosed, relapsed, and PR patients, and FCM-positive BM samples were accompanied by IMB-FCM-positive results in 88% of corresponding PB samples. CMCs strongly associated with other clinical biomarkers of disease burden, including elevated MMCs, β2-MG, sCrea, and DS and ISS stages, and more serious anemia, bone destruction, and renal impairment (P < 0.05). Logistic regression analysis revealed that elevated β2-MG and moderate-to-more anemia were significant risk factors for the presence of CMCs (P < 0.05). As a noninvasive "liquid biopsy" of monitoring MRD, the potential of IMB-FCM for CMC detection may complement or minimize bone marrow aspiration in future treatment of MM patients.
Collapse
Affiliation(s)
- Ningning Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Laboratory Medicine, the First People's Hospital of Pingdingshan, Pingdingshan, Henan, China
| | - Nahom Tesfaluul
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jia Li
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojuan Gao
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuai Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Faculty of Laboratory Medicine, Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory Medicine of Henan Province, Faculty of Laboratory Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Baohong Yue
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. .,Faculty of Laboratory Medicine, Zhengzhou University, Zhengzhou, Henan, China. .,Key Laboratory Medicine of Henan Province, Faculty of Laboratory Medicine, Zhengzhou University, Zhengzhou, Henan, China. .,Open Laboratory, Henan Province Key Subject of Clinical Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Geng S, Wang J, Zhang X, Zhang JJ, Wu F, Pang Y, Zhong Y, Wang J, Wang W, Lyu X, Huang Y, Jing H. Single-cell RNA sequencing reveals chemokine self-feeding of myeloma cells promotes extramedullary metastasis. FEBS Lett 2019; 594:452-465. [PMID: 31561267 DOI: 10.1002/1873-3468.13623] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
In this study, we aimed to determine the mechanisms underlying the initial extramedullary translocation of myeloma cells from bone marrow into peripheral blood. We found that clonal circulating plasma cells (cPCs) are more frequently detected by flow cytometry in extramedullary plasmacytoma (EMP) patients and worsen their prognosis. It is technically much easier to collect single cPCs using FACS than it is to perform EMP biopsy. Therefore, combining EMP imaging with cPC detection may be a promising strategy for prognostic stratification. Here, using single-cell transcriptome analysis, we found that the chemokine CXCL12, a key molecule involved in CXCR4-dependent cell retention in the bone marrow, is abnormally upregulated in cPCs and might initially enable cPCs to evade bone marrow retention and translocate into the bloodstream.
Collapse
Affiliation(s)
- Shuang Geng
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jing Wang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing, China
| | - Xiannian Zhang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jia-Jia Zhang
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fan Wu
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuhong Pang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuping Zhong
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wenming Wang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing, China
| | - Xiaoqing Lyu
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yanyi Huang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Hongmei Jing
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing, China
| |
Collapse
|
15
|
Levin A, Hari P, Dhakal B. Novel biomarkers in multiple myeloma. Transl Res 2018; 201:49-59. [PMID: 30301522 DOI: 10.1016/j.trsl.2018.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/10/2018] [Accepted: 05/22/2018] [Indexed: 11/24/2022]
Abstract
Significant advancements have been made in the molecular mechanisms of myelomagenesis, diagnostic methods, prognostication, and the treatment options in multiple myeloma (MM) over the last decade. Despite these, MM remains a heterogeneous disease with differing outcomes. As myeloma treatment landscape continues to expand, personalized treatment that provides maximum benefit to a specific patient becomes more important. In the last few years, serum monoclonal proteins including the serum-free light chain assays, imaging, and cytogenetics have been used to predict the outcomes of MM patients receiving different types of therapies. With the development of novel technologies, more sensitive detection of residual disease using flow cytometry and next-generation sequencing has been possible. In addition, liquid biopsies using circulating tumor cells, tumor DNA, and novel immune biomarkers are potentially being investigated. These novel potential biomarkers not only accurately detect the mutational landscape of different cancers compared to standard methods but also serve as prognostic and predictive biomarkers for disease relapse and response to therapy. It is likely that we will be able to offer more targeted and risk-adapted therapeutic approach to patients with MM at different stages of their disease guided by these potential biomarkers.
Collapse
Affiliation(s)
- Adam Levin
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Parameswaran Hari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Binod Dhakal
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
16
|
Tembhare PR, Ghogale S, Tauro W, Badrinath Y, Deshpande N, Kedia S, Cherian K, Patkar NV, Chatterjee G, Gujral S, Subramanian PG. Evaluation of CD229 as a new alternative plasma cell gating marker in the flow cytometric immunophenotyping of monoclonal gammopathies. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 94:509-519. [DOI: 10.1002/cyto.b.21619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 12/07/2017] [Accepted: 12/21/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Prashant R. Tembhare
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Sitaram Ghogale
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Wilma Tauro
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Yajamanam Badrinath
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Nilesh Deshpande
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Shweta Kedia
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Keziah Cherian
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Nikhil V. Patkar
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Gaurav Chatterjee
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Sumeet Gujral
- Department of Pathology; Tata Memorial Hospital; Parel, Mumbai 400012 India
| | - Papagudi G. Subramanian
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| |
Collapse
|
17
|
Foulk B, Schaffer M, Gross S, Rao C, Smirnov D, Connelly MC, Chaturvedi S, Reddy M, Brittingham G, Mata M, Repollet M, Rojas C, Auclair D, DeRome M, Weiss B, Sasser AK. Enumeration and characterization of circulating multiple myeloma cells in patients with plasma cell disorders. Br J Haematol 2017; 180:71-81. [DOI: 10.1111/bjh.15003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/01/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Brad Foulk
- Janssen Research & Development, LLC; Spring House PA USA
| | - Mike Schaffer
- Janssen Research & Development, LLC; Spring House PA USA
| | - Steve Gross
- Menarini Silicon Biosystems; Huntingdon Valley PA USA
| | - Chandra Rao
- Janssen Research & Development, LLC; Spring House PA USA
| | - Denis Smirnov
- Janssen Research & Development, LLC; Spring House PA USA
| | | | | | - Manjula Reddy
- Janssen Research & Development, LLC; Spring House PA USA
| | | | - Marielena Mata
- Janssen Research & Development, LLC; Spring House PA USA
| | | | - Claudia Rojas
- Menarini Silicon Biosystems; Huntingdon Valley PA USA
| | | | - Mary DeRome
- Multiple Myeloma Research Foundation; Norwalk CT USA
| | - Brendan Weiss
- Abramson Cancer Center and Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Amy K. Sasser
- Janssen Research & Development, LLC; Spring House PA USA
| | | |
Collapse
|
18
|
Jelinek T, Bezdekova R, Zatopkova M, Burgos L, Simicek M, Sevcikova T, Paiva B, Hajek R. Current applications of multiparameter flow cytometry in plasma cell disorders. Blood Cancer J 2017; 7:e617. [PMID: 29053157 PMCID: PMC5678219 DOI: 10.1038/bcj.2017.90] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/30/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022] Open
Abstract
Multiparameter flow cytometry (MFC) has become standard in the management of patients with plasma cell (PC) dyscrasias, and could be considered mandatory in specific areas of routine clinical practice. It plays a significant role during the differential diagnostic work-up because of its fast and conclusive readout of PC clonality, and simultaneously provides prognostic information in most monoclonal gammopathies. Recent advances in the treatment and outcomes of multiple myeloma led to the implementation of new response criteria, including minimal residual disease (MRD) status as one of the most relevant clinical endpoints with the potential to act as surrogate for survival. Recent technical progress led to the development of next-generation flow (NGF) cytometry that represents a validated, highly sensitive, cost-effective and widely available technique for standardized MRD evaluation, which also could be used for the detection of circulating tumor cells. Here we review current applications of MFC and NGF in most PC disorders including the less frequent solitary plasmocytoma, light-chain amyloidosis or Waldenström macroglobulinemia.
Collapse
Affiliation(s)
- T Jelinek
- Department of Haematooncology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), IDISNA, Pamplona, Spain
| | - R Bezdekova
- Department of Clinical Haematology, University Hospital Brno, Brno, Czech Republic
| | - M Zatopkova
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - L Burgos
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), IDISNA, Pamplona, Spain
| | - M Simicek
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - T Sevcikova
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - B Paiva
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), IDISNA, Pamplona, Spain
| | - R Hajek
- Department of Haematooncology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
19
|
Chatterjee G, Gujral S, Subramanian PG, Tembhare PR. Clinical Relevance of Multicolour Flow Cytometry in Plasma Cell Disorders. Indian J Hematol Blood Transfus 2017; 33:303-315. [PMID: 28824230 PMCID: PMC5544653 DOI: 10.1007/s12288-017-0822-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/25/2017] [Indexed: 01/06/2023] Open
Abstract
Multicolor flow cytometric (MFC) immunophenotyping is one of the basic test that is needed in the evaluation of hematolymphoid malignancies. Previously, there has been some reluctance in the use of MFC in plasma cell disorders (PCD). It was mainly due tolack of standardization, inadequate experience and detection of the lower number of plasma cells by MFC as compared to morphology. However, MFC has gone through many technological advancements in the last few years and a wide variety of reagents are now commercially available which worldwide allowed the establishment of standardized sensitive MFC-based immunophenotypic assay for PCD. Various studies have proven that MFC has a high clinical relevance in the diagnosis and risk stratification of multiple myeloma, its precursor conditions and other PCDs. Moreover, recent studies have shown that MFC is a highly sensitive and reliable technique for the monitoring of clinical response in the era of novel therapies. In this review, we have discussed the various applications of MFC in the management of PCD and their clinical relevance.
Collapse
Affiliation(s)
- Gaurav Chatterjee
- Hematopathology Laboratory, Tata Memorial Center, Room 17-18, CCE Building, ACTREC, Tata Memorial Center, Kharghar, Navi Mumbai, 410210 Maharashtra India
| | - Sumeet Gujral
- Hematopathology Laboratory, Tata Memorial Center, Room 17-18, CCE Building, ACTREC, Tata Memorial Center, Kharghar, Navi Mumbai, 410210 Maharashtra India
| | - Papagudi G. Subramanian
- Hematopathology Laboratory, Tata Memorial Center, Room 17-18, CCE Building, ACTREC, Tata Memorial Center, Kharghar, Navi Mumbai, 410210 Maharashtra India
| | - Prashant R. Tembhare
- Hematopathology Laboratory, Tata Memorial Center, Room 17-18, CCE Building, ACTREC, Tata Memorial Center, Kharghar, Navi Mumbai, 410210 Maharashtra India
| |
Collapse
|
20
|
Li J, Wang N, Tesfaluul N, Gao X, Liu S, Yue B. Prognostic value of circulating plasma cells in patients with multiple myeloma: A meta-analysis. PLoS One 2017; 12:e0181447. [PMID: 28704521 PMCID: PMC5509371 DOI: 10.1371/journal.pone.0181447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/01/2017] [Indexed: 01/11/2023] Open
Abstract
PURPOSE The clinical significance and prognostic role of circulating plasma cells (CPCs) in multiple myeloma (MM) are still controversial. We conducted the first meta-analysis to clarify the correlation between CPCs and the clinicopathological features and prognosis of MM patients. METHODS A comprehensive literary search for relevant studies was performed on PubMed, Embase, Medline, CNKI (Chinese) and Web of Science databases (January 1, 1950 to December 20, 2016). The associations between CPCs and survival rate and clinicopathological parameters, including International staging system (ISS) and Durie-Salm staging system (DS) stage, were evaluated. Then pooled hazard ratios (HRs) for survival with 95% confidence intervals (CIs), subgroup analysis, sensitivity analysis, and publication bias were conducted. RESULTS 11 studies covering a total of 2943 patients were included. Pooled hazard ratios (HRs) revealed that the presence of CPCs predicted aggressive disease progression (HR = 1.78, 95% CI = 1.57-2.03) and reduced overall survival (OS) (HR = 1.82, 95% CI = 1.59-2.08). Subgroup analyses demonstrated that CPCs positive patients also had poor disease progression and OS in detection methods and sampling time subsets. Moreover, the presence of CPCs was strikingly associated with increased ISS stage (OR = 2.78% CI = 1.69-4.56), but not with DS stage(OR = 1.60; 95% CI = 0.74-3.47). CONCLUSIONS CPCs status is associated with poorer survival outcome in multiple myeloma. Additionally, increased ISS stage could be significant risk factors for the presence of CPCs.
Collapse
Affiliation(s)
- Jia Li
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Faculty of Laboratory Medicine, Zhengzhou University, Zhengzhou, P. R. China
- Key Laboratory Medicine of Henan Province, Faculty of Laboratory Medicine of Zhengzhou University, Zhengzhou, P. R. China
| | - Ningning Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Faculty of Laboratory Medicine, Zhengzhou University, Zhengzhou, P. R. China
- Key Laboratory Medicine of Henan Province, Faculty of Laboratory Medicine of Zhengzhou University, Zhengzhou, P. R. China
| | - Nahom Tesfaluul
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Xiaojuan Gao
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Shuai Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Faculty of Laboratory Medicine, Zhengzhou University, Zhengzhou, P. R. China
- Key Laboratory Medicine of Henan Province, Faculty of Laboratory Medicine of Zhengzhou University, Zhengzhou, P. R. China
| | - Baohong Yue
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Faculty of Laboratory Medicine, Zhengzhou University, Zhengzhou, P. R. China
- Key Laboratory Medicine of Henan Province, Faculty of Laboratory Medicine of Zhengzhou University, Zhengzhou, P. R. China
- Open Laboratory, Henan Province Key Subject of Clinical Medicine, Zhengzhou, P. R. China
- * E-mail:
| |
Collapse
|
21
|
Besse A, Stolze SC, Rasche L, Weinhold N, Morgan GJ, Kraus M, Bader J, Overkleeft HS, Besse L, Driessen C. Carfilzomib resistance due to ABCB1/MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma. Leukemia 2017; 32:391-401. [PMID: 28676669 PMCID: PMC5808083 DOI: 10.1038/leu.2017.212] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 12/18/2022]
Abstract
Proteasome inhibitor (PI) carfilzomib (CFZ) has activity superior to bortezomib (BTZ) and is increasingly incorporated in multiple myeloma (MM) frontline therapy and relapsed settings. Most MM patients ultimately experience PI-refractory disease, an unmet medical need with poorly understood biology and dismal outcome. Pharmacologic targeting of ABCB1 improved patient outcomes, including MM, but suffered from adverse drug effects and insufficient plasma concentrations. Proteomics analysis identified ABCB1 overexpression as the most significant change in CFZ-resistant MM cells. We addressed the functional role of ABCB1 overexpression in MM and observed significantly upregulated ABCB1 in peripheral blood malignant plasma cells (PCs) vs untreated patients' bone marrow PC. ABCB1 overexpression reduces the proteasome-inhibiting activity of CFZ due to drug efflux, in contrast to BTZ. Likewise, the cytotoxicity of established anti-MM drugs was significantly reduced in ABCB1-expressing MM cells. In search for potential drugs targeting ABCB1 in clinical trials, we identified the HIV protease inhibitors nelfinavir (NFV) and lopinavir (LPV) as potent functional modulators of ABCB1-mediated drug export, most likely via modulation of mitochondria permeability transition pore. NFV and LPV restored CFZ activity at therapeutically relevant drug levels and thus represent ready-to-use drugs to be tested in clinical trials to target ABCB1 and to re-sensitize PC to established myeloma drugs, in particular CFZ.
Collapse
Affiliation(s)
- A Besse
- Experimental Oncology and Hematology, Department of Oncology and Hematology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - S C Stolze
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden, The Netherlands
| | - L Rasche
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - N Weinhold
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - G J Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - M Kraus
- Experimental Oncology and Hematology, Department of Oncology and Hematology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - J Bader
- Experimental Oncology and Hematology, Department of Oncology and Hematology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - H S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden, The Netherlands
| | - L Besse
- Experimental Oncology and Hematology, Department of Oncology and Hematology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - C Driessen
- Experimental Oncology and Hematology, Department of Oncology and Hematology, Kantonsspital St Gallen, St Gallen, Switzerland
| |
Collapse
|
22
|
Involved/uninvolved heavy/light chain index can predict progression in transplanted multiple myeloma patients. Bone Marrow Transplant 2017; 52:1206-1207. [PMID: 28581457 PMCID: PMC5543252 DOI: 10.1038/bmt.2017.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Chakraborty R, Muchtar E, Kumar SK, Jevremovic D, Buadi FK, Dingli D, Dispenzieri A, Hayman SR, Hogan WJ, Kapoor P, Lacy MQ, Leung N, Gertz MA. Serial measurements of circulating plasma cells before and after induction therapy have an independent prognostic impact in patients with multiple myeloma undergoing upfront autologous transplantation. Haematologica 2017; 102:1439-1445. [PMID: 28473618 PMCID: PMC5541877 DOI: 10.3324/haematol.2017.166629] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Circulating plasma cells at diagnosis, prior to auto-transplant and at relapse have a negative impact on survival in multiple myeloma. However, the impact of kinetics of circulating plasma cells along the course of illness has not been defined. We have analyzed 247 newly diagnosed multiple myeloma patients undergoing early auto-transplant who had paired evaluation of circulating plasma cells at diagnosis and pre-transplant by 6-color flow cytometry. A total of 117 patients had no detectable circulating plasma cells at both time points (CPC−/−), 82 had circulating plasma cells at diagnosis followed by complete eradication after induction (CPC+/−) and 48 had circulating plasma cells at transplant, including persistence of cells (CPC+/+; n=45) or emergence of new cells (CPC−/+; n=3) after induction. The rate of post-transplant stringent complete response was 32% in the CPC−/−, 30% in CPC+/− and 12% in CPC+/+ or −/+ groups (P=0.018). At a median follow up of 58 months from transplantation, the median progression-free survival in the 3 respective groups were 30, 24 and 14 months, and the 5-year overall survival rates were 83%, 70% and 43% (P<0.001 for both comparisons). On a multivariate analysis for overall survival, the risk of mortality was higher in CPC +/− (hazard ratio 2.7, 95%CI: 1.3–5.8; P=0.009) and CPC+/+ or −/+ (hazard ratio 5.7, 95%CI: 2.5–13.1; P<0.001) groups compared to the CPC−/− group. Monitoring for circulating plasma cells before induction therapy and before transplant by 6-color flow cytometry is predictive of survival in newly diagnosed myeloma and should be incorporated into clinical trials.
Collapse
Affiliation(s)
- Rajshekhar Chakraborty
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.,Hospitalist Services, Essentia Health-St. Joseph's Medical Center, Brainerd, MN, USA
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | | | - David Dingli
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Martha Q Lacy
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Nelson Leung
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Morie A Gertz
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
24
|
Chakraborty R, Muchtar E, Kumar SK, Jevremovic D, Buadi FK, Dingli D, Dispenzieri A, Hayman SR, Hogan WJ, Kapoor P, Lacy MQ, Leung N, Gertz MA. Risk stratification in myeloma by detection of circulating plasma cells prior to autologous stem cell transplantation in the novel agent era. Blood Cancer J 2016; 6:e512. [PMID: 27983726 PMCID: PMC5223152 DOI: 10.1038/bcj.2016.117] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 11/09/2022] Open
Abstract
The impact of circulating plasma cells (CPCs) prior to autologous stem cell transplantation (ASCT) for multiple myeloma has not been defined in the novel agent era. We evaluated the impact of pre-transplant CPCs, detected by six-color flow cytometry in patients undergoing early ASCT on post-transplant response, progression-free survival (PFS) and overall survival (OS). CPCs were detected in 162 out of 840 (19.3%) patients, with the median number of CPCs being 58 per 150 000 events. Ninety-nine percent of patients had received proteasome inhibitor and/or immunomodulator-based induction. The incidence of post-transplant stringent complete response (sCR) in the subgroups with and without CPCs was 15% and 38%, respectively, (P<0.001). The median PFS in the subgroups with and without CPCs was 15.1 (95% confidence interval (CI), 12.5-17.8) and 29.6 months (95% CI, 26.2-32.8), respectively, and the median OS was 41.0 months (95% CI, 32.6-58.2) and not reached (NR) (95% CI, 99.1-NR), respectively, (P<0.001 for both). On multivariate analysis for OS, factors independently predictive of mortality were the presence of CPCs (hazard ratio (HR) 2.5; 95% CI, 1.8-3.6; P<0.001) and sCR post transplant (HR 0.4; 95% CI, 0.2-0.6; P<0.001). Presence of CPCs prior to transplant has a high prognostic impact and should be prospectively validated in clinical trials.
Collapse
Affiliation(s)
- R Chakraborty
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA.,Department of Internal Medicine, Hospitalist Services, Essentia Health-St Joseph's Medical Center, Brainerd, MN, USA
| | - E Muchtar
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - S K Kumar
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - D Jevremovic
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - F K Buadi
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - D Dingli
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - A Dispenzieri
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - S R Hayman
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - W J Hogan
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - P Kapoor
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - M Q Lacy
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - N Leung
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - M A Gertz
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
Atanackovic D, Steinbach M, Radhakrishnan SV, Luetkens T. Immunotherapies targeting CD38 in Multiple Myeloma. Oncoimmunology 2016; 5:e1217374. [PMID: 27999737 PMCID: PMC5139636 DOI: 10.1080/2162402x.2016.1217374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 01/02/2023] Open
Abstract
Recently, the monoclonal antibody daratumumab was approved as a single agent for the treatment of patients with relapsed/refractory Multiple Myeloma (MM). Daratumumab is an antibody targeting surface molecule CD38 on myeloma cells and the agent is already widely being used based on its good tolerability and proven efficacy. We believe, however, that the efficacy of this drug and other anti-CD38 monoclonal antibodies can be further improved by combining it with other types of immunotherapies. Furthermore, surface molecule CD38 can be used as a target for immunotherapies other than just naked monoclonal antibodies. In this report, we review the expression pattern of CD38 among normal tissues and in different types of plasma cell dyscrasias including their progenitor cells, minimal residual disease, and circulating tumor cells. We summarize the physiological role of CD38 as well as its role in the pathophysiology of MM and we present the most recent clinical trials using CD38 as a target. In addition, we highlight possible combination immunotherapies incorporating anti-CD38 monoclonal antibodies and we demonstrate alternative immunotherapeutic approaches targeting the same antigen such as CD38-specific chimeric antigen receptor (CAR) T cells.
Collapse
Affiliation(s)
- Djordje Atanackovic
- Multiple Myeloma Program & Cancer Immunology, Hematology and Hematologic Malignancies, University of Utah / Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Mary Steinbach
- Multiple Myeloma Program & Cancer Immunology, Hematology and Hematologic Malignancies, University of Utah / Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Sabarinath Venniyil Radhakrishnan
- Multiple Myeloma Program & Cancer Immunology, Hematology and Hematologic Malignancies, University of Utah / Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Tim Luetkens
- Multiple Myeloma Program & Cancer Immunology, Hematology and Hematologic Malignancies, University of Utah / Huntsman Cancer Institute, Salt Lake City, UT, USA
| |
Collapse
|
26
|
Muz B, de la Puente P, Azab F, Luderer MJ, King J, Vij R, Azab AK. A CD138-independent strategy to detect minimal residual disease and circulating tumour cells in multiple myeloma. Br J Haematol 2016; 173:70-81. [PMID: 26729247 DOI: 10.1111/bjh.13927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/18/2015] [Indexed: 12/26/2022]
Abstract
CD138 (also termed SDC1) has been the gold-standard surface marker to detect multiple myeloma (MM) cells for decades; however, drug-resistant residual and circulating MM cells were shown to have lower expression of this marker. In this study, we have shown that residual MM cells following bortezomib treatment are hypoxic. This combination of drug exposure and hypoxia down-regulates their CD138 expression, thereby making this marker unsuitable for detecting residual or other hypoxic MM cells, such as circulating tumour cells, in MM. Hence, we developed an alternative biomarker set which detects myeloma cells independent of their hypoxic and CD138 expression status in vitro, in vivo and in primary MM patients. The new markers were able to identify a clonal CD138-negative population as minimal residual disease in the bone marrow and peripheral blood of MM patients. Further investigation to characterize the role of this population as a prognostic marker in MM is warranted.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Micah John Luderer
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Justin King
- Section of Stem Cell Transplant and Leukemia, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ravi Vij
- Section of Stem Cell Transplant and Leukemia, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
What We Mean When We Talk About MRD in Myeloma. A Review of Current Methods. Part 1 of a Two-Part Series. Curr Hematol Malig Rep 2014; 9:379-88. [DOI: 10.1007/s11899-014-0238-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Biran N, Ely S, Chari A. Controversies in the Assessment of Minimal Residual Disease in Multiple Myeloma: Clinical Significance of Minimal Residual Disease Negativity Using Highly Sensitive Techniques. Curr Hematol Malig Rep 2014; 9:368-78. [DOI: 10.1007/s11899-014-0237-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile. Blood 2013; 122:3591-8. [PMID: 24072855 DOI: 10.1182/blood-2013-06-510453] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Circulating myeloma tumor cells (CTCs) as defined by the presence of peripheral blood (PB) clonal plasma cells (PCs) are a powerful prognostic marker in multiple myeloma (MM). However, the biological features of CTCs and their pathophysiological role in MM remains unexplored. Here, we investigate the phenotypic, cytogenetic, and functional characteristics as well as the circadian distribution of CTCs vs paired bone marrow (BM) clonal PCs from MM patients. Our results show that CTCs typically represent a unique subpopulation of all BM clonal PCs, characterized by downregulation (P < .05) of integrins (CD11a/CD11c/CD29/CD49d/CD49e), adhesion (CD33/CD56/CD117/CD138), and activation molecules (CD28/CD38/CD81). Fluorescence in situ hybridization analysis of fluorescence-activated cell sorter-sorted CTCs also unraveled different cytogenetic profiles vs paired BM clonal PCs. Moreover, CTCs were mostly quiescent and associated with higher clonogenic potential when cocultured with BM stromal cells. Most interestingly, CTCs showed a circadian distribution which fluctuates in a similar pattern to that of CD34(+) cells, and opposite to stromal cell-derived factor 1 plasma levels and corresponding surface expression of CXC chemokine receptor 4 on clonal PCs, suggesting that in MM, CTCs may egress to PB to colonize/metastasize other sites in the BM during the patients' resting period.
Collapse
|
30
|
Stessman HAF, Mansoor A, Zhan F, Janz S, Linden MA, Baughn LB, Van Ness B. Reduced CXCR4 expression is associated with extramedullary disease in a mouse model of myeloma and predicts poor survival in multiple myeloma patients treated with bortezomib. Leukemia 2013; 27:2075-7. [PMID: 23728080 DOI: 10.1038/leu.2013.148] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- H A F Stessman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
In non-transplant patients with multiple myeloma, the pre-treatment level of clonotypic cells predicts event-free survival. Mol Cancer 2012; 11:78. [PMID: 23083101 PMCID: PMC3522007 DOI: 10.1186/1476-4598-11-78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 10/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In multiple myeloma (MM), the immunoglobulin heavy chain VDJ gene rearrangement is a unique clonotypic signature that identifies all members of the myeloma clone independent of morphology or phenotype. Each clonotypic MM cell has only one genomic copy of the rearranged IgH VDJ. METHODS Pre-treatment bone marrow aspirates from myeloma patients at diagnosis or in relapse were evaluated for the number of clonotypic cells using real time quantitative PCR (RPCR). RPCR measured the level of clonal cells, termed VDJ%, in 139 diagnosis and relapse BM aspirates from MM patients. RESULTS Patients with a VDJ% below the median had a significantly longer event free survival (EFS) then those with a VDJ% higher than the median (p=0.0077, HR=0.57). Further, although the VDJ% from non-transplant patients predicted EFS (p=0.0093), VDJ% failed to predict outcome after autologous stem cell transplant (p=0.53). CONCLUSIONS Our results suggest that for non-transplant patients, the tumor burden before treatment, perhaps reflecting cancer stem cell progeny/output, is an indirect measure that may indicate the number of MM cancer stem cells and hence event free survival.
Collapse
|