1
|
Shi W, Wang J, Li Z, Xu S, Wang J, Zhang L, Yang H. Reprimo (RPRM) mediates neuronal ferroptosis via CREB-Nrf2/SCD1 pathways in radiation-induced brain injury. Free Radic Biol Med 2024; 213:343-358. [PMID: 38272326 DOI: 10.1016/j.freeradbiomed.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Neuronal ferroptosis has been found to contribute to degenerative brain disorders and traumatic and hemorrhagic brain injury, but whether radiation-induced brain injury (RIBI), a critical deleterious effect of cranial radiation therapy for primary and metastatic brain tumors, involves neuronal ferroptosis remains unclear. We have recently discovered that deletion of reprimo (RPRM), a tumor suppressor gene, ameliorates RIBI, in which its protective effect on neurons is one of the underlying mechanisms. In this study, we found that whole brain irradiation (WBI) induced ferroptosis in mouse brain, manifesting as alterations in mitochondrial morphology, iron accumulation, lipid peroxidation and a dramatic reduction in glutathione peroxidase 4 (GPX4) level. Moreover, the hippocampal ferroptosis induced by ionizing irradiation (IR) mainly happened in neurons. Intriguingly, RPRM deletion protected the brain and primary neurons against IR-induced ferroptosis. Mechanistically, RPRM deletion prevented iron accumulation by reversing the significant increase in the expression of iron storage protein ferritin heavy chain (Fth), ferritin light chain (Ftl) and iron importer transferrin receptor 1 (Tfr1), as well as enhancing the expression of iron exporter ferroportin (Fpn) after IR. RPRM deletion also inhibited lipid peroxidation by abolishing the reduction of GPX4 and stearoyl coenzyme A desaturase-1 (SCD1) induced by IR. Importantly, RPRM deletion restored or even increased the expression of nuclear factor, erythroid 2 like 2 (Nrf2) in irradiated neurons. On top of that, compromised cyclic AMP response element (CRE)-binding protein (CREB) signaling was found to be responsible for the down-regulation of Nrf2 and SCD1 after irradiation, specifically, RPRM bound to CREB and promoted its degradation after IR, leading to a reduction of CREB protein level, which in turn down-regulated Nrf2 and SCD1. Thus, RPRM deletion recovered Nrf2 and SCD1 through its impact on CREB. Taken together, neuronal ferroptosis is involved in RIBI, RPRM deletion prevents IR-induced neuronal ferroptosis through restoring CREB-Nrf2/SCD1 pathways.
Collapse
Affiliation(s)
- Wenyu Shi
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, PR China; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho- Diseases, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, PR China
| | - Jin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Zhaojun Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Shuning Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Jingdong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Liyuan Zhang
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, PR China; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho- Diseases, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, PR China; Institute of Radiotherapy & Oncology of Soochow University, Suzhou, Jiangsu Province, 215004, PR China.
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China; Institute of Radiotherapy & Oncology of Soochow University, Suzhou, Jiangsu Province, 215004, PR China.
| |
Collapse
|
2
|
Li Z, Zhou Z, Tian S, Zhang K, An G, Zhang Y, Ma R, Sheng B, Wang T, Yang H, Yang L. RPRM deletion preserves hematopoietic regeneration by promoting EGFR-dependent DNA repair and hematopoietic stem cell proliferation post ionizing radiation. Cell Biol Int 2022; 46:2158-2172. [PMID: 36041213 PMCID: PMC9804513 DOI: 10.1002/cbin.11900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 01/05/2023]
Abstract
Reprimo (RPRM), a target gene of p53, is a known tumor suppressor. DNA damage induces RPRM, which triggers p53-dependent G2 arrest by inhibiting cyclin B1/Cdc2 complex activation and promotes DNA damage-induced apoptosis. RPRM negatively regulates ataxia-telangiectasia mutated by promoting its nuclear-cytoplasmic translocation and degradation, thus inhibiting DNA damage. Therefore, RPRM plays a crucial role in DNA damage response. Moreover, the loss of RPRM confers radioresistance in mice, which enables longer survival and less severe intestinal injury after radiation exposure. However, the role of RPRM in radiation-induced hematopoietic system injury remains unknown. Herein, utilizing a RPRM-knockout mouse model, we found that RPRM deletion did not affect steady-state hematopoiesis in mice. However, RPRM knockout significantly alleviated radiation-induced hematopoietic system injury and preserved mouse hematopoietic regeneration in hematopoietic stem cells (HSCs) against radiation-induced DNA damage. Further mechanistic studies showed that RPRM loss significantly increased EGFR expression and phosphorylation in HSCs to activate STAT3 and DNA-PKcs, thus promoting HSC DNA repair and proliferation. These findings reveal the critical role of RPRM in radiation-induced hematopoietic system injury, confirming our hypothesis that RPRM may serve as a novel target for radiation protection.
Collapse
Affiliation(s)
- Zixuan Li
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina,Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Zhou Zhou
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Shuaiyu Tian
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Kailu Zhang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Gangli An
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Yarui Zhang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Renyuxue Ma
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Binjie Sheng
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Tian Wang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina,Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Lin Yang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina,Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| |
Collapse
|
3
|
Lamba JK, Cao X, Raimondi S, Downing J, Ribeiro R, Gruber TA, Rubnitz J, Pounds S. DNA Methylation Clusters and Their Relation to Cytogenetic Features in Pediatric AML. Cancers (Basel) 2020; 12:cancers12103024. [PMID: 33080932 PMCID: PMC7603219 DOI: 10.3390/cancers12103024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is characterized by recurrent genetic and cytogenetic lesions that are utilized for risk stratification and for making treatment decisions. In recent years, methylation dysregulation has been extensively studied and associated with risk groups and prognosis in adult AML, however, such studies in pediatric AML are limited. Moreover, the mutations in epigenetic genes such as DNMT3A, IDH1 or IDH2 are almost absent or rare in pediatric patients as compared to their abundance in adult AML. In the current study, we evaluated methylation patterns that occur with or independent of the well-defined cytogenetic features in pediatric AML patients enrolled on multi-site AML02 clinical trial (NCT00136084). Our results demonstrate that unlike adult AML, cytosine DNA methylation does not result in significant unique clusters in pediatric AML, however, DNA methylation signatures correlated significantly with the most common and recurrent cytogenetic features. Paired evaluation of DNA methylation and expression identified genes and pathways of biological relevance that hold promise for novel therapeutic strategies. Our results further demonstrate that epigenetic signatures occur complimentary to the well-established chromosomal/mutational landscape, implying that dysregulation of oncogenes or tumor suppressors might be leveraging both genetic and epigenetic mechanisms to impact biological pathways critical for leukemogenesis.
Collapse
Affiliation(s)
- Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32608, USA
- Correspondence:
| | - Xueyuan Cao
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Susana Raimondi
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.R.); (J.D.)
| | - James Downing
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.R.); (J.D.)
| | - Raul Ribeiro
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.R.); (J.R.)
| | - Tanja A. Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Jeffrey Rubnitz
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.R.); (J.R.)
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| |
Collapse
|
4
|
Stanic K, Reig G, Figueroa RJ, Retamal PA, Wichmann IA, Opazo JC, Owen GI, Corvalán AH, Concha ML, Amigo JD. The Reprimo gene family member, reprimo-like (rprml), is required for blood development in embryonic zebrafish. Sci Rep 2019; 9:7131. [PMID: 31073223 PMCID: PMC6509255 DOI: 10.1038/s41598-019-43436-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/24/2019] [Indexed: 11/09/2022] Open
Abstract
The Reprimo gene family comprises a group of single-exon genes for which their physiological function remains poorly understood. Heretofore, mammalian Reprimo (RPRM) has been described as a putative p53-dependent tumor suppressor gene that functions at the G2/M cell cycle checkpoint. Another family member, Reprimo-like (RPRML), has not yet an established role in physiology or pathology. Importantly, RPRML expression pattern is conserved between zebrafish and human species. Here, using CRISPR-Cas9 and antisense morpholino oligonucleotides, we disrupt the expression of rprml in zebrafish and demonstrate that its loss leads to impaired definitive hematopoiesis. The formation of hemangioblasts and the primitive wave of hematopoiesis occur normally in absence of rprml. Later in development there is a significant reduction in erythroid-myeloid precursors (EMP) at the posterior blood island (PBI) and a significant decline of definitive hematopoietic stem/progenitor cells (HSPCs). Furthermore, loss of rprml also increases the activity of caspase-3 in endothelial cells within the caudal hematopoietic tissue (CHT), the first perivascular niche where HSPCs reside during zebrafish embryonic development. Herein, we report an essential role for rprml during hematovascular development in zebrafish embryos, specifically during the definitive waves of hematopoiesis, indicating for the first time a physiological role for the rprml gene.
Collapse
Affiliation(s)
- Karen Stanic
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - German Reig
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Universidad Bernardo O´Higgins, Escuela de Tecnología Médica and Centro Integrativo de Biología y Química Aplicada (CIBQA), Santiago, Chile
| | - Ricardo J Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro A Retamal
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio A Wichmann
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Laboratorio de Oncología, Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Gareth I Owen
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Laboratorio de Oncología, Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel L Concha
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile, Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Julio D Amigo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Tao YF, Wang NN, Xu LX, Li ZH, Li XL, Xu YY, Fang F, Li M, Qian GH, Li YH, Li YP, Wu Y, Ren JL, Du WW, Lu J, Feng X, Wang J, He WQ, Hu SY, Pan J. Molecular mechanism of G 1 arrest and cellular senescence induced by LEE011, a novel CDK4/CDK6 inhibitor, in leukemia cells. Cancer Cell Int 2017; 17:35. [PMID: 28286417 PMCID: PMC5340031 DOI: 10.1186/s12935-017-0405-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/25/2017] [Indexed: 12/30/2022] Open
Abstract
Background Overexpression of cyclin D1 dependent kinases 4 and 6 (CDK4/6) is a common feature of many human cancers including leukemia. LEE011 is a novel inhibitor of both CDK4 and 6. To date, the molecular function of LEE011 in leukemia remains unclear. Methods Leukemia cell growth and apoptosis following LEE011 treatment was assessed through CCK-8 and annexin V/propidium iodide staining assays. Cell senescence was assessed by β-galactosidase staining and p16INK4a expression analysis. Gene expression profiles of LEE011 treated HL-60 cells were investigated using an Arraystar Human LncRNA array. Gene ontology and KEGG pathway analysis were then used to analyze the differentially expressed genes from the cluster analysis. Results Our studies demonstrated that LEE011 inhibited proliferation of leukemia cells and could induce apoptosis. Hoechst 33,342 staining analysis showed DNA fragmentation and distortion of nuclear structures following LEE011 treatment. Cell cycle analysis showed LEE011 significantly induced cell cycle G1 arrest in seven of eight acute leukemia cells lines, the exception being THP-1 cells. β-Galactosidase staining analysis and p16INK4a expression analysis showed that LEE011 treatment can induce cell senescence of leukemia cells. LncRNA microarray analysis showed 2083 differentially expressed mRNAs and 3224 differentially expressed lncRNAs in LEE011-treated HL-60 cells compared with controls. Molecular function analysis showed that LEE011 induced senescence in leukemia cells partially through downregulation of the transcriptional expression of MYBL2. Conclusions We demonstrate for the first time that LEE011 treatment results in inhibition of cell proliferation and induction of G1 arrest and cellular senescence in leukemia cells. LncRNA microarray analysis showed differentially expressed mRNAs and lncRNAs in LEE011-treated HL-60 cells and we demonstrated that LEE011 induces cellular senescence partially through downregulation of the expression of MYBL2. These results may open new lines of investigation regarding the molecular mechanism of LEE011 induced cellular senescence. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0405-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan-Fang Tao
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Na-Na Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li-Xiao Xu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Zhi-Heng Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Xiao-Lu Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Yun-Yun Xu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Mei Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Guang-Hui Qian
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Yan-Hong Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Yi-Ping Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Yi Wu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Jun-Li Ren
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Wei-Wei Du
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Xing Feng
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Wei-Qi He
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, China
| | - Shao-Yan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|