1
|
Ravandi-Kashani F, Cortes J, Kantarjian H, Talpaz M. Chronic Myeloid Leukemia: Current Guidelines for Diagnosis and Management. Hematology 2016; 3:263-76. [DOI: 10.1080/10245332.1998.11746399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- F. Ravandi-Kashani
- Department of Leukemia, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - J. Cortes
- Department of Leukemia, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - H. Kantarjian
- Department of Leukemia, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - M. Talpaz
- Department of Bioimmuntherapy, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Affiliation(s)
- Rahman Jamal
- Department of Haematology, University College London Medical School, 98 Chenies Mews, London WC1E 6HX., Tel: , Fax:
| |
Collapse
|
3
|
Wolanin K, Magalska A, Kusio-Kobialka M, Podszywalow-Bartnicka P, Vejda S, McKenna SL, Mosieniak G, Sikora E, Piwocka K. Expression of oncogenic kinase Bcr-Abl impairs mitotic checkpoint and promotes aberrant divisions and resistance to microtubule-targeting agents. Mol Cancer Ther 2010; 9:1328-38. [PMID: 20442314 DOI: 10.1158/1535-7163.mct-09-0936] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent findings showed that BRCA1, in addition to its role in DNA damage response, acts as an upstream regulator of genes involved in the mitotic checkpoint regulation, thus protecting against promotion of aberrant divisions and aneuploidy. Moreover, there is also an indication that the BRCA1 protein is downregulated in chronic myeloid leukemia (CML) patients. We have investigated a possible functional relationship between BRCA1 and mitotic checkpoint competence in cells with the same genetic background expressing different levels of Bcr-Abl, an oncogene responsible for CML. Herein, we show that Bcr-Abl strongly downregulates the BRCA1 protein level, which is partially reversed on treatment with imatinib, an inhibitor of Bcr-Abl tyrosine kinase. Bcr-Abl leads to decreased expression of genes involved in the mitotic checkpoint activation--Mad2, Bub1, Bub3, and BubR1, resulting in mitosis perturbances, weakened mitotic checkpoint function, and mitotic slippage after nocodazole treatment. Furthermore, high Bcr-Abl-expressing cells showed also postmitotic checkpoint dysfunctions and inability to effectively arrest in the 4NG1 phase of the cell cycle, which was associated with limited p21 induction. These observations had significant biological consequences, as we found a high level of improper divisions, chromosomal missegregation, and generation of polyploid cells on mitotic checkpoint prolonged activation. Additionally, Bcr-Abl-expressing cells showed resistance to death activated by spindle defects, reversed by imatinib. Our study presents new facts and supports the hypothesis concerning the mutator nature of Bcr-Abl itself. The functional interaction between Bcr-Abl and mitosis dysfunctions, due to compromised mitotic checkpoints, may have important implications for the generation of aneuploidy and CML progression.
Collapse
Affiliation(s)
- Kamila Wolanin
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sessions J. Monitoring your patients with chronic myeloid leukemia. Am J Health Syst Pharm 2006; 63:S5-9; quiz S21-2. [PMID: 17106019 DOI: 10.2146/ajhp060524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Chronic myeloid leukemia (CML), a hematopoietic stem cell disorder, which sometimes presents with fatigue, hepato-splenomegaly, and weight loss but is sometimes asymptomatic, is discussed. SUMMARY Diagnosis is suspected on the observation of an increased white blood cell count and is confirmed by the presence of the Philadelphia (Ph) chromosome. CML progresses through a series of three defined stages with survival times of 3-5 years if untreated. The chromosomal translocation creating the Ph chromosome creates the BCR-ABL fusion protein, which is the initiating factor for CML. BCR-ABL is a constitutively active tyrosine kinase, which transforms hematopoietic stem cells through dysregulation of proliferation, apoptosis, differentiation, and cell adhesion. The transformation process is then accelerated by the accumulation of additional translocations. This fusion protein has been used clinically as a therapeutic target and a sensitive marker for measuring residual disease. Techniques, such as cytogenetic analysis of chromosomes, allow for the visualization of the Ph chromosome and additional translocations and abnormalities. The more sensitive fluorescent in situ hybridization assay can directly visualize the bcr-abl translocation through merged fluorescent tags. Polymerase chain reaction, the most sensitive of the assays, can be used to detect minute amounts of bcr-abl mRNA and this has made it possible to monitor and detect minimal residual disease recurrence and disease progression, thus greatly enhancing patient care. CONCLUSION A variety of monitoring techniques can be employed during CML therapy, providing degrees of quantifying disease burden or absence of disease.
Collapse
MESH Headings
- Bone Marrow Examination
- Cytogenetic Analysis/methods
- Disease Progression
- Fusion Proteins, bcr-abl/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Monitoring, Physiologic/methods
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Jolynn Sessions
- Hematology/Oncology, Emory University Hospital, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Patel BB, Mohamed AN, Schiffer CA. “Acute myelogenous leukemia like” translocations in CML blast crisis: Two new cases of inv(16)/t(16;16) and a review of the literature. Leuk Res 2006; 30:225-32. [PMID: 16076492 DOI: 10.1016/j.leukres.2005.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 06/14/2005] [Accepted: 06/15/2005] [Indexed: 11/17/2022]
Abstract
We describe two patients with CML blast crisis with clonal evolution affecting 16q22 (t(16;16)(p13;q22) and inv(16)(p13;q22), abnormalities of core binding factor, usually found in de novo acute myeloid leukemia (AML)). The bone marrow of both cases showed myelomonocytic (M4) differentiation and eosinophilia. Both patients had prominent extramedullary disease and had poor response to treatment. A literature search focused on patients with CML and additional chromosome changes more typical of AML, revealed that the morphology of the blasts correlated with the finding typical of the underlying "AML" cytogenetic abnormality and an overall very poor clinical outcome, even in the groups with "favorable" AML type translocations.
Collapse
Affiliation(s)
- Bhaumik B Patel
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Internal Medicine, Division of Hematology-Oncology, Karmanos Cancer Institute, 4HW-4238, 4100 John R, Detroit, MI 48201, USA
| | | | | |
Collapse
|
6
|
Jaiswal S, Traver D, Miyamoto T, Akashi K, Lagasse E, Weissman IL. Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci U S A 2003; 100:10002-7. [PMID: 12890867 PMCID: PMC187741 DOI: 10.1073/pnas.1633833100] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic myelogenous leukemia is a myeloproliferative disorder (MPD) that, over time, progresses to acute leukemia. Both processes are closely associated with the t(9;22) chromosomal translocation that creates the BCR/ABL fusion gene in hematopoietic stem cells (HSCs) and their progeny. Chronic myelogenous leukemia is therefore classified as an HSC disorder in which a clone of multipotent HSCs is likely to be malignantly transformed, although direct evidence for malignant t(9;22)+ HSCs is lacking. To test whether HSC malignancy is required, we generated hMRP8p210BCR/ABL transgenic mice in which expression of BCR/ABL is absent in HSCs and targeted exclusively to myeloid progenitors and their myelomonocytic progeny. Four of 13 BCR/ABL transgenic founders developed a chronic MPD, but only one progressed to blast crisis. To address whether additional oncogenic events are required for progression to acute disease, we crossed hMRP8p210BCR/ABL mice to apoptosis-resistant hMRP8BCL-2 mice. Of 18 double-transgenic animals, 9 developed acute myeloid leukemias that were transplantable to wild-type recipients. Taken together, these data indicate that a MPD can arise in mice without expression of BCR/ABL in HSCs and that additional mutations inhibiting programmed cell death may be critical in the transition of this disease to blast-crisis leukemia.
Collapse
MESH Headings
- Animals
- Apoptosis
- Crosses, Genetic
- Disease Models, Animal
- Female
- Gene Expression
- Genes, abl
- Genes, bcl-2
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Myeloid Progenitor Cells/metabolism
- Myeloid Progenitor Cells/pathology
Collapse
Affiliation(s)
- Siddhartha Jaiswal
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
7
|
Lossos IS, Levy R. Higher grade transformation of follicular lymphoma: phenotypic tumor progression associated with diverse genetic lesions. Semin Cancer Biol 2003; 13:191-202. [PMID: 12959350 DOI: 10.1016/s1044-579x(03)00015-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Higher grade histological transformation of follicular lymphoma (FL) to more aggressive diffuse large B-cell lymphomas (DLBCL) occurs in 10-60% of the cases. Review of the current knowledge of genetic and molecular alterations associated with the higher grade transformation of FCL suggests that the process that leads to clinically and phenotypically similar end-point can occur by functionally diverse genetic lesions. The most commonly identified genetic alterations associated with the FCL transformation are TP53 gene mutations, inactivation of CDKN2A and CDKN2B genes and deregulation of the C-MYC gene. These lesions affect different aspects of normal cell physiology (apoptosis, cell cycle control, and proliferation) and are potential targets for gene-specific therapies.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mutation
- Phenotype
Collapse
Affiliation(s)
- Izidore S Lossos
- Department of Hematology and Oncology, Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Avenue (D8-4), Miami, FL 33136, USA.
| | | |
Collapse
|
8
|
Shet AS, Jahagirdar BN, Verfaillie CM. Chronic myelogenous leukemia: mechanisms underlying disease progression. Leukemia 2002; 16:1402-11. [PMID: 12145676 DOI: 10.1038/sj.leu.2402577] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2001] [Accepted: 08/31/2001] [Indexed: 11/09/2022]
Abstract
Chronic myelogenous leukemia (CML), characterized by the BCR-ABL gene rearrangement, has been extensively studied. Significant progress has been made in the area of BCR-ABL-mediated intracellular signaling, which has led to a better understanding of BCR-ABL-mediated clinical features in chronic phase CML. Disease progression and blast crisis CML is associated with characteristic non-random cytogenetic and molecular events. These can be viewed as increased oncogenic activity or loss of tumor suppressor activity. However, what causes transformation and disease progression to blast crisis is only poorly understood. This is in part due to the lack of a good in vivo model of chronic phase CML even though animal models developed over the last few years have started to provide insights into blast crisis development. Thus, additional in vitro and in vivo studies will be needed to provide a complete understanding of the contribution of BCR-ABL and other genes to disease progression and to improve therapeutic approaches for blast crisis CML.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blast Crisis/genetics
- Blast Crisis/pathology
- Cell Differentiation
- Chromosome Aberrations
- DNA Repair
- Disease Progression
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Genes, Tumor Suppressor
- Hematopoietic Stem Cells/pathology
- Humans
- Immunologic Surveillance
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Knockout
- Models, Animal
- Models, Biological
- Neoplastic Stem Cells/pathology
- Oncogenes
- Signal Transduction
Collapse
Affiliation(s)
- A S Shet
- Stem Cell Institute and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
9
|
Abstract
The BCR-ABL oncogene is essential to the pathogenesis of chronic myelogenous leukemia, and immune mechanisms play an important role in control of this disease. Understanding of the molecular pathogenesis of chronic myelogenous leukemia has led to the development of several novel therapies, which can be broadly divided into therapies based on 1) inhibition of the BCR-ABL oncogene expression, 2) inhibition of other genes important to the pathogenesis of chronic myelogenous leukemia, 3) inhibition of BCR-ABL protein function, and 4) immunomodulation. We have systematically reviewed each of these novel therapeutic approaches in this article.
Collapse
MESH Headings
- Alkyl and Aryl Transferases/antagonists & inhibitors
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Benzamides
- Cancer Vaccines/therapeutic use
- Cell Transformation, Neoplastic/genetics
- Clinical Trials, Phase II as Topic
- Clinical Trials, Phase III as Topic
- Drug Resistance, Neoplasm/genetics
- Enzyme Inhibitors/therapeutic use
- Farnesyltranstransferase
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Genes, myb
- Hematopoietic Stem Cell Transplantation
- Humans
- Imatinib Mesylate
- Immunotherapy, Adoptive
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Methotrexate/pharmacology
- Models, Biological
- Multicenter Studies as Topic
- Neoplasm Proteins/metabolism
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/therapeutic use
- Phosphorylation
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Protein Processing, Post-Translational
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- RNA, Messenger/antagonists & inhibitors
- RNA, Neoplasm/antagonists & inhibitors
- Signal Transduction/drug effects
- Tetrahydrofolate Dehydrogenase/genetics
Collapse
Affiliation(s)
- B N Jahagirdar
- Stem Cell Institute, Division of Hematology-Oncology and Transplantation, University of Minnesota, Minneapolis, Minn 55455, USA
| | | | | | | |
Collapse
|
10
|
Presence of P210bcrabl Is Associated with Decreased Expression of a Beta Chemokine C10 Gene in a P210bcrabl-Positive Myeloid Leukemia Cell Line. Mol Med 1999. [DOI: 10.1007/bf03402139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Verfaillie CM, Bhatia R, Browne P, Key NS. Interferon-alpha restores beta1-integrin-dependent, collagen-mediated platelet aggregation in a patient with chronic myelogenous leukemia. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1998; 131:163-9. [PMID: 9488500 DOI: 10.1016/s0022-2143(98)90159-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although interferon-alpha (IFN-alpha) induces hematologic remissions in 70% to 80% of patients with chronic myelogenous leukemia (CML) and complete or near-complete cytogenetic remissions in 10% to 20% of patients, the exact mechanisms underlying these clinical results remain unclear. We have hypothesized that IFN-alpha acts at least in part through restoration of beta1-integrin function on malignant hematopoietic progenitors that can promote adhesion of malignant progenitors to the marrow microenvironment. This may then restore microenvironmental inhibition of progenitor proliferation and induce tumor dormancy. We demonstrate that IFN-alpha administration to a patient suffering from a clinically severe bleeding diathesis reversed the defective collagen-mediated aggregation of platelets expressing normal numbers of functionally inactive collagen receptors. This is the first in vivo demonstration that IFN-alpha can up-regulate the function of adhesion receptors in CML and supports the premise that IFN-alpha induces remissions by restoring normal integrin-mediated interactions between progenitors and microenvironmental components.
Collapse
Affiliation(s)
- C M Verfaillie
- Department of Medicine, University of Minnesota Medical School, Minneapolis, USA
| | | | | | | |
Collapse
|
12
|
Abstract
This article reviews the biology of chronic myelogenous leukemia (CML) and its effect on the process of hematopoiesis. The relevance of the BCR-ABL fusion protein as well as murine models are also discussed. CML has been studied more extensively than any other malignancy, yet the correlation between the clinical symptoms of chronic phase CML and the BCR-ABL oncoprotein is poorly understood. Insights from recent efforts both to develop a good in vivo animal model and to characterize the effect of the BCR-ABL oncoprotein on relevant signal molecules may lead to a better understanding of the pathophysiology of chronic phase CML and, thereby, to the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- C M Verfaillie
- Department of Medicine, University of Minnesota, Minneapolis, USA
| |
Collapse
|
13
|
Raitano AB, Whang YE, Sawyers CL. Signal transduction by wild-type and leukemogenic Abl proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1333:F201-16. [PMID: 9426204 DOI: 10.1016/s0304-419x(97)00023-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A B Raitano
- Hematology-Oncology, Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095-1678, USA
| | | | | |
Collapse
|