Miettinen M, Lasota J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation.
Appl Immunohistochem Mol Morphol 2006;
13:205-20. [PMID:
16082245 DOI:
10.1097/01.pai.0000173054.83414.22]
[Citation(s) in RCA: 359] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD117 (KIT) is a type III receptor tyrosine kinase operating in cell signal transduction in several cell types. Normally KIT is activated (phosphorylated) by binding of its ligand, the stem cell factor. This leads to a phosphorylation cascade ultimately activating various transcription factors in different cell types. Such activation regulates apoptosis, cell differentiation, proliferation, chemotaxis, and cell adhesion. KIT-dependent cell types include mast cells, some hematopoietic stem cells, germ cells, melanocytes, and Cajal cells of the gastrointestinal tract, and neoplasms of these cells are examples of KIT-positive tumors. Other KIT-positive normal cells include epithelial cells in skin adnexa, breast, and subsets of cerebellar neurons. KIT positivity has been variably reported in sarcomas such as angiosarcoma, Ewing sarcoma, synovial sarcoma, leiomyosarcoma, and MFH; results of the last three are controversial. The variations in published data may result from incomplete specificity of some polyclonal antibodies, possibly contributed by too high dilutions. Also, KIT is expressed in pulmonary and other small cell carcinomas, adenoid cystic carcinoma, renal chromophobe carcinoma, thymic, and some ovarian and few breast carcinomas. A good KIT antibody reacts with known KIT positive cells, and smooth muscle cells and fibroblasts are negative. KIT deficiency due to hereditary nonsense/missense mutations leads to disruption of KIT-dependent functions such as erythropoiesis, skin pigmentation, fertility, and gastrointestinal motility. Conversely, pathologic activation of KIT through gain-of-function mutations leads to neoplasia of KIT-dependent and KIT-positive cell types at least in three different systems: mast cells/myeloid cells--mastocytosis/acute myeloid leukemia, germ cells--seminoma, and Cajal cells--gastrointestinal stromal tumors (GISTs). KIT tyrosine kinase inhibitors such as imatinib mesylate are the generally accepted treatment of metastatic GISTs, and their availability has prompted an active search for other treatment targets among KIT-positive tumors such as myeloid leukemias and small cell carcinoma of the lung, with variable and often nonconvincing results.
Collapse