1
|
Nato G, Corti A, Parmigiani E, Jachetti E, Lecis D, Colombo MP, Delia D, Buffo A, Magrassi L. Immune-tolerance to human iPS-derived neural progenitors xenografted into the immature cerebellum is overridden by species-specific differences in differentiation timing. Sci Rep 2021; 11:651. [PMID: 33436685 PMCID: PMC7803978 DOI: 10.1038/s41598-020-79502-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/09/2020] [Indexed: 01/20/2023] Open
Abstract
We xeno-transplanted human neural precursor cells derived from induced pluripotent stem cells into the cerebellum and brainstem of mice and rats during prenatal development or the first postnatal week. The transplants survived and started to differentiate up to 1 month after birth when they were rejected by both species. Extended survival and differentiation of the same cells were obtained only when they were transplanted in NOD-SCID mice. Transplants of human neural precursor cells mixed with the same cells after partial in vitro differentiation or with a cellular extract obtained from adult rat cerebellum increased survival of the xeno-graft beyond one month. These findings are consistent with the hypothesis that the slower pace of differentiation of human neural precursors compared to that of rodents restricts induction of immune-tolerance to human antigens expressed before completion of maturation of the immune system. With further maturation the transplanted neural precursors expressed more mature antigens before the graft were rejected. Supplementation of the immature cells suspensions with more mature antigens may help to induce immune-tolerance for those antigens expressed only later by the engrafted cells.
Collapse
Affiliation(s)
- Giulia Nato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Via Cherasco 15, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043, Orbassano, Torino, Italy
| | - Alessandro Corti
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Via Cherasco 15, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043, Orbassano, Torino, Italy
| | - Elena Jachetti
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Mario Paolo Colombo
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Domenico Delia
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy.,IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Via Cherasco 15, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043, Orbassano, Torino, Italy
| | - Lorenzo Magrassi
- Neurosurgery, Department of Clinical, Surgical, Diagnostic and Pediatric Science, University of Pavia, Foundation IRCCS Policlinico San Matteo, Pavia, Italy. .,Istituto Di Genetica Molecolare IGM-CNR, via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
2
|
Mujtaba T, Han SSW, Fischer I, Sandgren EP, Rao MS. Stable expression of the alkaline phosphatase marker gene by neural cells in culture and after transplantation into the CNS using cells derived from a transgenic rat. Exp Neurol 2002; 174:48-57. [PMID: 11869033 DOI: 10.1006/exnr.2001.7847] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multipotent stem cells and more developmentally restricted precursors have previously been isolated from the developing nervous system and their properties analyzed by culture assays in vitro and by transplantation in vivo. However, the variety of labeling techniques that have been used to identify grafted cells in vivo have been unsatisfactory. In this article we describe the characteristics of cells isolated from a transgenic rat in which the marker gene human placental alkaline phosphatase (hPAP) is linked to the ubiquitously active R26 gene promoter. We show that hPAP is readily detected in embryonic neuroepithelial stem cells, neuronal-restricted precursor cells, and glial-restricted precursor cells. Transgene expression is robust and can be detected by both immunocytochemistry and histochemistry. Furthermore, the levels of hPAP on the cell surface are sufficient for live cell labeling and fluorescence-activated cell sorting. Expression of hPAP is stable in isolated cells in culture and in cells transplanted into the spinal cord for at least 1 month. We submit that cells isolated from this transgenic rat will be valuable for studies of neural development and regeneration.
Collapse
Affiliation(s)
- Tahmina Mujtaba
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 50 North Medical Drive, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
3
|
Ostenfeld T, Horn P, Aardal C, Orpen I, Caldwell MA, Svendsen CN. Mouse epidermal growth factor-responsive neural precursor cells increase the survival and functional capacity of embryonic rat dopamine neurons in vitro. Neuroreport 1999; 10:1985-92. [PMID: 10501545 DOI: 10.1097/00001756-199906230-00035] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have grown expanded populations of epidermal growth factor (EGF)-responsive mouse striatal precursor cells and subsequently co-cultured these with primary E14 rat ventral mesencephalon. The aim of these experiments was to induce dopaminergic (DA) neuronal phenotypes from the murine precursors. While no precursor cell-derived neurons were induced to express tyrosine hydroxylase (TH), there was a dramatic 30-fold increase in the survival of rat-derived TH-positive neurons in the co-cultures. The effect was not explicable solely in terms of total plating density, and was accompanied by a significantly enhanced capacity for [3H]dopamine uptake in the co-cultures compared to rat alone cultures. The present data show that, although primary rat E14 mesencephalic cells are incapable of inducing the development of DA neurons from EGF-responsive mouse neural precursor cells, such precursors will differentiate into cells capable of enhancing the survival and overall functional efficacy of primary embryonic dopamine neurons.
Collapse
Affiliation(s)
- T Ostenfeld
- MRC Cambridge Centre for Brain Repair, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
4
|
Franklin RJ, Blakemore WF. Transplanting myelin-forming cells into the central nervous system: principles and practice. Methods 1998; 16:311-9. [PMID: 10071069 DOI: 10.1006/meth.1998.0687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although transplantation of myelin-forming cells into the central nervous system (CNS) has recently attracted much attention as a potential therapy for repairing persistent demyelination found in the demyelinating diseases such as multiple sclerosis and the leukodystrophies, it is worth remembering that the technique was originally conceived of as an experimental technique for manipulating in vivo environments to study interactions between different cell types in either repair or development. It is in this capacity that the technique is still predominantly used. Nevertheless, information, both technical and biological, that the continued use of the technique yields also often provides material for assessing the feasibility of glial cell transplantation as a therapeutic procedure. In this article, we describe some of the guiding principles of transplantation of myelinogenic cells into the mammalian CNS, focusing initially on the recipient environment and then considering the donor material. The division of the discussion into recipient and donor is one of convenience since in reality the interactions between the two cannot be considered in isolation.
Collapse
Affiliation(s)
- R J Franklin
- MRC Cambridge Center for Brain Repair and Department of Clinical Veterinary Medicine, University of Cambridge, United Kingdom
| | | |
Collapse
|
5
|
Lachapelle F, Duhamel-Clerin E, Gansmüller A, Baron-Van Evercooren A, Villarroya H, Gumpel M. Transplanted transgenically marked oligodendrocytes survive, migrate and myelinate in the normal mouse brain as they do in the shiverer mouse brain. Eur J Neurosci 1994; 6:814-24. [PMID: 8075823 DOI: 10.1111/j.1460-9568.1994.tb00992.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The dye Hoechst 33342 was combined with an immunodetectable transgene product (chloramphenicol acetyltransferase, CAT) expressed in differentiated oligodendrocytes to trace their fate after transplantation in the normal and the shiverer mouse brain. In the shiverer brain, the technique allowed us to visualize grafted cells inside myelin basic protein-positive myelin patches. Most of these cells were CAT-positive/Hoechst 33342-negative, reinforcing our hypothesis that cell division probably follows migration of grafted oligodendrocytes. Correlation of their morphology and distribution with their location in the host CNS suggested a local effect on the cell division and morphogenesis of the grafted material. When compared with transplantation of fragments of normal newborn donor tissue into the newborn shiverer brain, no difference could be seen between the behaviour of normal and transgenic oligodendrocytes. In the normal brain, transgenic oligodendrocytes survived at least 150 days and successfully myelinated the host axons. The timing of differentiation of grafted cells was similar in both types of recipient brains. Migration occurred rostrally and caudally. Although migrating cells could be observed along the meninges and the blood vessels, migration occurred preferentially along white matter tracts. The extent of migration was influenced by the site of implantation, and grafted cells could be found up to 6 mm from the grafting point. No differences in the timing of differentiation or the pattern or extent of migration could thus be demonstrated when transgenic oligodendrocytes were transplanted in the normal or the shiverer brain. This validates our previous studies using the newborn shiverer mouse as recipient.
Collapse
Affiliation(s)
- F Lachapelle
- U 134 INSERM, Hôpital de la Salpétrière, Paris, France
| | | | | | | | | | | |
Collapse
|