1
|
Hilton HN, Doan TB, Graham JD, Oakes SR, Silvestri A, Santucci N, Kantimm S, Huschtscha LI, Ormandy CJ, Funder JW, Simpson ER, Kuczek ES, Leedman PJ, Tilley WD, Fuller PJ, Muscat GEO, Clarke CL. Acquired convergence of hormone signaling in breast cancer: ER and PR transition from functionally distinct in normal breast to predictors of metastatic disease. Oncotarget 2015; 5:8651-64. [PMID: 25261374 PMCID: PMC4226711 DOI: 10.18632/oncotarget.2354] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cumulative exposure to estrogen (E) and progesterone (P) over the menstrual cycle significantly influences the risk of developing breast cancer. Despite the dogma that PR in the breast merely serves as a marker of an active estrogen receptor (ER), and as an inhibitor of the proliferative actions of E, it is now clear that in the breast P increases proliferation independently of E action. We show here that the progesterone receptor (PR) and ER are expressed in different epithelial populations, and target non-overlapping pathways in the normal human breast. In breast cancer, PR becomes highly correlated with ER, and this convergence is associated with signaling pathways predictive of disease metastasis. These data challenge the established paradigm that ER and PR function co-operatively in normal breast, and have significant implications not only for our understanding of normal breast biology, but also for diagnosis, prognosis and/or treatment options in breast cancer patients.
Collapse
Affiliation(s)
- Heidi N Hilton
- Westmead Millennium Institute, Sydney Medical School - Westmead, University of Sydney, NSW, Australia
| | - Tram B Doan
- Westmead Millennium Institute, Sydney Medical School - Westmead, University of Sydney, NSW, Australia
| | - J Dinny Graham
- Westmead Millennium Institute, Sydney Medical School - Westmead, University of Sydney, NSW, Australia
| | - Samantha R Oakes
- Cancer Research Program and The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. St Vincent's Clinical School, St Vincent's Hospital and University of New South Wales, Darlinghurst NSW, Australia
| | - Audrey Silvestri
- Westmead Millennium Institute, Sydney Medical School - Westmead, University of Sydney, NSW, Australia
| | - Nicole Santucci
- Westmead Millennium Institute, Sydney Medical School - Westmead, University of Sydney, NSW, Australia
| | - Silke Kantimm
- Westmead Millennium Institute, Sydney Medical School - Westmead, University of Sydney, NSW, Australia
| | - Lily I Huschtscha
- Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Christopher J Ormandy
- Cancer Research Program and The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. St Vincent's Clinical School, St Vincent's Hospital and University of New South Wales, Darlinghurst NSW, Australia
| | | | | | | | - Peter J Leedman
- Laboratory for Cancer Medicine, Centre for Medical Research, Western Australian Institute for Medical Research and School of Medicine and Pharmacology, the University of Western Australia, Perth, Western Australia, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, Hanson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | | | - George E O Muscat
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Christine L Clarke
- Westmead Millennium Institute, Sydney Medical School - Westmead, University of Sydney, NSW, Australia
| |
Collapse
|
2
|
Bass BP, Engel KB, Greytak SR, Moore HM. A review of preanalytical factors affecting molecular, protein, and morphological analysis of formalin-fixed, paraffin-embedded (FFPE) tissue: how well do you know your FFPE specimen? Arch Pathol Lab Med 2015; 138:1520-30. [PMID: 25357115 DOI: 10.5858/arpa.2013-0691-ra] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Formalin fixation and paraffin embedding is a timeless, cost-efficient, and widely adopted method of preserving human tissue biospecimens that has resulted in a substantial reservoir of formalin-fixed, paraffin-embedded blocks that represent both the pathology and preanalytical handling of the biospecimen. This reservoir of specimens is increasingly being used for DNA, RNA, and proteomic analyses. OBJECTIVE To evaluate the impact of preanalytical factors associated with the formalin fixation and paraffin embedding process on downstream morphological and molecular endpoints. DATA SOURCES We surveyed the existing literature using the National Cancer Institute's Biospecimen Research Database for published reports investigating the potential influence of preanalytical factors associated with the formalin fixation and paraffin embedding process on DNA, RNA, protein, and morphological endpoints. CONCLUSIONS Based on the literature evidence, the molecular, proteomic, and morphological endpoints can be altered in formalin-fixed, paraffin-embedded specimens by suboptimal processing conditions. While the direction and magnitude of effects associated with a given preanalytical factor were dependent on the analyte (DNA, RNA, protein, and morphology) and analytical platform, acceptable conditions are highlighted, and a summary of conditions that could preclude analysis is provided.
Collapse
Affiliation(s)
- B Paige Bass
- From the Kelly Government Solutions Program, Kelly Services, Rockville (Drs Bass and Greytak), and the Biorepositories and Biospecimen Research Branch, Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda (Dr Moore), Maryland; and the Preferred Solutions Group, Arlington, Virginia (Dr Engel)
| | | | | | | |
Collapse
|
3
|
Progesterone stimulates progenitor cells in normal human breast and breast cancer cells. Breast Cancer Res Treat 2014; 143:423-33. [DOI: 10.1007/s10549-013-2817-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/18/2013] [Indexed: 01/16/2023]
|
4
|
Hilton HN, Graham JD, Kantimm S, Santucci N, Cloosterman D, Huschtscha LI, Mote PA, Clarke CL. Progesterone and estrogen receptors segregate into different cell subpopulations in the normal human breast. Mol Cell Endocrinol 2012; 361:191-201. [PMID: 22580007 DOI: 10.1016/j.mce.2012.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 11/21/2022]
Abstract
Progesterone is critical in normal breast development and its synthetic derivatives are emerging as major drivers of breast cancer risk. The recent demonstration that progesterone regulates the stem cell compartment in the murine mammary gland, despite the absence of progesterone receptor (PR) in mammary stem cells, highlights the fact that PR distribution in progenitor cell subsets in the human breast remains to be conclusively shown. By utilising two independent cell sorting strategies to fractionate cells into distinct subpopulations enriched for different cell lineage characteristics, we have demonstrated a consistent enrichment of PR transcripts, relative to estrogen receptor transcripts, in the bipotent progenitor subfraction in the normal human breast. We have also shown co-expression of both steroid hormone receptors with basal markers in a subset of human breast cells, and finally we have demonstrated that PR+ bipotent progenitor cells are estrogen-insensitive, and that estrogen regulates PR in mature luminal cells only.
Collapse
Affiliation(s)
- H N Hilton
- Westmead Institute for Cancer Research, Sydney Medical School-Westmead, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales 2145, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Assessment of hormone receptors (estrogen and progesterone) helps to direct therapy for women with breast cancer. Immunohistochemistry is most commonly used to assess hormone receptor status and it is essential that these tests are performed accurately and reliably within and across laboratories. The overall purpose of this guideline is to improve the quality and accuracy of hormone receptor testing and its utility as a prognostic and predictive marker for invasive and in situ breast cancer. Medline, EMBASE, the Cochrane Database of Systematic Reviews, and abstracts from the San Antonio Breast Cancer Symposium were searched. An environmental scan of the internet and of international guideline developers and key organizations was performed. Preanalytic elements such as the collection, fixation, and storage of samples, and analytic elements such as selection of antibodies and scoring methods that seem to offer the best results for immunohistochemical assessment of hormone receptors are presented. Proficiency testing or quality assurance of immunohistochemistry is described.
Collapse
|
6
|
Nofech-Mozes S, Vella ET, Dhesy-Thind S, Hanna WM. Cancer care Ontario guideline recommendations for hormone receptor testing in breast cancer. Clin Oncol (R Coll Radiol) 2012; 24:684-96. [PMID: 22608362 DOI: 10.1016/j.clon.2012.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 02/07/2012] [Accepted: 04/24/2012] [Indexed: 12/31/2022]
Abstract
Hormone receptor testing (oestrogen and progesterone) in breast cancer at the time of primary diagnosis is used to guide treatment decisions. Accurate and standardised testing methods are critical to ensure the proper classification of the patient's hormone receptor status. Recommendations were developed to improve the quality and accuracy of hormone receptor testing based on a systematic review conducted jointly by the American Society of Clinical Oncology/College of American Pathologists and Cancer Care Ontario's Program in Evidence-Based Care. Evidence-based recommendations were formulated to set standards for optimising immunohistochemistry in assessing hormone receptor status, as well as assuring quality and proficiency between and within laboratories. A formal external review was conducted to validate the relevance of these recommendations. It is anticipated that widespread adoption of these guidelines will further improve the accuracy of hormone receptor testing in Canada.
Collapse
Affiliation(s)
- S Nofech-Mozes
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| | | | | | | |
Collapse
|
7
|
Graham JD, Mote PA, Salagame U, van Dijk JH, Balleine RL, Huschtscha LI, Reddel RR, Clarke CL. DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology 2009; 150:3318-26. [PMID: 19342456 PMCID: PMC2703536 DOI: 10.1210/en.2008-1630] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proliferation in the nonpregnant human breast is highest in the luteal phase of the menstrual cycle when serum progesterone levels are high, and exposure to progesterone analogues in hormone replacement therapy is known to elevate breast cancer risk, yet the proliferative effects of progesterone in the human breast are poorly understood. In a model of normal human breast, we have shown that progesterone increased incorporation of 5-bromo-2'-deoxyuridine and increased cell numbers by activation of pathways involved in DNA replication licensing, including E2F transcription factors, chromatin licensing and DNA replication factor 1 (Cdt1), and the minichromosome maintenance proteins and by increased expression of proteins involved in kinetochore formation including Ras-related nuclear protein (Ran) and regulation of chromosome condensation 1 (RCC1). Progenitor cells competent to give rise to both myoepithelial and luminal epithelial cells were increased by progesterone, showing that progesterone influences epithelial cell lineage differentiation. Therefore, we have demonstrated that progesterone augments proliferation of normal human breast cells by both activating DNA replication licensing and kinetochore formation and increasing bipotent progenitor numbers.
Collapse
Affiliation(s)
- J Dinny Graham
- Westmead Institute for Cancer Research, Westmead Hospital, Westmead, New South Wales 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mote PA, Arnett-Mansfield RL, Gava N, deFazio A, Mulac-Jericevic B, Conneely OM, Clarke CL. Overlapping and distinct expression of progesterone receptors A and B in mouse uterus and mammary gland during the estrous cycle. Endocrinology 2006; 147:5503-12. [PMID: 16980438 DOI: 10.1210/en.2006-0040] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In rodents, progesterone receptors (PRs) A and B have different and often nonoverlapping roles, and this study asked whether different activities of the PR proteins in mouse are related to differences in their expression in reproductive tissues. The individual expression of PRA and PRB was determined immunohistochemically in mammary gland and uterus during the estrous cycle or in response to endocrine manipulation. In the mammary gland, PRA and PRB were colocated in PR+ epithelial cells, with little change during the estrous cycle. In the uterus, PRA was not detected in luminal epithelium at any stage of the cycle, and PR+ luminal cells expressed only PRB. In the stroma and myometrium, PRA and PRB levels fluctuated with cyclical systemic hormone exposure. Observation of functional end points suggested that augmented stromal and/or myometrial PRA in proestrus inhibited estrogen receptor expression and epithelial proliferation. Colocation of PRA and PRB was hormonally regulated, and ovariectomy did not reproduce the expression of PRA and PRB in the uterus during the estrous cycle. Whereas PRB was the only PR in the luminal epithelium in cycling mice, ovariectomy restored PRA expression, resulting in PRA-PRB colocation. In stroma and myometrium, PRA and PRB colocated in PR+ cells, but ovariectomy reduced PRA levels more than PRB, resulting in PRB-only-expressing cells. This study has shown that nonoverlapping PRA and PRB expression in the uterus, in particular the lack of PRA, and expression of PRB only in the luminal epithelium throughout the estrous cycle, is likely to contribute to the distinct roles of PRA and PRB in the adult mouse.
Collapse
Affiliation(s)
- Patricia A Mote
- Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, and Department of Gynecological Oncology, Westmead Hospital, New South Wales 2145, Australia.
| | | | | | | | | | | | | |
Collapse
|
9
|
Balleine RL, Earls PJ, Webster LR, Mote PA, deFazio A, Harnett PR, Clarke CL. Expression of Progesterone Receptor A and B Isoforms in Low-grade Endometrial Stromal Sarcoma. Int J Gynecol Pathol 2004; 23:138-44. [PMID: 15084842 DOI: 10.1097/00004347-200404000-00008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The progesterone receptor (PR) exists as two isoforms, PRA and PRB. In vitro studies have shown that these proteins are functionally distinct, suggesting that their relative expression can influence progesterone response. Low-grade endometrial stromal sarcoma (LGESS) is an uncommon tumor that usually expresses PR. In normal endometrial stroma, both PR isoforms are present with PRA predominant throughout the menstrual cycle. The relative expression of PRA and PRB in LGESS has not been previously reported. All nine cases of primary LGESS (seven uterine, two extrauterine) expressed PRB. Eight tumors also contained PRA and it was the predominant isoform in seven cases. These tumors had similar histopathologic appearances, whereas a case with approximately equal PR isoform expression showed features of sex cord or smooth muscle differentiation. An extrauterine tumor expressing only PRB had myxoid stroma. Recurrent tumor in two cases, which expressed predominantly PRA in the primary, contained reduced levels of PR consisting predominantly or entirely of PRB after prolonged interval progestin therapy. Most primary LGESSs showed PR isoform expression similar to normal endometrial stroma, consistent with the highly differentiated phenotype of this tumor. Variant differentiation or disease recurrence was accompanied by an altered PR isoform profile that could impact on hormone response.
Collapse
|
10
|
Mote PA, Leary JA, Avery KA, Sandelin K, Chenevix-Trench G, Kirk JA, Clarke CL. Germ-line mutations in BRCA1 or BRCA2 in the normal breast are associated with altered expression of estrogen-responsive proteins and the predominance of progesterone receptor A. Genes Chromosomes Cancer 2004; 39:236-48. [PMID: 14732925 DOI: 10.1002/gcc.10321] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The breast cancer susceptibility genes BRCA1 and BRCA2 are responsible for a large proportion of familial breast and ovarian cancer, yet little is known of how disruptions in the functions of the proteins these genes encode increased cancer risk preferentially in hormone-dependent tissue. There is no information on whether a germ-line mutation in BRCA1 or BRCA2 causes disruptions in hormone-signaling pathways in the normal breast. In this study markers of hormone responsiveness were measured in prophylactically removed normal breast tissue (n = 31) in women bearing a germ-line pathogenic mutation in one of the BRCA genes. The estrogen receptor (ER) and proteins associated with ER action in hormone-sensitive tissues, namely, PS2 and the progesterone receptor (PR), were detected immunohistochemically. ER expression was not different in BRCA mutation carriers than in noncarriers, but there was a reduction in PS2 expression. PR expression was also reduced, and there was a striking lack of expression of the PRB isoform, which resulted in cases with PRA-only expression in BRCA1 and BRCA2 mutation carriers. The alterations in PS2 and PR expression were similar in the BRCA1 and BRCA2 carriers, demonstrating that although these proteins are structurally and functionally distinct, there is overlap in their interaction with hormone-signaling pathways. This study provides evidence for altered cell function arising from loss of function of one BRCA allele in the normal breast, leading to PS2 loss, preferential PRB loss, and expression of PRA alone. In breast cancer development, PRA overexpression becomes evident in premalignant lesions and is associated with features of poor prognosis in invasive disease and altered cell function in vitro. The results of this study suggest that heterozygosity for a germ-line mutation in BRCA1 or BRCA2 results in development of PRA predominance. This is likely to lead to changes in progesterone signaling in hormone-dependent tissues, which may be a factor in the increased risk of cancer in these tissues in women with germ-line BRCA1 or BRCA2 mutations.
Collapse
Affiliation(s)
- Patricia A Mote
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Mote PA, Bartow S, Tran N, Clarke CL. Loss of co-ordinate expression of progesterone receptors A and B is an early event in breast carcinogenesis. Breast Cancer Res Treat 2002; 72:163-72. [PMID: 12038707 DOI: 10.1023/a:1014820500738] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Progesterone receptor (PR) mediates the effects of progesterone in mammary tissues and plays a crucial role in normal breast development and in breast cancer. PR proteins are expressed as two isoforms, PRA and PRB, that have different capacities to activate target genes, yet it is unknown whether progesterone action in normal and malignant breast is mediated by PRA and/or PRB. This study determines the relative expression of PRA and PRB in normal breast and in benign, premalignant and malignant archival breast lesions by dual immunofluorescent histochemistry. In normal breast and in proliferative disease without atypia (PDWA) PRA and PRB were co-expressed within the same cells in comparable amounts, implicating both isoforms in progesterone action. In atypical lesions, however, there was a significant increase in predominant expression of PRA or PRB, with lesion progression from the normal state to malignancy. PR isoform predominance, especially PRA predominance, was evident in a high proportion of ductal carcinomas in situ (DCIS) and invasive breast lesions. In the normal breast and in PDWA, the relative expression of PRA and PRB in adjacent cells was homogenous. There was a significant increase in cell-to-cell heterogeneity of PR isoform expression in ADH and DCIS lesions and in the majority of breast cancers. Heterogeneous cell-to-cell expression of PR isoforms occurred prior to overall predominant expression of one isoform in premalignant breast lesions, demonstrating that loss of control of relative PRA:PRB expression is an early event in the development of breast cancer. PRA:PRB ratios within a breast lesion are likely to be important as both markers and effectors of tumor growth and development, and progressively aberrant PR isoform expression may play a role in the etiology of breast cancer.
Collapse
Affiliation(s)
- P A Mote
- Westmead Institute for Cancer Research, University of Sydney, Westmead Hospital, NSW, Australia.
| | | | | | | |
Collapse
|
12
|
Mote PA, Johnston JF, Manninen T, Tuohimaa P, Clarke CL. Detection of progesterone receptor forms A and B by immunohistochemical analysis. J Clin Pathol 2001; 54:624-30. [PMID: 11477119 PMCID: PMC1731503 DOI: 10.1136/jcp.54.8.624] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIM The measurement of progesterone receptors (PR) is recommended as part of the clinical management of breast and endometrial cancers, and immunohistochemistry on formalin fixed tissue is now the method of choice. PR is expressed as two isoforms, PRA and PRB, and although both these proteins are expressed in hormone dependent cancers, there is evidence that a large proportion of tumours express a predominance of one isoform. Therefore, it is essential to document the individual detection of PRA and PRB by the presently available anti-PR antibodies. The aim of this study is to investigate the detection of PR isoforms A and B in formalin fixed, paraffin wax embedded cell lines and tissue sections by immunohistochemistry, using a panel of commercial and in house antibodies to human PR. METHODS PR negative cell lines stably transfected to express only PRA (MCF-7Mll/PRA) or PRB (MDA-MB-231/PRB), and tissue sections of human breast carcinoma and normal endometrium were stained using an immunoperoxidase method. A panel of primary PR specific antibodies was evaluated for ability to detect both PRA and PRB proteins, and for intensity and distribution of positive staining under optimal conditions. RESULTS Of the 11 antibodies assessed, only four recognised PRA and PRB similarly. Six recognised PRA proteins but were unable to detect PRB expression in the cell lines expressing only PRA or PRB. In tissues expressing high amounts of PRA and PRB, all antibodies tested demonstrated positive PR staining. However, in tissues expressing a predominance of PRB, differential staining patterns were observed, with variations in staining intensity and in the proportion of cells positive for PR. CONCLUSIONS Most PR specific antibodies tested failed to detect PRB in formalin fixed tissue by immunohistochemical techniques, despite their ability to do so by immunoblot analysis. These observations suggest that there are conformational differences between PRA and PRB that mask epitopes on the PRB protein recognised by most anti-PR antibodies. The selection of antibodies that recognise both PRB and PRA in formalin fixed tissue is essential for the accurate evaluation of PR positivity in clinical specimens.
Collapse
Affiliation(s)
- P A Mote
- Westmead Institute for Cancer Research, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia.
| | | | | | | | | |
Collapse
|
13
|
Mote PA, Balleine RL, McGowan EM, Clarke CL. Colocalization of progesterone receptors A and B by dual immunofluorescent histochemistry in human endometrium during the menstrual cycle. J Clin Endocrinol Metab 1999; 84:2963-71. [PMID: 10443705 DOI: 10.1210/jcem.84.8.5928] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human progesterone receptor (PR) is expressed as two isoforms, PRA and PRB, that function as ligand-activated transcription factors. In vitro studies suggest that the isoforms differ functionally and that the relative levels in a target cell may determine the nature and magnitude of response to progesterone. However, it is not known whether the two isoforms are normally coexpressed in vivo. To understand the functional significance of relative PR isoform expression in normal physiology, it is essential to determine whether PRA and PRB are coexpressed in the same cell. This study reports the development of a dual immunofluorescent staining technique to demonstrate PRA and PRB proteins by single cell analysis in the same tissue section of human endometrium during the menstrual cycle. PRA and PRB are coexpressed in target cells of the human uterus. In the glands, PRA and PRB were expressed before subnuclear vacuole formation and glycogenolysis, implicating both isoforms in this process, whereas persistence of PRB during the midsecretory phase suggested its significance in glandular secretion. In the stroma, the predominance of PRA throughout the cycle implicates this isoform in post-ovulatory progesterone-mediated events. These results support the view that PRA and PRB mediate distinct pathways of progesterone action in the glandular epithelium and stroma of the human uterus throughout the menstrual cycle.
Collapse
Affiliation(s)
- P A Mote
- Westmead Institute for Cancer Research, University of Sydney, Westmead Hospital, New South Wales, Australia.
| | | | | | | |
Collapse
|