1
|
Rojekar S, Gholap AD, Togre N, Bhoj P, Haeck C, Hatvate N, Singh N, Vitore J, Dhoble S, Kashid S, Patravale V. Current status of mannose receptor-targeted drug delivery for improved anti-HIV therapy. J Control Release 2024; 372:494-521. [PMID: 38849091 DOI: 10.1016/j.jconrel.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
In the pursuit of achieving better therapeutic outcomes in the treatment of HIV, innovative drug delivery strategies have been extensively explored. Mannose receptors, which are primarily found on macrophages and dendritic cells, offer promising targets for drug delivery due to their involvement in HIV pathogenesis. This review article comprehensively evaluates recent drug delivery system advancements targeting the mannose receptor. We have systematically described recent developments in creating and utilizing drug delivery platforms, including nanoparticles, liposomes, micelles, noisomes, dendrimers, and other nanocarrier systems targeted at the mannose receptor. These strategies aim to enhance drug delivery specificity, bioavailability, and therapeutic efficacy while decreasing off-target effects and systemic toxicity. Furthermore, the article delves into how mannose receptors and HIV interact, highlighting the potential for exploiting this interaction to enhance drug delivery to infected cells. The review covers essential topics, such as the rational design of nanocarriers for mannose receptor recognition, the impact of physicochemical properties on drug delivery performance, and how targeted delivery affects the pharmacokinetics and pharmacodynamics of anti-HIV agents. The challenges of these novel strategies, including immunogenicity, stability, and scalability, and future research directions in this rapidly growing area are discussed. The knowledge synthesis presented in this review underscores the potential of mannose receptor-based targeted drug delivery as a promising avenue for advancing HIV treatment. By leveraging the unique properties of mannose receptors, researchers can design drug delivery systems that cater to individual needs, overcome existing limitations, and create more effective and patient-friendly treatments in the ongoing fight against HIV/AIDS.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Namdev Togre
- Department of Pathology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Priyanka Bhoj
- Department of Pathology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Clement Haeck
- Population Council, , Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, USA
| | - Navnath Hatvate
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Jyotsna Vitore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat 382355, India
| | - Sagar Dhoble
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Snehal Kashid
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat 382355, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
2
|
Mehta N, Pai R. Amalgamation of Nanoparticles within Drug Carriers: A Synergistic Approach or a Futile Attempt? Pharm Nanotechnol 2022; 10:PNT-EPUB-126127. [PMID: 36056844 DOI: 10.2174/2211738510666220902150449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
Abstract
In recent years, nanotechnology has gained much attention from scientists and significant advances in therapeutic potential. Nano-delivery systems have emerged as an effective way in order to improve the therapeutic properties of drugs including solubility, stability, prolongation of half-life as well as promoting the accumulation of drug at the target site. The nanoparticles have also been incorporated into various conventional drug delivery systems. This review study aims to introduce the amalgamation of nanoparticles into drug carriers. To overcome the limitations of single nanoparticles such as toxicity, high instability, rapid drug release as well as limited drug loading capacity, a multi-component system is developed. Liposomes, microparticles, nanofibers, dendrimers etc., are promising drug carriers, having some limitations that can be minimized, and the compilation of nanoparticles synergizes the properties. The amalgamated nanocarriers are used for the diagnostic purpose as well as treatment of various chronic diseases. It also increases the solubility of hydrophobic drugs. However, each system has its advantages and disadvantages based on its physicochemical properties, efficacy, and other parameters. This review details the past and present state of development for the fusion of nanoparticles within drug carriers and from which we identify future research works needed for the same.
Collapse
Affiliation(s)
- Nikhil Mehta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM\\\'s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM\\\'s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| |
Collapse
|
3
|
Fotooh Abadi L, Damiri F, Zehravi M, Joshi R, Pai R, Berrada M, Massoud EES, Rahman MH, Rojekar S, Cavalu S. Novel Nanotechnology-Based Approaches for Targeting HIV Reservoirs. Polymers (Basel) 2022; 14:3090. [PMID: 35956604 PMCID: PMC9370744 DOI: 10.3390/polym14153090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Highly active anti-retroviral therapy (HAART) is prescribed for HIV infection and, to a certain extent, limits the infection's spread. However, it cannot completely eradicate the latent virus in remote and cellular reservoir areas, and due to the complex nature of the infection, the total eradication of HIV is difficult to achieve. Furthermore, monotherapy and multiple therapies are not of much help. Hence, there is a dire need for novel drug delivery strategies that may improve efficacy, decrease side effects, reduce dosing frequency, and improve patient adherence to therapy. Such a novel strategy could help to target the reservoir sites and eradicate HIV from different biological sanctuaries. In the current review, we have described HIV pathogenesis, the mechanism of HIV replication, and different biological reservoir sites to better understand the underlying mechanisms of HIV spread. Further, the review deliberates on the challenges faced by the current conventional drug delivery systems and introduces some novel drug delivery strategies that have been explored to overcome conventional drug delivery limitations. In addition, the review also summarizes several nanotechnology-based approaches that are being explored to resolve the challenges of HIV treatment by the virtue of delivering a variety of anti-HIV agents, either as combination therapies or by actively targeting HIV reservoir sites.
Collapse
Affiliation(s)
- Leila Fotooh Abadi
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune 411026, Maharashtra, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Rohit Joshi
- Precision NanoSystem Inc., Vancouver, BC V6P 6T7, Canada;
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India;
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Agriculture Research Centre, Soil, Water and Environment Research Institute, Giza 3725004, Egypt
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea;
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
4
|
Kim E, Lim EK, Park G, Park C, Lim JW, Lee H, Na W, Yeom M, Kim J, Song D, Haam S. Advanced Nanomaterials for Preparedness Against (Re-)Emerging Viral Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005927. [PMID: 33586180 DOI: 10.1002/adma.202005927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 05/24/2023]
Abstract
While the coronavirus disease (COVID-19) accounts for the current global pandemic, the emergence of other unknown pathogens, named "Disease X," remains a serious concern in the future. Emerging or re-emerging pathogens continue to pose significant challenges to global public health. In response, the scientific community has been urged to create advanced platform technologies to meet the ever-increasing needs presented by these devastating diseases with pandemic potential. This review aims to bring new insights to allow for the application of advanced nanomaterials in future diagnostics, vaccines, and antiviral therapies, thereby addressing the challenges associated with the current preparedness strategies in clinical settings against viruses. The application of nanomaterials has advanced medicine and provided cutting-edge solutions for unmet needs. Herein, an overview of the currently available nanotechnologies is presented, highlighting the significant features that enable them to control infectious diseases, and identifying the challenges that remain to be addressed for the commercial production of nano-based products is presented. Finally, to conclude, the development of a nanomaterial-based system using a "One Health" approach is suggested. This strategy would require a transdisciplinary collaboration and communication between all stakeholders throughout the entire process spanning across research and development, as well as the preclinical, clinical, and manufacturing phases.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Shandilya R, Pathak N, Lohiya NK, Sharma RS, Mishra PK. Nanotechnology in reproductive medicine: Opportunities for clinical translation. Clin Exp Reprod Med 2020; 47:245-262. [PMID: 33227186 PMCID: PMC7711096 DOI: 10.5653/cerm.2020.03650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, nanotechnology has revolutionized global healthcare and has been predicted to exert a remarkable effect on clinical medicine. In this context, the clinical use of nanomaterials for cancer diagnosis, fertility preservation, and the management of infertility and other pathologies linked to pubertal development, menopause, sexually transmitted infections, and HIV (human immunodeficiency virus) has substantial promise to fill the existing lacunae in reproductive healthcare. Of late, a number of clinical trials involving the use of nanoparticles for the early detection of reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics have been conducted. However, most of these trials of nanoengineering are still at a nascent stage, and better synergy between pharmaceutics, chemistry, and cutting-edge molecular sciences is needed for effective translation of these interventions from bench to bedside. To bridge the gap between translational outcome and product development, strategic partnerships with the insight and ability to anticipate challenges, as well as an in-depth understanding of the molecular pathways involved, are highly essential. Such amalgamations would overcome the regulatory gauntlet and technical hurdles, thereby facilitating the effective clinical translation of these nano-based tools and technologies. The present review comprehensively focuses on emerging applications of nanotechnology, which holds enormous promise for improved therapeutics and early diagnosis of various human reproductive tract diseases and conditions.
Collapse
Affiliation(s)
- Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neelam Pathak
- School of Life Sciences, University of Rajasthan, Jaipur, India
| | | | - Radhey Shyam Sharma
- Division of Reproductive Biology, Maternal and Child Health, Indian Council of Medical Research, New Delhi, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
6
|
Godbole MD, Sabale PM, Mathur VB. Development of lamivudine liposomes by three-level factorial design approach for optimum entrapment and enhancing tissue targeting. J Microencapsul 2020; 37:431-444. [DOI: 10.1080/02652048.2020.1778806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mangesh D. Godbole
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
- Kamla Nehru College of Pharmacy, Nagpur, India
| | - Prafulla M. Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | | |
Collapse
|
7
|
Khan T, Mayuresh Patkar M, Momin M, Omri A. Macrophage targeted nanocarrier delivery systems in HIV therapeutics. Expert Opin Drug Deliv 2020; 17:903-918. [PMID: 32347124 DOI: 10.1080/17425247.2020.1762565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Human immunodeficiency virus (HIV) targets and modulates the immune system increasing the risk of other associated infections. Highly active antiretroviral therapy (HAART) has significantly improved AIDS-associated morbidity, but has limitations of adverse effects, frequent dosing regimen leading to medical non-adherence. Drug delivery systems that target HIV reservoirs could potentially reduce dose-dependent toxicity and the duration of treatment. The major cellular HIV reservoirs are macrophages and CD4+ T cells with macrophages being responsible for carrying and spreading the virus. The crucial involvement of macrophages in the pathogenesis of HIV infection has led to development of macrophage targeted nanocarrier delivery systems. AREAS COVERED Eradication of viral reservoirs like HIV-infected macrophages has emerged to be a fundamental barrier and challenge for complete eradication of HIV from the immune system. Literature reports several macrophage targeted nanocarrier delivery systems developed as either functionalized or non-functionalized formulations such as liposomes, ethosomes, polymeric nanoparticles, dendrimers, and solid lipid nanoparticles showcasing superior efficacy over the conventional antiretroviral delivery systems. EXPERT OPINION The development of fixed dose combination of antiretroviral drugs into macrophage targeted delivery systems should factor in the inherent plasticity and heterogeneity of macrophages that is dependent on their microenvironment. A rational selection of nanocarriers will facilitate selectivity and enhanced efficacy of antiretroviral drugs accompanied by reduced dosing and toxicity. Such macrophage targeted delivery systems would positively impact the therapeutic outcomes in the management of HIV infection.
Collapse
Affiliation(s)
- Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai, Maharashtra, India
| | - Mayuresh Mayuresh Patkar
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai, Maharashtra, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai, Maharashtra, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University , Sudbury, ON, Canada
| |
Collapse
|
8
|
Kumar L, Verma S, Prasad DN, Bhardwaj A, Vaidya B, Jain AK. Nanotechnology: a magic bullet for HIV AIDS treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 43:71-86. [PMID: 24564348 DOI: 10.3109/21691401.2014.883400] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human immunodeficiency virus (HIV) infection has become devastating in last a few years. Nearly 7400 new infection cases are coming every day. Highly active antiretroviral therapy (HAART), which involves combination of at least three antiretroviral (ARV) drugs, has been used to extend the life span of the HIV-infected patients. HAART has played an important role to reduce mortality rate in the developed countries but in the developing countries condition is still worst with millions of people being infected by this disease. For the improvement of the situation, nanotechnology-based drug system has been explored for the HIV therapeutics. Nanosystems used for HIV therapeutics offer some unique advantage like enhancement of bioavailability, water solubility, stability, and targeting ability of ARV drugs. Main nanotechnology-based systems explored for HIV therapeutics are liposomes, nanoparticles, niosomes, polymeric micelles, and dendrimers. Present manuscript reviews conventional method of HIV therapeutics and recent advances in the field of nanotechnology-based systems for treatment of HIV-AIDS.
Collapse
Affiliation(s)
- Lalit Kumar
- Department of Pharmaceutics, Shivalik College of Pharmacy , Punjab , India
| | | | | | | | | | | |
Collapse
|
9
|
Chopra S, Venkatesan N, Betageri GV. Liposomes as nanocarriers for anti-HIV therapy. Drug Deliv Transl Res 2013; 3:471-8. [DOI: 10.1007/s13346-013-0134-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|