1
|
Kostadinova A, Benkova D, Staneva G, Hazarosova R, Vitkova V, Yordanova V, Momchilova A, Angelova MI, ElZorkany HE, El-Sayed K, Elshoky HA. Chitosan hybrid nanomaterials: A study on interaction with biomimetic membranes. Int J Biol Macromol 2024; 276:133983. [PMID: 39029850 DOI: 10.1016/j.ijbiomac.2024.133983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
This study examined the influence of nanomaterials (NMs) on the organization of membrane lipids and the resulting morphological changes. The cell plasma membrane is heterogeneous, featuring specialized lipid domains in the liquid-ordered (Lo) phase surrounded by regions in the liquid-disordered (Ld) phase. We utilized model membranes composed of various lipids and lipid mixtures in different phase states to investigate the interactions between the NMs and membrane lipids. Specifically, we explored the interactions of pure chitosan (CS) and CS-modified nanocomposites (NCs) with ZnO, CuO, and SiO2 with four lipid mixtures: egg-phosphatidylcholine (EggPC), egg-sphingomyelin/cholesterol (EggSM/Chol), EggPC/Chol, and EggPC/EggSM/Chol, which represent the coexistence of Ld, Lo, and Ld/Lo, respectively. The data show that CS NMs increase the membrane lipid order at glycerol level probed by Laurdan spectroscopy. Additionally, the interaction of CS-based NMs with membranes leads to an increase in bending elasticity modulus, zeta potential, and vesicle size. The lipid order changes are most significant in the highly fluid Ld phase, followed by the Lo/Ld coexistence phase, and are less pronounced in the tightly packed Lo phase. CS NMs induced egg PC vesicle adhesion, fusion, and shrinking. In heterogeneous Lo/Ld membranes, inward invaginations and vesicle shrinking via the Ld phase were observed. These findings highlight mechanisms involved in CS NM-lipid interactions in membranes that mimic plasma membrane heterogeneity.
Collapse
Affiliation(s)
- Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Dayana Benkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Rusina Hazarosova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Victoria Vitkova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | - Vesela Yordanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Miglena I Angelova
- Sorbonne University - Campus Pierre et Marie Curie, Faculty of Science and Engineering, UFR 925 Physics, Paris 75005, France; University Paris Cite - Campus Diderot, Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Paris 75013, France
| | - Heba ElSayed ElZorkany
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt
| | - Kh El-Sayed
- Faculty of Engineering, Galala University, Galala 51745, Egypt.; Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt
| | - Hisham A Elshoky
- Tumor Biology Research Program, Department of Research, Children's Cancer Hospital Egypt 57357, Cairo 11441, Egypt; Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt.
| |
Collapse
|
2
|
Shahsavari Alavijeh M, Rad I, Hatamie S. Magnetic nanocomposite’s mechanism of action during the hyperthermia treatment of the breast cancer. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
3
|
Knowles DB, Shkel IA, Phan NM, Sternke M, Lingeman E, Cheng X, Cheng L, O'Connor K, Record MT. Chemical Interactions of Polyethylene Glycols (PEGs) and Glycerol with Protein Functional Groups: Applications to Effects of PEG and Glycerol on Protein Processes. Biochemistry 2015; 54:3528-42. [PMID: 25962980 DOI: 10.1021/acs.biochem.5b00246] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we obtain the data needed to predict chemical interactions of polyethylene glycols (PEGs) and glycerol with proteins and related organic compounds and thereby interpret or predict chemical effects of PEGs on protein processes. To accomplish this, we determine interactions of glycerol and tetraEG with >30 model compounds displaying the major C, N, and O functional groups of proteins. Analysis of these data yields coefficients (α values) that quantify interactions of glycerol, tetraEG, and PEG end (-CH2OH) and interior (-CH2OCH2-) groups with these groups, relative to interactions with water. TetraEG (strongly) and glycerol (weakly) interact favorably with aromatic C, amide N, and cationic N, but unfavorably with amide O, carboxylate O, and salt ions. Strongly unfavorable O and salt anion interactions help make both small and large PEGs effective protein precipitants. Interactions of tetraEG and PEG interior groups with aliphatic C are quite favorable, while interactions of glycerol and PEG end groups with aliphatic C are not. Hence, tetraEG and PEG300 favor unfolding of the DNA-binding domain of lac repressor (lacDBD), while glycerol and di- and monoethylene glycol are stabilizers. Favorable interactions with aromatic and aliphatic C explain why PEG400 greatly increases the solubility of aromatic hydrocarbons and steroids. PEG400-steroid interactions are unusually favorable, presumably because of simultaneous interactions of multiple PEG interior groups with the fused ring system of the steroid. Using α values reported here, chemical contributions to PEG m-values can be predicted or interpreted in terms of changes in water-accessible surface area (ΔASA) and separated from excluded volume effects.
Collapse
Affiliation(s)
- D B Knowles
- †Department of Biochemistry, ‡Department of Chemistry, and §Program in Biophysics, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Irina A Shkel
- †Department of Biochemistry, ‡Department of Chemistry, and §Program in Biophysics, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Noel M Phan
- †Department of Biochemistry, ‡Department of Chemistry, and §Program in Biophysics, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Matt Sternke
- †Department of Biochemistry, ‡Department of Chemistry, and §Program in Biophysics, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Emily Lingeman
- †Department of Biochemistry, ‡Department of Chemistry, and §Program in Biophysics, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Xian Cheng
- †Department of Biochemistry, ‡Department of Chemistry, and §Program in Biophysics, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Lixue Cheng
- †Department of Biochemistry, ‡Department of Chemistry, and §Program in Biophysics, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Kevin O'Connor
- †Department of Biochemistry, ‡Department of Chemistry, and §Program in Biophysics, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - M Thomas Record
- †Department of Biochemistry, ‡Department of Chemistry, and §Program in Biophysics, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|