1
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Nishijima Y, Cao S, Chabowski DS, Korishettar A, Ge A, Zheng X, Sparapani R, Gutterman DD, Zhang DX. Contribution of K V1.5 Channel to Hydrogen Peroxide-Induced Human Arteriolar Dilation and Its Modulation by Coronary Artery Disease. Circ Res 2016; 120:658-669. [PMID: 27872049 DOI: 10.1161/circresaha.116.309491] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/11/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023]
Abstract
RATIONALE Hydrogen peroxide (H2O2) regulates vascular tone in the human microcirculation under physiological and pathophysiological conditions. It dilates arterioles by activating large-conductance Ca2+-activated K+ channels in subjects with coronary artery disease (CAD), but its mechanisms of action in subjects without CAD (non-CAD) when compared with those with CAD remain unknown. OBJECTIVE We hypothesize that H2O2-elicited dilation involves different K+ channels in non-CAD versus CAD, resulting in an altered capacity for vasodilation during disease. METHODS AND RESULTS H2O2 induced endothelium-independent vasodilation in non-CAD adipose arterioles, which was reduced by paxilline, a large-conductance Ca2+-activated K+ channel blocker, and by 4-aminopyridine, a voltage-gated K+ (KV) channel blocker. Assays of mRNA transcripts, protein expression, and subcellular localization revealed that KV1.5 is the major KV1 channel expressed in vascular smooth muscle cells and is abundantly localized on the plasma membrane. The selective KV1.5 blocker diphenylphosphine oxide-1 and the KV1.3/1.5 blocker 5-(4-phenylbutoxy)psoralen reduced H2O2-elicited dilation to a similar extent as 4-aminopyridine, but the selective KV1.3 blocker phenoxyalkoxypsoralen-1 was without effect. In arterioles from CAD subjects, H2O2-induced dilation was significantly reduced, and this dilation was inhibited by paxilline but not by 4-aminopyridine, diphenylphosphine oxide-1, or 5-(4-phenylbutoxy)psoralen. KV1.5 cell membrane localization and diphenylphosphine oxide-1-sensitive K+ currents were markedly reduced in isolated vascular smooth muscle cells from CAD arterioles, although mRNA or total cellular protein expression was largely unchanged. CONCLUSIONS In human arterioles, H2O2-induced dilation is impaired in CAD, which is associated with a transition from a combined large-conductance Ca2+-activated K+- and KV (KV1.5)-mediated vasodilation toward a large-conductance Ca2+-activated K+-predominant mechanism of dilation. Loss of KV1.5 vasomotor function may play an important role in microvascular dysfunction in CAD or other vascular diseases.
Collapse
Affiliation(s)
- Yoshinori Nishijima
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - Sheng Cao
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - Dawid S Chabowski
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - Ankush Korishettar
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - Alyce Ge
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - Xiaodong Zheng
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - Rodney Sparapani
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - David D Gutterman
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - David X Zhang
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI.
| |
Collapse
|
5
|
Abou-Mohamed GA, Huang J, Oldham CD, Taylor TA, Jin L, Caldwell RB, May SW, Caldwell RW. Vascular and endothelial actions of inhibitors of substance P amidation. J Cardiovasc Pharmacol 2000; 35:871-80. [PMID: 10836720 DOI: 10.1097/00005344-200006000-00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Formation of mature active neuropeptides such as substance P (SP) from their glycine extended precursors entails alpha-amidation of peptide precursors by the sequential enzymatic action of peptidylglycine alpha-monooxygenase (PAM) and peptidylamidoglycolate lyase (PGL). We reported that these two enzymes that can produce mature active neuropeptides are present in cultured bovine aortic endothelial cells (BAECs). We hypothesize that alpha-amidation of peptides occurs in endothelial cells and that these peptides are critically involved in the overall regulation of cardiovascular function. In this study, this hypothesis was tested using specific amidation inhibitors to determine their effects on the actions of SP and its glycine-extended precursor (SP-Gly). We have found that SP and SP-Gly are equipotent in stimulating nitric oxide (NO) release by BAECs. At 10(-5) M, the specific inhibitors of PAM (4-phenyl-3-butenoic acid; PBA) and PGL (5-acetamido-2,4-diketo-6-phenyl-hexanoic acid and its methyl ester) reduced NO basal release by 40, 34, and 45%, respectively. They also reduced the production of NO induced by SP-Gly by 63, 68, and 69%, respectively, but had no effect on NO production in response to either SP or acetylcholine. SP and SP-Gly also were equipotent in relaxing rat aortic segments. The vasorelaxation to SP-Gly was endothelium dependent and inhibited by the NOS antagonist L-nitroarginine methyl ester (L-NAME), but it was not affected by inhibition of prostaglandin synthesis. Inhibitors of both PAM and PGL significantly reduced the vasorelaxing actions of SP-Gly, whereas responses to SP were not affected. A cumulative infusion of PBA into the femoral artery of rabbits, at final concentrations of 2.4, 24, and 240 microM for 20 min each, increased the vascular resistance (VR), indicating the tonic production of vasodilating amidated peptide(s). This effect was maximum at 60 min after infusion (20.5 +/- 4.7 vs. 8.2 +/- 0.7 mm Hg/ml/min; p < 0.05). These results suggest that endothelial cells can produce mature SP from its SP-Gly precursor and that a product of peptide alpha-amidation tonically stimulates endothelial cell NO release to control vascular tone.
Collapse
Affiliation(s)
- G A Abou-Mohamed
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Quignard JF, Félétou M, Edwards G, Duhault J, Weston AH, Vanhoutte PM. Role of endothelial cell hyperpolarization in EDHF-mediated responses in the guinea-pig carotid artery. Br J Pharmacol 2000; 129:1103-12. [PMID: 10725258 PMCID: PMC1571951 DOI: 10.1038/sj.bjp.0703175] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Experiments were performed to identify the potassium channels involved in the acetylcholine-induced endothelium-dependent hyperpolarization of the guinea-pig internal carotid artery. Smooth muscle and endothelial cell membrane potentials were recorded in isolated arteries with intracellular microelectrodes. Potassium currents were recorded in freshly-dissociated smooth muscle cells using patch clamp techniques. 2. In single myocytes, iberiotoxin (0.1 microM)-, charybdotoxin (0.1 microM)-, apamin (0.5 microM)- and 4-aminopyridine (5 mM)-sensitive potassium currents were identified indicating the presence of large- and small-conductance calcium-sensitive potassium channels (BK(Ca) and SK(Ca)) as well as voltage-dependent potassium channels (K(V)). Charybdotoxin and iberiotoxin inhibited the same population of BK(Ca) but a conductance specifically sensitive to the combination of charybdotoxin plus apamin could not be detected. 4-aminopyridine (0. 1 - 25 mM) induced a concentration-dependent inhibition of K(V) without affecting the iberiotoxin- or the apamin-sensitive currents. 3. In isolated arteries, both the endothelium-dependent hyperpolarization of smooth muscle and the hyperpolarization of endothelial cells induced by acetylcholine or by substance P were inhibited by 5 mM 4-aminopyridine. 4. These results indicate that in the vascular smooth muscle cells of the guinea-pig carotid artery, a conductance specifically sensitive to the combination of charybdotoxin plus apamin could not be detected, comforting the hypothesis that the combination of these two toxins should act on the endothelial cells. Furthermore, the inhibition by 4-aminopyridine of both smooth muscle and endothelial hyperpolarizations, suggests that in order to observe an endothelium-dependent hyperpolarization of the vascular smooth muscle cells, the activation of endothelial potassium channels is likely to be required.
Collapse
Affiliation(s)
- J -F Quignard
- Département de Diabétologie, Institut de Recherches Servier, 92150 Suresnes, France
| | - M Félétou
- Département de Diabétologie, Institut de Recherches Servier, 92150 Suresnes, France
- Author for correspondence:
| | - G Edwards
- Division of Physiology, Pharmacology & Toxicology, School of Biological Sciences, University of Manchester, Manchester M13 9PT
| | - J Duhault
- Département de Diabétologie, Institut de Recherches Servier, 92150 Suresnes, France
| | - A H Weston
- Division of Physiology, Pharmacology & Toxicology, School of Biological Sciences, University of Manchester, Manchester M13 9PT
| | - P M Vanhoutte
- Institut de Recherches Internationales Servier, 92410 Courbevoie, France
| |
Collapse
|