1
|
Lin C, Mazzuca MQ, Khalil RA. Increased uterine arterial tone, stiffness and remodeling with augmented matrix metalloproteinase-1 and -7 in uteroplacental ischemia-induced hypertensive pregnancy. Biochem Pharmacol 2024; 228:116227. [PMID: 38643908 PMCID: PMC11410528 DOI: 10.1016/j.bcp.2024.116227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Preeclampsia is a pregnancy-related disorder manifested as hypertensive pregnancy (HTN-Preg) and often fetal growth restriction (FGR), but the mechanisms involved are unclear. We have reported enhanced reactivity of systemic vessels in HTN-Preg rats, but the critical changes in the uterine circulation are less clear. We tested whether HTN-Preg involves localized aberrations in uterine arterial tone, stiffness and remodeling by matrix metalloproteinases (MMPs). Blood pressure (BP) and litter size were recorded in normal pregnant (Preg) rats and Preg rats with reduced uteroplacental perfusion pressure (RUPP). Isolated uterine arteries were placed in a pressure myograph for measuring intrinsic and extrinsic tone and arterial stiffness. Arteries were bathed in normal Krebs solution (2.5 mM Ca2+), Ca2+-free (2 mM EGTA) Krebs, treated with sodium nitroprusside (SNP), or endothelium denuded, then pressurized at 10 mmHg steps from 10 to 110 mmHg, and the % change in diameter was analyzed to measure total (active + passive), active Ca2+-dependent myogenic, passive, and endothelium-dependent tone, respectively. BP was higher and the litter size and pup weight were reduced in RUPP vs Preg rats. In normal Krebs, increasing intraluminal pressure caused smaller increments in diameter in arteries of RUPP vs Preg rats, suggesting greater total vascular tone. Arterial incubation in Ca2+-free Krebs, treatment with SNP or endothelium-removal abolished the differences in vascular tone, and subtraction of each of these components from total vascular tone revealed significant active Ca2+-dependent myogenic, passive, and endothelium-dependent tone, respectively, in RUPP vs Preg rats. The total and passive strain-stress curves were shifted leftward in arteries of RUPP vs Preg rats, indicating increased uterine arterial stiffness. Arterial sections showed decreased lumen/total and increased wall/total area, and immunohistochemistry revealed greater MMP-1 and MMP-7 staining particularly in the media, suggesting uterine arterial remodeling by MMPs in RUPP vs Preg rats. The increased uterine arterial active myogenic, passive, and endothelium-dependent tone, arterial stiffness and remodeling by MMPs would further reduce uterine blood flow and exacerbate uteroplacental ischemia, FGR and HTN-Preg.
Collapse
Affiliation(s)
- Chen Lin
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Marc Q Mazzuca
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
2
|
van Kammen CM, Taal SEL, Wever KE, Granger JP, Lely AT, Terstappen F. Reduced uterine perfusion pressure as a model for preeclampsia and fetal growth restriction in murine: a systematic review and meta-analysis. Am J Physiol Heart Circ Physiol 2024; 327:H89-H107. [PMID: 38758122 PMCID: PMC11380978 DOI: 10.1152/ajpheart.00056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The reduced uterine perfusion pressure (RUPP) model is frequently used to study preeclampsia and fetal growth restriction. An improved understanding of influential factors might improve reproducibility and reduce animal use considering the variability in RUPP phenotype. We performed a systematic review and meta-analysis by searching Medline and Embase (until 28 March, 2023) for RUPP studies in murine. Primary outcomes included maternal blood pressure (BP) or proteinuria, fetal weight or crown-rump length, fetal reabsorptions, or antiangiogenic factors. We aimed to identify influential factors by meta-regression analysis. We included 155 studies. Our meta-analysis showed that the RUPP procedure results in significantly higher BP (MD = 24.1 mmHg; [22.6; 25.7]; n = 148), proteinuria (SMD = 2.3; [0.9; 3.8]; n = 28), fetal reabsorptions (MD = 50.4%; [45.5; 55.2]; n = 42), circulating soluble FMS-like tyrosine kinase-1 (sFlt-1) (SMD = 2.6; [1.7; 3.4]; n = 34), and lower fetal weight (MD = -0.4 g; [-0.47; -0.34]; n = 113. The heterogeneity (variability between studies) in primary outcomes appeared ≥90%. Our meta-regression identified influential factors in the method and time point of BP measurement, randomization in fetal weight, and type of control group in sFlt-1. The RUPP is a robust model considering the evident differences in maternal and fetal outcomes. The high heterogeneity reflects the observed variability in phenotype. Because of underreporting, we observed reporting bias and a high risk of bias. We recommend standardizing study design by optimal time point and method chosen for readout measures to limit the variability. This contributes to improved reproducibility and thereby eventually improves the translational value of the RUPP model.
Collapse
Affiliation(s)
- Caren M van Kammen
- Division of Nanomedicine, Department CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Seija E L Taal
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Kimberley E Wever
- Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joey P Granger
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - A Titia Lely
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Fieke Terstappen
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
3
|
Mazzuca MQ, Buyukcelebi K, Lin C, Khalil RA. Increased Ca 2+-dependent intrinsic tone and arterial stiffness in mesenteric microvessels of hypertensive pregnant rats. Biochem Pharmacol 2023; 208:115353. [PMID: 36435203 PMCID: PMC9877182 DOI: 10.1016/j.bcp.2022.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Preeclampsia is a pregnancy-related hypertensive disorder (HTN-Preg) with unclear mechanisms. We have shown increased vascular reactivity to extrinsic vasoconstrictors in HTN-Preg rats. Here, we test whether microvascular intrinsic tone and arterial stiffness could contribute to HTN-Preg, and examined the underlying cellular mechanisms. On gestational day 19, BP was recorded in normal pregnant (Preg) rats and Preg rats with reduced uterine perfusion pressure (RUPP), and mesenteric microvessels were mounted on a pressure myograph for measurement of intrinsic tone, simultaneous changes in [Ca2+]i (fura-2 340/380 ratio), and arterial stiffness. Arteries were incubated in Ca2+-containing and 0 Ca2+ (2 mM EGTA) Krebs, pressurized at 10 to 110 mmHg in 10 mmHg increments, and the % change in vessel diameter from initial diameter at 10 mmHg was analyzed for measurement of total (active + passive) intrinsic tone and passive intrinsic response, respectively. The passive response was then subtracted from the total intrinsic tone to determine the active myogenic tone. The strain-stress relationship was also constructed as a measure of arterial stiffness. BP was higher in RUPP vs Preg rats. In Ca2+-containing Krebs, increases in intraluminal pressure caused smaller increases in diameter and greater increases in [Ca2+]i in microvessels of RUPP vs Preg rats, suggesting increased Ca2+-dependent myogenic tone. In 0 Ca2+ Krebs, increases in pressure also caused less increases in diameter in microvessels of RUPP vs Preg rats, but with no changes in [Ca2+]i, suggesting changes in the structure and mechanics of the arterial wall. The total and passive strain-stress relationship was shifted to the left in microvessels of RUPP vs Preg rats, suggesting increased arterial wall stiffness. Histology and immunohistochemistry showed greater vascular wall thickness and collagen-I staining in RUPP vs Preg rats, supporting changes in the wall architecture and structural proteins. The increased active myogenic tone and underlying increases in Ca2+ signaling as well as the increased passive intrinsic response, arterial stiffness and collagen-I in the mesenteric microvessels could play a role in the regulation of blood flow to the splanchnic region and the increased vascular resistance and BP in HTN-Preg.
Collapse
Affiliation(s)
- Marc Q Mazzuca
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Kadir Buyukcelebi
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Chen Lin
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
4
|
Hu XQ, Zhang L. Oxidative Regulation of Vascular Ca v1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11122432. [PMID: 36552639 PMCID: PMC9774363 DOI: 10.3390/antiox11122432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Blood pressure is determined by cardiac output and peripheral vascular resistance. The L-type voltage-gated Ca2+ (Cav1.2) channel in small arteries and arterioles plays an essential role in regulating Ca2+ influx, vascular resistance, and blood pressure. Hypertension and preeclampsia are characterized by high blood pressure. In addition, diabetes has a high prevalence of hypertension. The etiology of these disorders remains elusive, involving the complex interplay of environmental and genetic factors. Common to these disorders are oxidative stress and vascular dysfunction. Reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria are primary sources of vascular oxidative stress, whereas dysfunction of the Cav1.2 channel confers increased vascular resistance in hypertension. This review will discuss the importance of ROS derived from NOXs and mitochondria in regulating vascular Cav1.2 and potential roles of ROS-mediated Cav1.2 dysfunction in aberrant vascular function in hypertension, diabetes, and preeclampsia.
Collapse
|
5
|
Morton JS, Levasseur J, Ganguly E, Quon A, Kirschenman R, Dyck JRB, Fraser GM, Davidge ST. Characterisation of the Selective Reduced Uteroplacental Perfusion (sRUPP) Model of Preeclampsia. Sci Rep 2019; 9:9565. [PMID: 31266978 PMCID: PMC6606748 DOI: 10.1038/s41598-019-45959-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/20/2019] [Indexed: 12/03/2022] Open
Abstract
Preeclampsia is a complication of pregnancy characterised by gestational hypertension, proteinuria and/or end organ disease. The reduced uteroplacental perfusion (RUPP) model, via partial occlusion of the lower abdominal aorta, mimics insufficient placental perfusion as a primary causal characteristic of preeclampsia. However, a major limitation of the RUPP model is that perfusion is reduced to the entire hindquarters of the rat resulting in hindlimb ischemia. We hypothesised that clipping the uterine and ovarian arteries in the selective (s)RUPP model would provoke signs of preeclampsia while avoiding systemic ischemia. Sham, RUPP or sRUPP procedures were performed in pregnant Sprague Dawley rats on gestational day (GD)14. On GD21 uterine blood flow was significantly reduced in both the RUPP and sRUPP models while aortic flow was reduced only in RUPP. Both models resulted in increased MAP, increased vascular oxidative stress (superoxide generation), increased pro-inflammatory (RANTES) and reduced pro-angiogenic (endoglin) mediators. Vascular compliance and constriction were unaltered in either RUPP or sRUPP groups. In summary, refinements to the RUPP model simultaneously maintain the characteristic phenotype of preeclampsia and avoid peripheral ischemia; providing a useful tool which may be used to increase our knowledge and bring us closer to a solution for women affected by preeclampsia.
Collapse
Affiliation(s)
- J S Morton
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - J Levasseur
- Faculty of Medicine and Dentistry, Dept. of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - E Ganguly
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Faculty of Medicine and Dentistry, Dept. of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - A Quon
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - R Kirschenman
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - J R B Dyck
- Faculty of Medicine and Dentistry, Dept. of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - G M Fraser
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - S T Davidge
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada. .,Faculty of Medicine and Dentistry, Dept. of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada. .,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
6
|
Sildenafil Therapy Normalizes the Aberrant Metabolomic Profile in the Comt(-/-) Mouse Model of Preeclampsia/Fetal Growth Restriction. Sci Rep 2015; 5:18241. [PMID: 26667607 PMCID: PMC4678899 DOI: 10.1038/srep18241] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia (PE) and fetal growth restriction (FGR) are serious complications of pregnancy, associated with greatly increased risk of maternal and perinatal morbidity and mortality. These complications are difficult to diagnose and no curative treatments are available. We hypothesized that the metabolomic signature of two models of disease, catechol-O-methyl transferase (COMT(-/-)) and endothelial nitric oxide synthase (Nos3(-/-)) knockout mice, would be significantly different from control C57BL/6J mice. Further, we hypothesised that any differences in COMT(-/-) mice would be resolved following treatment with Sildenafil, a treatment which rescues fetal growth. Targeted, quantitative comparisons of serum metabolic profiles of pregnant Nos3(-/-), COMT(-/-) and C57BL/6J mice were made using a kit from BIOCRATES. Significant differences in 4 metabolites were observed between Nos3(-/-) and C57BL/6J mice (p < 0.05) and in 18 metabolites between C57BL/6J and COMT(-/-) mice (p < 0.05). Following treatment with Sildenafil, only 5 of the 18 previously identified differences in metabolites (p < 0.05) remained in COMT(-/-) mice. Metabolomic profiling of mouse models is possible, producing signatures that are clearly different from control animals. A potential new treatment, Sildenafil, is able to normalize the aberrant metabolomic profile in COMT(-/-) mice; as this treatment moves into clinical trials, this information may assist in assessing possible mechanisms of action.
Collapse
|
7
|
Morton JS, Quon A, Cheung PY, Sawamura T, Davidge ST. Effect of sodium tanshinone IIA sulfonate treatment in a rat model of preeclampsia. Am J Physiol Regul Integr Comp Physiol 2014; 308:R163-72. [PMID: 25477421 DOI: 10.1152/ajpregu.00222.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Preeclampsia is a disorder of pregnancy with a significant impact on maternal and fetal health. The complexity of this multifactorial condition has precluded development of effective therapies and, although many potential pathways have been investigated, the etiology still requires clarification. Our group has investigated the scavenger lectin-like oxidized LDL (LOX-1) receptor, which may respond to factors released from the distressed placenta that contribute to the vascular pathologies observed in preeclampsia. Given the known beneficial effects of sodium tanshinone IIA sulfonate (STS; a component of Salvia miltiorrhiza) on vasodilation, reduction of oxidative stress, and lipid profiles, we have investigated its role as a potential treatment strategy. We hypothesized that STS would improve vascular endothelial function and, combined with a reduction in oxidative stress, would improve pregnancy outcomes in a rat model of preeclampsia (reduced uteroplacental perfusion pressure, RUPP). We further hypothesized this may occur via the action of STS on the LOX-1 and/or platelet-activating factor (PAF) receptor axes. The RUPP model increased maternal blood pressure, vascular oxidative stress, and involvement of the vascular PAF receptor. Treatment with STS during pregnancy decreased both oxidative stress and involvement of the PAF receptor; however, it also increased involvement of the LOX-1 receptor, which is in line with the concept that scavenger receptors, such as LOX-1 and PAF, are upregulated in response to ligand binding and/or under pathological conditions. In this model of preeclampsia, however, the vascular actions of STS did not lead to improvements in pregnancy outcome such as fetal biometrics or maternal blood pressure.
Collapse
Affiliation(s)
- Jude S Morton
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Canada
| | - Anita Quon
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Canada
| | - Po-Yin Cheung
- Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Tatsuya Sawamura
- Department of Vascular Physiology, National Cerebral and Cardiovascular Centre Research Institute, Suita, Osaka, Japan; and
| | - Sandra T Davidge
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Canada; Department of Physiology, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Goulopoulou S, Davidge ST. Molecular mechanisms of maternal vascular dysfunction in preeclampsia. Trends Mol Med 2014; 21:88-97. [PMID: 25541377 DOI: 10.1016/j.molmed.2014.11.009] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/26/2014] [Indexed: 12/13/2022]
Abstract
In preeclampsia, as a heterogeneous syndrome, multiple pathways have been proposed for both the causal as well as the perpetuating factors leading to maternal vascular dysfunction. Postulated mechanisms include imbalance in the bioavailability and activity of endothelium-derived contracting and relaxing factors and oxidative stress. Studies have shown that placenta-derived factors [antiangiogenic factors, microparticles (MPs), cell-free nucleic acids] are released into the maternal circulation and act on the vascular wall to modify the secretory capacity of endothelial cells and alter the responsiveness of vascular smooth muscle cells to constricting and relaxing stimuli. These molecules signal their deleterious effects on the maternal vascular wall via pathways that provide the molecular basis for novel and effective therapeutic interventions.
Collapse
Affiliation(s)
- Styliani Goulopoulou
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada; Department of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada.
| |
Collapse
|
9
|
Brennan LJ, Morton JS, Davidge ST. Vascular dysfunction in preeclampsia. Microcirculation 2014; 21:4-14. [PMID: 23890192 DOI: 10.1111/micc.12079] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/22/2013] [Indexed: 12/30/2022]
Abstract
Preeclampsia is a complex disorder which affects an estimated 5% of all pregnancies worldwide. It is diagnosed by hypertension in the presence of proteinuria after the 20th week of pregnancy and is a prominent cause of maternal morbidity and mortality. As delivery is currently the only known treatment, preeclampsia is also a leading cause of preterm delivery. Preeclampsia is associated with maternal vascular dysfunction, leading to serious cardiovascular risk both during and following pregnancy. Endothelial dysfunction, resulting in increased peripheral resistance, is an integral part of the maternal syndrome. While the cause of preeclampsia remains unknown, placental ischemia resulting from aberrant placentation is a fundamental characteristic of the disorder. Poor placentation is believed to stimulate the release of a number of factors including pro- and antiangiogenic factors and inflammatory activators into the maternal systemic circulation. These factors are critical mediators of vascular function and impact the endothelium in distinctive ways, including enhanced endothelial oxidative stress. The mechanisms of action and the consequences on the maternal vasculature will be discussed in this review.
Collapse
Affiliation(s)
- Lesley J Brennan
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
10
|
Mazzuca MQ, Li W, Reslan OM, Yu P, Mata KM, Khalil RA. Downregulation of microvascular endothelial type B endothelin receptor is a central vascular mechanism in hypertensive pregnancy. Hypertension 2014; 64:632-43. [PMID: 24914193 DOI: 10.1161/hypertensionaha.114.03315] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension with an unclear mechanism. Studies have shown endothelial dysfunction and increased endothelin-1 (ET-1) levels in hypertensive pregnancy (HTN-Preg). ET-1 activates endothelin receptor type-A in vascular smooth muscle to induce vasoconstriction, but the role of vasodilator endothelial endothelin receptor type-B (ETBR) in the changes in blood pressure (BP) and vascular function in HTN-Preg is unclear. To test whether downregulation of endothelial ETBR expression/activity plays a role in HTN-Preg, BP was measured in normal pregnancy (Norm-Preg) rats and rat model of HTN-Preg produced by reduction of uteroplacental perfusion pressure (RUPP), and mesenteric microvessels were isolated for measuring diameter, [Ca(2+)]i, and endothelin receptor type-A and ETBR levels. BP, ET-1- and potassium chloride-induced vasoconstriction, and [Ca(2+)]i were greater in RUPP than in Norm-Preg rats. Endothelium removal or microvessel treatment with ETBR antagonist BQ-788 enhanced ET-1 vasoconstriction and [Ca(2+)]i in Norm-Preg, but not RUPP, suggesting reduced vasodilator ETBR in HTN-Preg. The ET-1+endothelin receptor type-A antagonist BQ-123 and the ETBR agonists sarafotoxin 6c and IRL-1620 caused less vasorelaxation and nitrate/nitrite production in RUPP than in Norm-Preg. The nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester reduced sarafotoxin 6c- and IRL-1620-induced relaxation in Norm-Preg but not in RUPP, supporting that ETBR-mediated nitric oxide pathway is compromised in RUPP. Reverse transcription polymerase chain reaction, Western blots, and immunohistochemistry revealed reduced endothelial ETBR expression in RUPP. Infusion of BQ-788 increased BP in Norm-Preg, and infusion of IRL-1620 reduced BP and ET-1 vasoconstriction and [Ca(2+)]i and enhanced ETBR-mediated vasorelaxation in RUPP. Thus, downregulation of microvascular vasodilator ETBR is a central mechanism in HTN-Preg, and increasing ETBR activity could be a target in managing preeclampsia.
Collapse
Affiliation(s)
- Marc Q Mazzuca
- From the Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Wei Li
- From the Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ossama M Reslan
- From the Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Peng Yu
- From the Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Karina M Mata
- From the Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- From the Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
11
|
Abstract
Pregnancy encompasses substantial changes in vascular function to accommodate dramatic increases in blood volume and uteroplacental blood flow to the growing fetus. Despite increased hemodynamics, decreased peripheral resistance results in a reduction in mean arterial blood pressure. Vascular tone, and hence peripheral resistance, is determined by a delicate balance of constrictor and dilator capacities. In the normal physiological response to pregnancy, endothelial-derived hyperpolarization (EDH) has been shown to be a major contributor; both EDH and nitric oxide (NO) are predominantly involved in providing an increased vascular capacity for vasodilation. The ability of EDH and NO to adequately accommodate increased blood volume is tested in pathological states such as placental insufficiency or diabetes and both EDH and NO-dependent mechanisms seem to be impacted in these situations. Pregnancy complications also have an impact on the cardiovascular health of the offspring. In adult offspring born from complicated pregnancies, the data suggest that EDH mechanisms are largely maintained, whereas NO is commonly reduced. A diversity of EDH mechanisms may be useful in providing many targets for potential therapeutic avenues for compromised pregnancies; however, further research delineating the mechanisms of EDH and the interactions of NO and EDH, in normal and pathological pregnancies is required.
Collapse
|
12
|
Matrix Metalloproteinase Enhances Big-Endothelin-1 Constriction in Mesenteric Vessels of Pregnant Rats With Reduced Uterine Blood Flow. Hypertension 2013; 61:488-93. [DOI: 10.1161/hypertensionaha.111.00055] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Wiegman MJ, Van der Graaf AM, Henning RH, Zeeman GG, Buikema H, Faas MM. Structure and function of cerebral and mesenteric resistance arteries in low-dose endotoxin-infused pregnant rats. Pregnancy Hypertens 2013; 3:48-56. [PMID: 26105741 DOI: 10.1016/j.preghy.2012.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 11/18/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Since the cerebrovasculature likely plays a prominent role in the pathophysiology of eclampsia, we assessed the effects of low-dose endotoxin-induced experimental preeclampsia on the function and structure of rat posterior cerebral arteries (PCA) and mesenteric arteries (MA). METHODS Nonpregnant (NP) and pregnant (P) rats were infused with saline (NP-CTL, n=9; P-CTL, n=9) or low-dose endotoxin (NP-endotoxin, n=9; P-endotoxin, n=10). Myogenic activity, pressure of forced dilatation (FD) and structural properties were evaluated in PCA and MA. RESULTS PCA underwent FD between 125 and 150mmHg in P-endotoxin (repeated measures ANOVA vs 75mmHg; P<0.05) and between 150 and 175mmHg in P-CTL and NP animals (repeated measures ANOVA vs 75mmHg; P<0.05). PCA myogenic tone was unaffected by pregnancy or endotoxin, however, pregnancy decreased the MA myogenic tone (P<0.05 vs NP). Passive characteristics of PCA and MA were unaffected by pregnancy or endotoxin. CONCLUSION Low-dose endotoxin-infusion during pregnancy, but not pregnancy alone, decreased the pressure of FD in PCA. This may predispose to cerebral autoregulatory breakthrough and edema formation during increased blood pressure as seen in eclampsia.
Collapse
Affiliation(s)
- Marjon J Wiegman
- School of Behavioral and Cognitive Neurosciences, University of Groningen, University Medical Center Groningen, The Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands; Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands.
| | - Anne Marijn Van der Graaf
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands; Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Gerda G Zeeman
- School of Behavioral and Cognitive Neurosciences, University of Groningen, University Medical Center Groningen, The Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Hendrik Buikema
- Department of Clinical Pharmacology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
14
|
Lectin-Like Oxidized Low-Density Lipoprotein 1 Receptor in a Reduced Uteroplacental Perfusion Pressure Rat Model of Preeclampsia. Hypertension 2012; 59:1014-20. [DOI: 10.1161/hypertensionaha.112.191825] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Li J, LaMarca B, Reckelhoff JF. A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. Am J Physiol Heart Circ Physiol 2012; 303:H1-8. [PMID: 22523250 DOI: 10.1152/ajpheart.00117.2012] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Preeclampsia is defined as new-onset hypertension with proteinuria after 20 wk gestation and is hypothesized to be due to shallow trophoblast invasion in the spiral arteries thus resulting in progressive placental ischemia as the fetus grows. Many animal models have been developed that mimic changes in maternal circulation or immune function associated with preeclampsia. The model of reduced uterine perfusion pressure in pregnant rats closely mimics the hypertension, immune system abnormalities, systemic and renal vasoconstriction, and oxidative stress in the mother, and intrauterine growth restriction found in the offspring. The model has been successfully used in many species; however, rat and primate are the most consistent in comparison of characteristics with human preeclampsia. The model suffers, however, from lack of the ability to study the mechanisms responsible for abnormal placentation that ultimately leads to placental ischemia. Despite this limitation, the model is excellent for studying the consequences of reduced uterine blood flow as it mimics many of the salient features of preeclampsia during the last weeks of gestation in humans. This review discusses these features.
Collapse
Affiliation(s)
- Jing Li
- Women's Health Research Center, Jackson, Mississippi, USA
| | | | | |
Collapse
|
16
|
Reho JJ, Toot JD, Peck J, Novak J, Yun YH, Ramirez RJ. Increased Myogenic Reactivity of Uterine Arteries from Pregnant Rats with Reduced Uterine Perfusion Pressure. Pregnancy Hypertens 2011; 2:106-114. [PMID: 22679605 DOI: 10.1016/j.preghy.2011.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The etiology of preeclampsia remains unknown. However, a contributing factor to this hypertensive disease of pregnancy is a reduction in uterine perfusion pressure resulting in placental ischemia. Uterine arteries may be a major regulator of this process through changes in vascular reactivity and localized blood flow. The reduced uterine perfusion pressure (RUPP) pregnant rat is an established animal model of preeclampsia pathology. Pregnant Sprague Dawley rats were used for this investigation and subjected to RUPP or SHAM surgery on Day 14 of gestation. On Day 21 of gestation, animals were terminated and resistance-caliber uterine arteries were harvested and mounted on a pressurized arteriograph to examine myogenic reactivity, agonist induced vasodilation (methacholine and VEGF), and vasoconstriction (phenylephrine and U-46619). Resistance-caliber uterine arteries from RUPP animals exhibited increased myogenic reactivity and decreased vasodilation (methacholine and VEGF) compared to SHAM uterine arteries (p<0.05). Phenylephrine and U-46619 induced constriction was similar in uterine arteries between RUPP and SHAM rats. These results suggest that resistancecaliber uterine arteries from RUPP pregnant rats are altered to reflect a more constrictive phenotype which may play a role in the development of maternal hypertension demonstrated in these animals and thereby potentially in preeclampsia.
Collapse
Affiliation(s)
- John J Reho
- Program in Integrated Biosciences, The University of Akron, Akron, OH 44325
| | | | | | | | | | | |
Collapse
|