1
|
Xia X, Li G, Dong Q, Wang JW, Kim JE. Endothelial progenitor cells as an emerging cardiovascular risk factor in the field of food and nutrition research: advances and challenges. Crit Rev Food Sci Nutr 2023:1-18. [PMID: 37599627 DOI: 10.1080/10408398.2023.2248506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Dietary modifications can help prevent many cardiovascular disease (CVD) events. Endothelial progenitor cells (EPCs) actively contribute to cardiovascular system maintenance and could function as surrogate markers for evaluating improvement in cardiovascular health resulting from nutritional interventions. This review summarizes the latest research progress on the impact of food and nutrients on EPCs, drawing on evidence from human, animal, and in vitro studies. Additionally, current trends and challenges faced in the field are highlighted. Findings from studies examining cells as EPCs are generally consistent, demonstrating that a healthy diet, such as the Mediterranean diet or a supervised diet for overweight people, specific foods like olive oil, fruit, vegetables, red wine, tea, chia, and nutraceuticals, and certain nutrients such as polyphenols, unsaturated fats, inorganic nitrate, and vitamins, generally promote higher EPC numbers and enhanced EPC function. Conversely, an unhealthy diet, such as one high in sugar substitutes, salt, or fructose, impairs EPC function. Research on outgrowth EPCs has revealed that various pathways are involved in the modulation effects of food and nutrients. The potential of EPCs as a biomarker for assessing the effectiveness of nutritional interventions in preventing CVDs is immense, while further clarification on definition and characterization of EPCs is required.
Collapse
Affiliation(s)
- Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Guannan Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass, Southwest University, Chongqing, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
2
|
Li A, Yan J, Zhao Y, Yu Z, Tian S, Khan AH, Zhu Y, Wu A, Zhang C, Tian XL. Vascular Aging: Assessment and Intervention. Clin Interv Aging 2023; 18:1373-1395. [PMID: 37609042 PMCID: PMC10441648 DOI: 10.2147/cia.s423373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/06/2023] [Indexed: 08/24/2023] Open
Abstract
Vascular aging represents a collection of structural and functional changes in a blood vessel with advancing age, including increased stiffness, vascular wall remodeling, loss of angiogenic ability, and endothelium-dependent vasodilation dysfunction. These age-related alterations may occur earlier in those who are at risk for or have cardiovascular diseases, therefore, are defined as early or premature vascular aging. Vascular aging contributes independently to cardio-cerebral vascular diseases (CCVDs). Thus, early diagnosis and interventions targeting vascular aging are of paramount importance in the delay or prevention of CCVDs. Here, we review the direct assessment of vascular aging by examining parameters that reflect changes in structure, function, or their compliance with age including arterial wall thickness and lumen diameter, endothelium-dependent vasodilation, arterial stiffness as well as indirect assessment through pathological studies of biomarkers including endothelial progenitor cell, lymphocytic telomeres, advanced glycation end-products, and C-reactive protein. Further, we evaluate how different types of interventions including lifestyle mediation, such as caloric restriction and salt intake, and treatments for hypertension, diabetes, and hyperlipidemia affect age-related vascular changes. As a single parameter or intervention targets only a certain vascular physiological change, it is recommended to use multiple parameters to evaluate and design intervention approaches accordingly to prevent systemic vascular aging in clinical practices or population-based studies.
Collapse
Affiliation(s)
- Ao Li
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Jinhua Yan
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Zhenping Yu
- Institute of Translational Medicine, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Shane Tian
- Department of Biochemistry/Chemistry, Ohio State University, Columbus, OH, USA
| | - Abdul Haseeb Khan
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Yuanzheng Zhu
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Andong Wu
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Cuntai Zhang
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi, 330031, People’s Republic of China
| |
Collapse
|
3
|
McIntosh R, Hidalgo M, Lobo J, Dillon K, Szeto A, Hurwitz BE. Circulating endothelial and angiogenic cells predict hippocampal volume as a function of HIV status. J Neurovirol 2023; 29:65-77. [PMID: 36418739 DOI: 10.1007/s13365-022-01101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
Abstract
Circulating endothelial cells (CECs) and myeloid angiogenic cells (MACs) have the capacity to stabilize human blood vessels in vivo. Evidence suggests that these cells are depleted in dementia and in persons living with HIV (PWH), who have a higher prevalence of dementia and other cognitive deficits associated with aging. However, the associations of CECs and MACs with MRI-based measures of aging brain health, such as hippocampal gray matter volume, have not been previously demonstrated. The present study examined differences in these associations in 51 postmenopausal women with and without HIV infection. Gray matter volume was quantified using MRI. CECs and MACs were enumerated using fluorescence-activated cell sorting. Analyses examined the association of these cell counts with left and right hippocampal gray matter volume while controlling for age and hypertension status. The main finding was an interaction suggesting that compared to controls, postmenopausal PWH with greater levels of CECs and MACs had significantly greater hippocampus GMV. Further research is necessary to examine potential underlying pathophysiological mechanisms in HIV infection linking morpho-functional circulatory reparative processes with more diminished hippocampal volume in postmenopausal women.
Collapse
Affiliation(s)
- Roger McIntosh
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA.
- Behavioral Medicine Research Center, University of Miami, Miami, FL, USA.
- Division of Public Health Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Melissa Hidalgo
- Department of Internal Medicine, Broward Health North, Fort Lauderdale, FL, USA
| | - Judith Lobo
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Kaitlyn Dillon
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
| | - Angela Szeto
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
| | - Barry E Hurwitz
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
- Behavioral Medicine Research Center, University of Miami, Miami, FL, USA
- Division of Endocrinology, Diabetes and Metabolism, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
4
|
Relationship of the Circulating Endothelial Progenitor Cells to the Severity of a Coronary Artery Lesion in Unstable Angina. Cardiol Res Pract 2022; 2022:9619626. [PMID: 35847417 PMCID: PMC9277215 DOI: 10.1155/2022/9619626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022] Open
Abstract
The number and function of circulating endothelial progenitor cells (EPCs) decreased in stable coronary artery disease. Nevertheless, there were few studies that explored the variation of EPC and the relationship with the severity of coronary artery lesions in unstable angina (UA). Therefore, this leaves an area for the investigation of the difference in the number and activity of circulating EPCs and the relationship with the Gensini score in unstable angina. Fluorescence-activated cell sorter analysis, as well as DiI-acLDL and lectin fluorescent staining measure the number of circulating EPCs. The transwell chamber assay and MTT were evaluated by the migration and proliferation of circulating EPCs. In addition, the flow-mediated dilation (FMD), Gensini score, and IL-6 levels in plasma were determined. We found that UA patients had the higher number and lower function of circulating EPCs. With the increase in severity of coronary artery lesions, the migration and proliferation of EPCs were decreased. Moreover, the function of the circulating EPCs was negatively associated with severity of coronary artery lesions in unstable angina. In addition, UA patients presented elevated IL-6, which was negatively correlated with the function of circulating EPCs and FMD and positively correlated with the severity of coronary artery lesions evaluated by the Gensini score. These findings revealed the decline in the function of circulating EPCs was associated with the severity of coronary artery disease, which may be related to systemic inflammation.
Collapse
|
5
|
Aging-Related Endothelial Progenitor Cell Dysfunction and Its Association with IL-17 and IL-23 in HFmrEF Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2281870. [PMID: 35795858 PMCID: PMC9251143 DOI: 10.1155/2022/2281870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022]
Abstract
Background Aging is an independent risk factor for heart failure (HF), and endothelial progenitor cell (EPC) function decreases with aging. Here, we further investigated whether age has a detrimental effect on circulating EPC function in HF with mildly reduced ejection fraction (HFmrEF) and its relationship with systemic inflammation. Methods 58 HFmrEF patients were recruited. The adhesive, migrative, and proliferative activities of circulating EPCs, MAGGIC scores, and plasma interleukin (IL)-17 and IL-23 levels of these patients were assessed. Results Older patients with HFmrEF had higher MAGGIC scores and lower circulating EPC adhesion, migration, and proliferation than younger patients. The similar tendency was observed in plasma IL-17 and IL-23 levels. The EPC functions were negatively associated with MAGGIC scores and plasma IL-17 or IL-23 levels. Conclusions In patients with HFmrEF, aging leads to attenuated circulating EPC function, which is correlated with disease severity and systemic inflammation. The present investigation provides some novel insights into the mechanism and intervention targets of HFmrEF.
Collapse
|
6
|
Endothelial progenitor cells predict vascular damage progression in naive hypertensive patients according to sex. Hypertens Res 2021; 44:1451-1461. [PMID: 34471254 DOI: 10.1038/s41440-021-00716-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Low levels of endothelial progenitor cells (EPCs) are associated with cardiovascular (CV) morbidity and mortality. Early indicators of vascular damage represent independent predictors of CV prognosis. The aim of this study was to evaluate the possible association of EPCs and circulating cytokine levels with vascular damage markers in naive hypertensive patients according to sex and to evaluate the role of EPCs in vascular damage progression. We enrolled 60 subjects; circulating EPCs were determined by cytometric analysis, and serum cytokines were determined by chemiluminescence microarray technology. Endothelial function was estimated with the measurement of the reactive hyperemia index (RHI), arterial stiffness (AS) was evaluated with the measurement of carotid-femoral pulse wave velocity (PWV) and carotid intima-media thickness (IMT) was determined by a high-resolution ultrasound B-mode system. Patients were evaluated at baseline and after an average follow-up of 3.0 ± 0.6 years. RHI was correlated with EPCs and inversely related to HOMA, TNF-α, IL-6, hs-CRP, and IL-1β. PWV was positively correlated with HOMA, TNF-α, IL-6, IL-1β, and hs-CRP, and it was inversely related to EPCs. An inverse relationship was observed between c-IMT and EPCs and e-GFR. EPCs were the major predictor of the RHI and PWV. After adjustment for vascular index basal values and the other covariates, EPCs explained 17.0%, 27.7%, and 10.6% of the variability in ΔRHI, ΔPWV, and Δc-IMT at follow-up, respectively. Our study results support the hypothesis of an etiological link between circulating EPCs and morphofunctional vascular parameters in hypertensive subjects. Of interest, circulating EPCs, after adjusting for possible confounding factors, may indicate vascular damage progression.
Collapse
|
7
|
Zeng L, Zhang C, Zhu Y, Liu Z, Liu G, Zhang B, Tu C, Yang Z. Hypofunction of Circulating Endothelial Progenitor Cells and Aggravated Severity in Elderly Male Patients With Non-ST Segment Elevation Myocardial Infarction: Its Association With Systemic Inflammation. Front Cardiovasc Med 2021; 8:687590. [PMID: 34222381 PMCID: PMC8247906 DOI: 10.3389/fcvm.2021.687590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Aging patients easily suffer from non-ST segment elevation myocardial infarction (NSTEMI). Our previous studies revealed declined function of endothelial progenitor cells (EPCs) in the elderly. However, the impact of aging on EPC function and severity in male NSTEMI patients and its possible mechanism is unclear until now. Methods: We measured the circulating EPC function including migration, proliferation, and adhesion in aging or young male patients with NSTEMI. The GRACE and TIMI risk score were evaluated. Plasma levels of interleukin-6 (IL-6) and interleukin-17 (IL-17) were also detected in all patients. Results: Compared with the young group, the old male patients with NSTEMI had higher GRACE score and TIMI score and decreased function of circulating EPCs. EPC function was negatively correlated with GRACE score and TIMI score. IL-6 and IL-17 level were higher in the old group than those in the young group. There was a significant negative correlation between EPC function and IL-6 or IL-17. Moreover, IL-6 and IL-17 positively correlated with GRACE and TIMI score. Age was positively related with GRACE or TIMI score and plasma level of IL-6 or IL-17, but inversely correlated with EPC function. Conclusions: The current study firstly illustrates that the age-related decrement in EPC function is related to the severity of NSTEMI in male patients, which may be connected with systemic inflammation. These findings provide novel insights into the pathogenetic mechanism and intervention target of aging NSTEMI.
Collapse
Affiliation(s)
- Lijin Zeng
- Department of Emergency, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission (NHC) Key Laboratory on Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Cong Zhang
- Department of Emergency, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission (NHC) Key Laboratory on Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Yuanting Zhu
- Department of Emergency, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission (NHC) Key Laboratory on Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Zhihao Liu
- Department of Emergency, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gexiu Liu
- School of Basic Medicine and Public Health Medicine, Institute for Hematology, Jinan University, Guangzhou, China
| | - Bin Zhang
- Department of Cardiovascular Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China.,Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Chang Tu
- Department of Cardiovascular Disease, The Third People's Hospital of Dongguan, Dongguan, China
| | - Zhen Yang
- Department of Emergency, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission (NHC) Key Laboratory on Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Zhang B, Li D, Liu G, Tan W, Zhang G, Liao J. Impaired activity of circulating EPCs and endothelial function are associated with increased Syntax score in patients with coronary artery disease. Mol Med Rep 2021; 23:321. [PMID: 33760184 PMCID: PMC7974324 DOI: 10.3892/mmr.2021.11960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
It has previously been shown that the number of endothelial progenitor cells (EPCs) is negatively correlated with Syntax score in patients with coronary artery disease (CAD). However, the association between alterations in EPC function and Syntax score is still unknown. The present study evaluated the association between the activity of EPCs as well as endothelial function and Syntax score in patients with CAD and investigated the underlying mechanisms. A total of 60 patients with CAD were enrolled in 3 groups according to Syntax score, and 20 healthy subjects were recruited as the control group. The number and migratory, proliferative and adhesive activities of circulating EPCs were studied. The endothelial function was measured by flow-mediated dilatation (FMD) and the levels of nitric oxide (NO) in plasma or secreted by EPCs were detected. The number and activity of circulating EPCs were lower in patients with a high Syntax score, which was similar to the alteration in FMD. The level of NO in plasma or secreted by EPCs also decreased as Syntax score increased. There was a negative association between FMD or circulating EPCs and Syntax score. A similar association was observed between the levels of NO in plasma or secreted by EPCs and Syntax score. Patients with CAD who had a higher Syntax score exhibited lower EPC numbers or activity and weaker endothelial function, which may be associated with attenuated NO production. These findings provide novel surrogate parameters for evaluation of the severity and complexity of CAD.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Cardiovascular Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat‑Sen University, Jiangmen, Guangdong 529030, P.R. China
| | - Dong Li
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat‑Sen University, Jiangmen, Guangdong 529030, P.R. China
| | - Gexiu Liu
- Institute of Hematology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wenfeng Tan
- Department of Cardiovascular Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat‑Sen University, Jiangmen, Guangdong 529030, P.R. China
| | - Gaoxing Zhang
- Department of Cardiovascular Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat‑Sen University, Jiangmen, Guangdong 529030, P.R. China
| | - Jinli Liao
- Division of Emergency Medicine, Department of General Internal Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
9
|
Abstract
Human society is experiencing a serious aging process. Age-related arteriosclerotic cardiovascular diseases (ASCVD) are the most common cause of deaths around the world and bring a huge burden on the whole society. Vascular aging-related pathological alterations of the vasculature play an important role in the pathogenesis of ASCVD and morbidity and mortality of older adults. In this review, we describe the progress of clinical evaluation of vascular aging in humans, including functional evaluation, structural assessment, and cellular molecular markers. The significance of detection for vascular aging is highlighted, and we call for close attention to the evaluation for a better quality of life in the elderly population.
Collapse
|
10
|
Huang Z, Liu Z, Wang K, Ye Z, Xiong Y, Zhang B, Liao J, Zeng L, Zeng H, Liu G, Zhan H, Yang Z. Reduced Number and Activity of Circulating Endothelial Progenitor Cells in Acute Aortic Dissection and Its Relationship With IL-6 and IL-17. Front Cardiovasc Med 2021; 8:628462. [PMID: 33869300 PMCID: PMC8044799 DOI: 10.3389/fcvm.2021.628462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/08/2021] [Indexed: 01/10/2023] Open
Abstract
This study investigates the alteration in function and number of circulating endothelial progenitor cells (EPCs) in patients with aortic dissection (AD), compared with hypertensive patients, and its possible mechanism. Thirty-four patients with acute aortic dissection (AAD) and 20 patients with primary hypertension were involved. Flow cytometry analysis was performed to detect the number of CD34+/KDR+ cells, and acetylated low density lipoprotein (ac-LDL) and lectin fluorescent staining method was applied to test the number of cultured EPCs. In addition, EPC migration and proliferation were measured, and plasma interleukin 6 (IL-6) and interleukin 17 (IL-17) levels were investigated. The number of circulating EPCs in the AAD group was lower than that in the non-AD group, and the proliferation and migration of circulating EPCs in the AAD group were lower than that in the non-AD group. In addition, the number, proliferation, and migration of circulating EPCs were significantly inversely correlated with the aortic dissection detection risk score (ADD-RS). More importantly, increased plasma IL-6 and IL-17 level was found in the AAD group, and the two inflammatory factors were inversely associated with the function and number of circulating EPCs in the AAD group. We first demonstrated that the number and function of circulating EPCs are reduced in the AAD group, which may be partly related to upregulated plasma IL-6 and IL-17. Our study provides novel insight on the underlying mechanism and potential therapeutic target of AAD.
Collapse
Affiliation(s)
- Zhenhua Huang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihao Liu
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Keke Wang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zi Ye
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Xiong
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Zhang
- Department of Cardiovascular Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Jinli Liao
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lijing Zeng
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haitao Zeng
- Department of Reproductive Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gexiu Liu
- School of Basic Medicine and Public Health Medicine, Institute for Hematology, Jinan University, Guangzhou, China
| | - Hong Zhan
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhen Yang
| | - Zhen Yang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Hong Zhan
| |
Collapse
|
11
|
Liu Y, Huang X, Chen D, Chen F, Mo C, Guo Y, Xie C, Liu G, Zeng H, Sun Y, Yang Z. The detrimental qualitative and quantitative alterations of circulating endothelial progenitor cells in patients with bronchiectasis. Respir Med 2020; 176:106270. [PMID: 33302144 DOI: 10.1016/j.rmed.2020.106270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Bronchiectasis is an independent risk factor for cardiovascular disease(CVD)and cardiac dysfunction. Endothelial progenitor cells (EPCs) play a crucial role in maintaining endothelial function, and is inversely correlated with cardiovascular risk factors or cardiac dysfunction. However, the relationship between EPCs and bronchiectasis is unknown. METHODS Twenty-nine patients with stable bronchiectasis and 15 healthy controls were recruited. Fasting venous blood were collected for determining circulating EPC number and activity as well as systemic inflammatory cytokines. RESULTS The number and migratory or proliferative activity of circulating EPCs in bronchiectasis patients were significantly reduced (p < 0.001). In high E-FACED group, the number of circulating EPCs evaluated by cell culture assay and EPC proliferation were decreased (p < 0.05). Similarly, the number and function of circulating EPCs were both reduced in low forced expiratory volume in 1 s (FEV1) or high mMRC group (p < 0.05). There was a significant correlation between circulating EPCs and bronchiectasis disease severity, according to the E-FACED score (p < 0.05), particularly to FEV1 (p < 0.05) and mMRC dyspnea score (p < 0.05). The count and activity of EPCs inversely correlated with hsCRP levels and IL-6 levels (p < 0.01). CONCLUSIONS Deficiencies in the number and function of circulating EPCs are present in patients with bronchiectasis. The changes are related to disease severity and may be partly attributed to systemic inflammation. The current findings may provide novel surrogate evaluation biomarkers and potential therapeutic target for bronchiectasis.
Collapse
Affiliation(s)
- Yangli Liu
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, PR China
| | - Xinyan Huang
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, PR China
| | - Dubo Chen
- Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, PR China
| | - Fengjia Chen
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, PR China
| | - Chengqiang Mo
- Department of Urology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, PR China
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, PR China
| | - Canmao Xie
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, PR China
| | - Gexiu Liu
- Institute of Hematology, School of Basic Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Haitao Zeng
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Yunwei Sun
- Guangzhou Development District Hospital, Guangzhou, 510730, Province Guangdong, PR China.
| | - Zhen Yang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, PR China; NHC Key Laboratory on Assisted Circulation, Sun Yat-Sen University, Guangzhou, 510080, PR China.
| |
Collapse
|
12
|
Sesn2 attenuates the damage of endothelial progenitor cells induced by angiotensin II through regulating the Keap1/Nrf2 signal pathway. Aging (Albany NY) 2020; 12:25505-25527. [PMID: 33231566 PMCID: PMC7803511 DOI: 10.18632/aging.104156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/19/2020] [Indexed: 01/19/2023]
Abstract
Endothelial progenitor cell (EPC) dysfunction is an important physiopathological mechanism in the dynamics of the formation of atherosclerosis. It has been reported that angiotensin II (Ang-II) damages the function of EPCs in atherosclerotic plaque through induction of oxidative stress. Sestrin 2 (Sesn2) serves as an antioxidant role in oxidative stress, however, the exact mechanisms underlying the dynamics of how Sesn2 may factor into EPCs after Ang-II treatments needs to be illustrated. We isolated EPCs from human umbilical cord blood samples and treated with Ang-II. Western blotting, qRT-PCR, transwell assays, immunofluorescence and so on were used to investigate the mechanisms underlying the roles of Sesn2 in EPCs treated with Ang-II. Ang-II was found to promote the apoptosis of EPCs as well as inhibited the mRNA and protein expression of Sesn2. Upregulation of Sesn2 attenuated the negative effect of Ang-II. Sesn2 increased the protein expression of Nrf2 by enhancing P62-dependent autophagy. Silencing of Nrf2 enhanced the degree of apoptosis of EPCs as well as resulted in the impairment of EPC functions through inducing the promotion of (reactive oxygen species) ROS production. Our study results indicated that Sesn2 facilitated the viability of EPCs After treatment with Ang-II, as well as provided a potential therapeutic target to alleviate the progression of atherosclerosis.
Collapse
|
13
|
Rejuvenated Circulating Endothelial Progenitor Cells and Nitric Oxide in Premenopausal Women with Hyperhomocysteinemia. Cardiol Res Pract 2020; 2020:5010243. [PMID: 33204526 PMCID: PMC7657675 DOI: 10.1155/2020/5010243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) induced endothelial dysfunction is associated with disturbance in circulating endothelial progenitor cells (EPCs). Nevertheless, whether this unfavorable effect of HHcy on circulating EPCs also exists in premenopausal women is still unknown. Therefore, this leaves an area for the investigation of the difference on the number and activity of circulating EPCs in premenopausal women with hyperhomocysteinemia and its underlying mechanism. The number of circulating EPCs was measured by fluorescence-activated cell sorter analysis, as well as DiI-acLDL and lectin fluorescent staining. The migration and proliferation of circulating were evaluated by the Transwell chamber assay and MTT. Additionally, the endothelial function and levels of nitric oxide (NO), VEGF, and GM-CSF in plasma and culture medium were determined. The number or activity of circulating EPCs and flow-mediated dilatation (FMD) in premenopausal women with or without HHcy were higher than those in postmenopausal women. However, no significant effect of HHcy on the number or activity of circulating EPCs in premenopausal women was observed. A similar alteration in NO level between the four groups was observed. There was a correlation between FMD and the number or activity of EPCs, as well as NO level in plasma or secretion by EPCs. For the first time, our findings illuminated the quantitive or qualitative alterations of circulating EPCs and endothelial function in premenopausal patients with HHcy are preserved, which was associated with retained NO production. The recuperated endothelial repair capacity is possibly the potential mechanism interpreting cardiovascular protection in premenopausal women with HHcy.
Collapse
|
14
|
Fasting Therapy Contributes to the Improvement of Endothelial Function and Decline in Vascular Injury-Related Markers in Overweight and Obese Individuals via Activating Autophagy of Endothelial Progenitor Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3576030. [PMID: 32802124 PMCID: PMC7403908 DOI: 10.1155/2020/3576030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
Background High body mass index- (BMI-) related vascular injury contributes to the pathogenesis of the atherosclerotic cardiovascular disease (ASCVD). Rigorous calorie restriction is one of the major lifestyle interventions to reduce vascular risk in overweight or obese individuals. However, the effects of fasting therapy (FT) on vascular function and the mechanism are still unclear. This study was aimed to investigate the impacts of FT on endothelial function, arterial stiffness, and circulating arterial damage parameters in overweight and obese individuals and possible mechanism. Methods Overweight and obese individuals participated in FT intervention (7-day very low calorie diet). Arterial function including brachial arterial flow-mediated dilation (FMD), brachial-ankle pulse wave velocity (baPWV), vascular injury-related markers including trimethylamine N-oxide (TMAO), and leptin and endothelial microparticles (EMPs) were assessed. Endothelial progenitor cells (EPCs) of these participants were isolated and cultured to investigate EPCs function. mRFP-GFP-LC3 confocal microscopy scanning and western blot were carried out to determine autophagy. Results After FT, body weight and BMI significantly decreased (81.76 ± 12.04 vs. 77.51 ± 12.06 kg, P < 0.01; 29.93 ± 2.82 vs. 28.47 ± 2.83 kg/m2, P < 0.01). FT remarkably improved FMD (5.26 ± 1.34 vs. 6.25 ± 1.60%, P=0.01) while baPWV kept unchanged. TMAO and leptin levels decreased (3.96 ± 1.85 vs. 2.73 ± 1.33 μmol/L, P=0.044; 6814 ± 2639 vs. 3563 ± 2668 μmol/L, P < 0.01). EMPs showed a decreased tendency. EPCs function was significantly improved, autophagy fluorescence intensity was enhanced, and the level of Beclin1, Atg5, LC3 II/I also increased after starvation in vitro, and the effects were blocked by autophagy inhibitor. Conclusions Our present study demonstrated for the first time that FT markedly improves endothelial function and reduces the levels of arterial injury markers through improving EPCs function via activating autophagy. These findings provide a novel insight into FT as a lifestyle intervention strategy to promote the maintenance of vascular homeostasis in overweight or obese individuals. The trial was registered with ChiCTR1900024290.
Collapse
|
15
|
Aliskiren Improved the Endothelial Repair Capacity of Endothelial Progenitor Cells from Patients with Hypertension via the Tie2/PI3k/Akt/eNOS Signalling Pathway. Cardiol Res Pract 2020; 2020:6534512. [PMID: 32566272 PMCID: PMC7275222 DOI: 10.1155/2020/6534512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/21/2020] [Indexed: 12/29/2022] Open
Abstract
Background Studies show that aliskiren exerts favourable effects not only on endothelial progenitor cells (EPCs) but also on endothelial function. However, the mechanism of the favourable effect of aliskiren on EPCs from patients with hypertension is unclear and remains to be further studied. Methods The object of this study was to investigate and assess the in vitro function of EPCs pretreated with aliskiren. After treated with aliskiren, the human EPCs were transplanted into a nude mouse model of carotid artery injury, and the in vivo reendothelialization of injured artery was estimated by staining denuded areas with Evans blue dye via tail vein injection. Results We found that aliskiren increased the in vitro migration, proliferation, and adhesion of EPCs from patients with hypertension in a dose-dependent manner and improved the reendothelialization capability of these EPCs. Furthermore, aliskiren increased the phosphorylation of Tie2, Akt, and eNOS. After the blockade of the Tie2 signalling pathway, the favourable effects of aliskiren on the in vitro function and in vivo reendothelialization capability of EPCs were suppressed. Conclusions This study demonstrates that aliskiren can improve the in vitro function and in vivo reendothelialization capability of EPCs from patients with hypertension via the activation of the Tie2/PI3k/Akt/eNOS signalling pathway. These findings further indicate that aliskiren is an effective pharmacological treatment for cell-based repair in hypertension-related vascular injury.
Collapse
|
16
|
Smoking-Induced Inhibition of Number and Activity of Endothelial Progenitor Cells and Nitric Oxide in Males Were Reversed by Estradiol in Premenopausal Females. Cardiol Res Pract 2020; 2020:9352518. [PMID: 32455001 PMCID: PMC7240658 DOI: 10.1155/2020/9352518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Objectives The number and activity of circulating EPCs were enhanced in premenopausal women contrast to postmenopausal females and age-matched males. Here, we investigated whether this favorable effect exists in premenopausal women and age-matched men with cigarette smoking. Methods In a cross-sectional study, the number and activity of circulating EPCs and nitric oxide production (NO) as well as flow-mediated vasodilation (FMD) in both premenopausal women and age-matched men with or without cigarette smoking were studied. Results Compared with age-matched men with or without smoking, the number and function of circulating EPCs as well as NO level in premenopausal women were obviously higher than that in the former and not affected by smoking. The number and function of circulating EPCs as well as NO level in male smokers were shown to be the most strongly inhibited. Furthermore, there was significant correlation between EPC number and activity, plasma NO level, and NO secretion by EPCs and FMD. Conclusions Estradiol was deemed to play an important role in enhancing the number and activity of EPCs and NO production in premenopausal women even when affected by smoking, which may be the important mechanisms underlying vascular protection of estradiol in premenopausal women, but not in age-matched men.
Collapse
|
17
|
Elevated GTP Cyclohydrolase I Pathway in Endothelial Progenitor Cells of Overweight Premenopausal Women. Cardiol Res Pract 2020; 2020:5914916. [PMID: 32377428 PMCID: PMC7199531 DOI: 10.1155/2020/5914916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022] Open
Abstract
Background/Aims. Sexual differences exist in endothelial progenitor cells (EPCs), and various cardiovascular risk factors are associated with the preservation of endothelial function in premenopausal women. However, it is unclear whether differences in endothelial function and circulating EPCs exist between overweight premenopausal women and age-matched men. Methods. We compared EPC counting and functions in normal-weight and overweight premenopausal women and men, evaluated endothelial function in each group, and detected the expression of the guanosine triphosphate cyclohydrolase I (GTPCH I) pathway. Results. The number of EPCs was lower in the male group than in the female group, regardless of normal-weight or overweight status, and there was no significant difference between the different weight groups among females or males. Endothelial function and EPC migration and proliferation were preserved in overweight premenopausal women compared with overweight men as were nitric oxide (NO) levels in plasma and secreted by EPCs. Endothelial function, the circulating EPC population, and NO levels were not different between normal-weight and overweight premenopausal women. Flow-mediated dilatation was significantly correlated with EPC function, plasma NO levels, and EPC-secreted NO. Conclusions. This investigation provides the first evidence for sex-based differences in EPC activity and endothelial function in overweight middle-aged individuals; these differences are associated with alterations in NO production and may partly occur through downregulation of the GTPCH I pathway. The present results provide new insights into the mechanism underlying the preserved endothelial function in overweight premenopausal women and may uncover a potential therapeutic target for endothelial repair in overweight population.
Collapse
|
18
|
Shear Stress Triggers Angiogenesis of Late Endothelial Progenitor Cells via the PTEN/Akt/GTPCH/BH4 Pathway. Stem Cells Int 2020; 2020:5939530. [PMID: 32399044 PMCID: PMC7210539 DOI: 10.1155/2020/5939530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background Shear stress is an effective modulator of endothelial progenitor cells (EPCs) and has been suggested to play an important role in angiogenesis. The phosphatase and tensin homolog (PTEN)/Akt and guanosine triphosphate cyclohydrolase (GTPCH)/tetrahydrobiopterin (BH4) pathways regulate the function of early EPCs. However, the role of these pathways in the shear stress-induced angiogenesis of late EPCs remains poorly understood. Therefore, we aim to investigate whether shear stress could upregulate the angiogenesis capacity of late EPCs and to further explore the possible underlying mechanisms. Methods Late EPCs were subjected to laminar shear stress (LSS), and their in vitro migration, proliferation, and tube formation capacity were determined. In addition, the in vivo angiogenesis capacity was explored, along with the expression of molecules involved in the PTEN/Akt and GTPCH/BH4 pathways. Results LSS elevated the in vitro activities of late EPCs, which were accompanied by downregulated PTEN expression, accelerated Akt phosphorylation, and GTPCH/BH4 pathway activation (all P < 0.05). Following Akt inhibition, LSS-induced upregulated GTPCH expression, BH4, and NO level of EPCs were suppressed. LSS significantly improved the migration, proliferation, and tube formation ability (15 dyn/cm2 LSS vs. stationary: 72.2 ± 5.5 vs. 47.3 ± 7.3, 0.517 ± 0.05 vs. 0.367 ± 0.038, and 1.664 ± 0.315 vs. 1 ± 0, respectively; all P < 0.05) along with the in vivo angiogenesis capacity of late EPCs, contributing to the recovery of limb ischemia. These effects were also blocked by Akt inhibition or GTPCH knockdown (P < 0.05, respectively). Conclusions This study provides the first evidence that shear stress triggers angiogenesis in late EPCs via the PTEN/Akt/GTPCH/BH4 pathway, providing a potential nonpharmacologic therapeutic strategy for promoting angiogenesis in ischemia-related diseases.
Collapse
|
19
|
Lin L, Zhang L, Li XT, Ji JK, Chen XQ, Li YL, Li C. Rhynchophylline Attenuates Senescence of Endothelial Progenitor Cells by Enhancing Autophagy. Front Pharmacol 2020; 10:1617. [PMID: 32047439 PMCID: PMC6997466 DOI: 10.3389/fphar.2019.01617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/11/2019] [Indexed: 12/25/2022] Open
Abstract
The increase of blood pressure accelerates endothelial progenitor cells (EPCs) senescence, hence a significant reduction in the number of EPCs is common in patients with hypertension. Autophagy is a defense and stress regulation mechanism to assist cell homeostasis and organelle renewal. A growing number of studies have found that autophagy has a positive role in repairing vascular injury, but the potential mechanism between autophagy and senescence of EPCs induced by hypertension has rarely been studied. Therefore, in this study, we aim to explore the relationship between senescence and autophagy, and investigate the protective effect of rhynchophylline (Rhy) on EPCs. In angiotensin II (Ang II)-treated EPCs, enhancing autophagy through rapamycin mitigated Ang II-induced cell senescence, on the contrary, 3-methyladenine aggravated the senescence by weakening autophagy. Similarly, Rhy attenuated senescence and improved cellular function by rescuing the impaired autophagy in Ang II-treated EPCs. Furthermore, we found that Rhy promoted autophagy by activating AMP-activated protein kinase (AMPK) signaling pathway. Our results show that enhanced autophagy attenuates EPCs senescence and Rhy rescues autophagy impairment to protect EPCs against Ang II injury.
Collapse
Affiliation(s)
- Lin Lin
- Institute of Traditional Chinese Medicine Innovation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- The First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin-Tong Li
- Institute of Education and Psychological Sciences, University of Jinan, Jinan, China
| | - Jing-Kang Ji
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Qing Chen
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun-Lun Li
- Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Institute of Traditional Chinese Medicine Innovation, Shandong University of Traditional Chinese Medicine, Jinan, China.,Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
Molecular Mechanisms of Cardiac Remodeling and Regeneration in Physical Exercise. Cells 2019; 8:cells8101128. [PMID: 31547508 PMCID: PMC6829258 DOI: 10.3390/cells8101128] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
Regular physical activity with aerobic and muscle-strengthening training protects against the occurrence and progression of cardiovascular disease and can improve cardiac function in heart failure patients. In the past decade significant advances have been made in identifying mechanisms of cardiomyocyte re-programming and renewal including an enhanced exercise-induced proliferational capacity of cardiomyocytes and its progenitor cells. Various intracellular mechanisms mediating these positive effects on cardiac function have been found in animal models of exercise and will be highlighted in this review. 1) activation of extracellular and intracellular signaling pathways including phosphatidylinositol 3 phosphate kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), EGFR/JNK/SP-1, nitric oxide (NO)-signaling, and extracellular vesicles; 2) gene expression modulation via microRNAs (miR), in particular via miR-17-3p and miR-222; and 3) modulation of cardiac cellular metabolism and mitochondrial adaption. Understanding the cellular mechanisms, which generate an exercise-induced cardioprotective cellular phenotype with physiological hypertrophy and enhanced proliferational capacity may give rise to novel therapeutic targets. These may open up innovative strategies to preserve cardiac function after myocardial injury as well as in aged cardiac tissue.
Collapse
|
21
|
Zhang G, Lin X, Shao Y, Su C, Tao J, Liu X. Berberine reduces endothelial injury and arterial stiffness in spontaneously hypertensive rats. Clin Exp Hypertens 2019; 42:257-265. [PMID: 31220947 DOI: 10.1080/10641963.2019.1632339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Changes in circulating endothelial microparticles (EMPs) and endothelial progenitor cells (EPCs) are considered as a new perspective reflection of the endothelial injury and repair status. Our previous studies have demonstrated that berberine improved endothelial function and arterial stiffness in healthy subjects. In this study, we further investigated the effects of berberine on regulating the circulating EMPs and EPCs, and preventing endothelial dysfunction and arterial stiffness in spontaneously hypertensive rats (SHRs). Methods: Twenty male SHRs were randomly divided into two groups: Berberine-treated SHR group and vehicle-treated SHR group. The SHR rats were intragastrically treated with physiologic saline, berberine 50 mg/kg.d or vehicle for 4 weeks, respectively. Ten male Wistar-Kyoto (WKY) rats treated with vehicle served as normotensive controls. Tail systolic blood pressure was monitored every 2 weeks. At the end of the study, aortic pulse wave velocity (aPWV) was measured in vivo, and aorta were collected for measurement of endothelium-dependent vasodilation and immunohistological staining of elastic fiber. Peripheral blood was collected for circulating EMP detection and EPC culture. Results: Compared to normotensive rats, hypertensive rats displayed significantly higher circulating CD31+/CD42- MPs, lower number and colony-forming units (CFUs) of EPCs, worse endothelium-dependent vasodilation, and faster aPWV. Berberine treatment in SHRs partly reduced the blood pressure and circulating EMPs, and augmented EPC numbers and CFUs. In addition, berberine preserved arterial elasticity by lowering aPWV and increasing the content of arterial media elastin fiber, and improved endothelial function by maintaining better endothelium-dependent vasodilation. Robust relationship was observed among circulating CD31+/CD42- MPs, EPC numbers and aPWV. Conclusions: Abnormal changes of circulating EMPs and EPCs in SHRs are associated with endothelial dysfunction and arterial stiffness. Berberine may be a novel therapeutic option for the hypertension-related vascular injury in SHRs.
Collapse
Affiliation(s)
- Gaoxing Zhang
- Department of Cardiology, The Jiangmen Central Hospital, Jiangmen, China
| | - Xiufang Lin
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yijia Shao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chen Su
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xing Liu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Li Y, Yang X, Ouyang S, He J, Yu B, Lin X, Zhang Q, Tao J. Declined circulating Elabela levels in patients with essential hypertension and its association with impaired vascular function: A preliminary study. Clin Exp Hypertens 2019; 42:239-243. [PMID: 31116039 DOI: 10.1080/10641963.2019.1619756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Elabela (ELA) is a newly identified endogenous ligand of apelin receptor (APJ) which has been confirmed to be implicated in the pathogenesis of hypertension. Previous experiments have revealed the critical role of ELA in eliciting vasodilation and lowering blood pressure. However, the role of plasma ELA levels in hypertensive patients and its relationship with vascular function have not been investigated.Method: Thirty-one patients with essential hypertension (EH) and 31 age-matched healthy subjects as controls were recruited in the study. Plasma ELA concentration and vascular function parameters including brachial artery flow-mediated dilation (FMD) and brachial-ankle pulse wave velocity (baPWV) were measured.Results: We observed remarkably lower plasma ELA concentration in hypertensive patients as compared with controls (1.29 ± 0.56 ng/ml vs. 1.79 ± 0.55 ng/ml; P = 0.001). Linear correlation analysis showed that ELA was negatively correlated with systolic blood pressure (r = -0.388, P = 0.002) and diastolic blood pressure (r = -0.321, P = 0.011) and positively correlated with FMD (r = 0.319, P = 0.011). There was no statistically significant relationship between ELA and baPWV (r = 0.234, P = 0.067). Stepwise multiple linear analysis also identified a close association of plasma ELA levels with endothelial function.Conclusion: The present study demonstrates for the first time that circulating ELA levels are reduced in patients with EH. The fall in endogenous ELA levels may be involved in the pathogenesis of hypertension-related vascular damage.
Collapse
Affiliation(s)
- Yutao Li
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Xulong Yang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shun Ouyang
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Jiang He
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingbo Yu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiufang Lin
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Qunying Zhang
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
23
|
Wu WZ, Hu DJ, Wang ZY, Liao LS, Li CC. Endothelial progenitor cell impairment mediated vasodilation dysfunction via diminishing nitric oxide production in postmenopausal females. Mol Med Rep 2019; 19:2449-2457. [PMID: 30747212 DOI: 10.3892/mmr.2019.9888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/28/2018] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial dysfunction is the major contributing factor to hypertension. Endothelial progenitor cells (EPCs) are essential for endogenous vascular endothelial renovation. The activity and number of circulating EPCs are preserved in prehypertensive premenopausal females according to our previous research. However, the changes of EPCs in prehypertensive postmenopausal females are poorly understood, and the mechanisms responsible for the loss of the gender protection advantage of cardiovascular disease remain unexplored. In order to determine the effects of EPCs in prehypertensive postmenopausal females, the number and activity of circulating EPCs were tested in the present study. Next, the function of EPCs secreting nitric oxide (NO), vascular endothelial growth factor (VEGF) and granulocyte‑macrophage colony‑stimulating factor (GM‑CSF), as well as their concentration in the plasma, were measured. The association between flow‑mediated dilation (FMD) and EPC secretion was also assessed. Attenuation of proliferation and migration of EPCs was observed in prehypertensive patients in comparison with normotensive subjects. In addition, a reduced NO production secreted by EPCs was detected in prehypertensive patients as compared with that in normotensive patients. There was no significant difference in EPC function between postmenopausal females and age‑matched males. Finally, the association between FMD and NO production was validated. Collectively, these data indicated that impaired EPCs mediated vasodilation dysfunction via decreasing NO production. Therefore, EPC function enhancement and NO level augmentation are emerging as novel therapeutic strategies for prehypertension therapy.
Collapse
Affiliation(s)
- Wan-Zhou Wu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Da-Jun Hu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhen-Yu Wang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Long-Sheng Liao
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Chuan-Chang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
24
|
Chronic remote ischemic preconditioning-induced increase of circulating hSDF-1α level and its relation with reduction of blood pressure and protection endothelial function in hypertension. J Hum Hypertens 2019; 33:856-862. [PMID: 30631131 DOI: 10.1038/s41371-018-0151-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 01/28/2023]
Abstract
Although previous data showed that remote ischemic preconditioning (RIPC) has beneficial effect on blood pressure (BP) reduction, the efficacy of RIPC-induced decline in BP and the favorable humoral factors in hypertension is elusive. This present study is performed to evaluate whether RIPC reduces BP, improves microvascular endothelial function and increases circulating hSDF-1α generation in hypertension. Fifteen hypertensive patients received 3 periods of 5-min inflation/deflation of the forearm with a cuff on the upper arm daily for 30 days. Clinic and 24-h ambulatory blood pressure monitoring (ABPM) were examined before and after the end of this procedure. Microvascular endothelial function was measured by finger reactive hyperemia index (RHI) using the Endo-PAT 2000 device. The circulating hSDF-1α level was tested by ELISA. RIPC significantly decreased systolic BP (139.13 ± 6.68 versus 131.45 ± 7.45 mmHg) and diastolic BP (89.67 ± 4.98 versus 83.83 ± 6.65 mmHg), meanwhile 24-h ambulatory systolic and diastolic BP dropped from 136.33 ± 9.10 mmHg to 131.33 ± 7.12 mmHg and 87.60 ± 6.22 mmHg to 82.47 ± 4.47 mmHg respectively. RHI was improved (1.95 ± 0.34 versus 2.47 ± 0.44). Plasma hSDF-1α level was markedly increased after RIPC (1585.86 ± 167.17 versus 1719.54 ± 211.17 pg/ml). The increase in hSDF-1α level was associated with the fall in clinic and 24-h ABPM and rise in RHI. The present data suggests that RIPC may be a novel alternative or complementary intervention means to treat hypertension and protect endothelial function.
Collapse
|
25
|
Liu J, Hu DJ, Yan H, Liu J, Ai X, Ren Z, Zeng H, He H, Yang Z. Attenuated endothelial function is associated with decreased endothelial progenitor cells and nitric oxide in premenopausal diabetic women. Mol Med Rep 2018; 18:4666-4674. [PMID: 30221702 DOI: 10.3892/mmr.2018.9451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
Previous studies have demonstrated that the deleterious effect of diabetes mellitus (DM) on the risk of cardiovascular disease also occurs in premenopausal women, in spite of their relatively high estrogen levels; however, the underlying mechanism remains unclear. The present study aimed to investigate the sex‑related differences in circulating endothelial progenitor cells (EPCs) in a relatively young population with type 2 DM (T2DM) and its underlying mechanism. The number and functional activity of circulating EPCs, and vascular endothelial function assessed using flow‑mediated dilation (FMD), were compared in premenopausal women and age‑matched men with or without T2DM. Nitric oxide (NO) in the plasma or NO secreted by EPCs was also measured. The number and activity of circulating EPCs, and NO levels in the plasma or culture medium, were lower in premenopausal women with T2DM compared with those without T2DM. In addition, the number and activity of circulating EPCs and NO levels were decreased in men with T2DM compared with in age‑matched premenopausal women with T2DM. FMD was positively correlated with the number and activity of circulating EPCs, and NO levels. In conclusion, DM in premenopausal women may significantly impair the repair capability of EPCs and lead to endothelial dysfunction, which may be associated with reduced NO production. In patients with both DM and normal glucose tolerance, sex‑related differences of EPCs are presented in a young population.
Collapse
Affiliation(s)
- Juan Liu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Da-Jun Hu
- Department of Cardiology, The First Hospital of Chenzhou, Chenzhou, Hunan 423000, P.R. China
| | - Huiyang Yan
- Guangzhou Beijing Community Health Service Center, Guangzhou, Guangdong 510080, P.R. China
| | - Jianbin Liu
- Centre for Eye Research Australia, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Xixong Ai
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zi Ren
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Haitao Zeng
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hao He
- Department of Cardiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong 519100, P.R. China
| | - Zhen Yang
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
26
|
Wu TW, Liu CC, Hung CL, Yen CH, Wu YJ, Wang LY, Yeh HI. Genetic profiling of young and aged endothelial progenitor cells in hypoxia. PLoS One 2018; 13:e0196572. [PMID: 29708992 PMCID: PMC5927426 DOI: 10.1371/journal.pone.0196572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Age is a major risk factor for diseases caused by ischemic hypoxia, such as stroke and coronary artery disease. Endothelial progenitor cells (EPCs) are the major cells respond to ischemic hypoxia through angiogenesis and vascular remodeling. However, the effect of aging on EPCs and their responses to hypoxia are not well understood. CD34+ EPCs were isolated from healthy volunteers and aged by replicative senescence, which was to passage cells until their doubling time was twice as long as the original cells. Young and aged CD34+ EPCs were exposed to a hypoxic environment (1% oxygen for 48hrs) and their gene expression profiles were evaluated using gene expression array. Gene array results were confirmed using quantitative polymerase chain reaction, Western blotting, and BALB/c female athymic nude mice hindlimb ischemia model. We identified 115 differentially expressed genes in young CD34+ EPCs, 54 differentially expressed genes in aged CD34+ EPCs, and 25 common genes between normoxia and hypoxia groups. Among them, the expression of solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1) increased the most by hypoxia in young cells. Gene set enrichment analysis indicated the pathways affected by aging and hypoxia most, including genes “response to oxygen levels” in young EPCs and genes involved “chondroitin sulfate metabolic process” in aged cells. Our study results indicate the key factors that contribute to the effects of aging on response to hypoxia in CD34+ EPCs. With the potential applications of EPCs in cardiovascular and other diseases, our study also provides insight on the impact of ex vivo expansion might have on EPCs.
Collapse
Affiliation(s)
- Tzu-Wei Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- * E-mail:
| | - Chun-Chieh Liu
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Chung-Lieh Hung
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Chih-Hsien Yen
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Yih-Jer Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Li-Yu Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Hung-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| |
Collapse
|
27
|
Endothelial progenitor cells and hypertension: current concepts and future implications. Clin Sci (Lond) 2017; 130:2029-2042. [PMID: 27729472 DOI: 10.1042/cs20160587] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
The discovery of endothelial progenitor cells (EPCs), a group of cells that play important roles in angiogenesis and the maintenance of vascular endothelial integrity, has led to considerable improvements in our understanding of the circulatory system and the regulatory mechanisms of vascular homoeostasis. Despite lingering disputes over where EPCs actually originate and how they facilitate angiogenesis, extensive research in the past decade has brought about significant advancements in this field of research, establishing EPCs as an essential element in the pathogenesis of various diseases. EPC and hypertensive disorders, especially essential hypertension (EH, also known as primary hypertension), represent one of the most appealing branches in this area of research. Chronic hypertension remains a major threat to public health, and the exact pathologic mechanisms of EH have never been fully elucidated. Is there a relationship between EPC and hypertension? If so, what is the nature of such relationship-is it mediated by blood pressure alterations, or other factors that lie in between? How can our current knowledge about EPCs be utilized to advance the prevention and clinical management of hypertension? In this review, we set out to answer these questions by summarizing the current concepts about EPC pathophysiology in the context of hypertension, while attempting to point out directions for future research on this subject.
Collapse
|
28
|
Bai YP, Xiao S, Tang YB, Tan Z, Tang H, Ren Z, Zeng H, Yang Z. Shear stress-mediated upregulation of GTP cyclohydrolase/tetrahydrobiopterin pathway ameliorates hypertension-related decline in reendothelialization capacity of endothelial progenitor cells. J Hypertens 2017; 35:784-797. [PMID: 28033126 DOI: 10.1097/hjh.0000000000001216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Guanosine triphosphate cyclohydrolase/tetrahydrobiopterin (GTPCH)/(BH4) pathway has been proved to regulate the function of endothelial progenitor cells (EPCs) in deoxycorticosterone acetate-salt hypertensive mice, indicating that GTPCH/BH4 pathway may be an important repair target for hypertension-related endothelial injury. Shear stress is an important nonpharmacologic strategy to modulate the function of EPCs. Here, we investigated the effects of laminar shear stress on the GTPCH/BH4 pathway and endothelial repair capacity of circulating EPCs in hypertension. METHOD Laminar shear stress was loaded on the human EPCs from hypertensive patients and normotensive patients. The in-vitro function, in-vivo reendothelialization capacity and GTPCH/BH4 pathway of human EPCs were evaluated. RESULTS Both in-vitro function and reendothelialization capacity of EPCs were lower in hypertensive patients than that in normotensive patients. The GTPCH/BH4 pathway of EPCs was downregulated in hypertensive patients. Shear stress increased in-vitro function and reendothelialization capacity of EPCs from hypertensive patients and normotensive patients. Furthermore, shear stress upregulated the expression of GTPCH I and levels of BH4, nitric oxide, and cGMP of EPCs, and reduced thrombospondin-1 expression. With treatment of GTPCH knockdown or nitroarginine methyl ester inhibition, shear stress-induced increased levels of BH4, nitric oxide and cGMP of EPCs was suppressed. When GTPCH/BH4 pathway of EPCs was blocked, the effects of shear stress on in-vitro function and reendothelialization capacity of EPCs were inhibited. CONCLUSION The study demonstrates for the first time that shear stress-induced upregulation of the GTPCH/BH4 pathway ameliorates hypertension-related decline in endothelial repair capacity of EPCs. These findings provide novel nonpharmacologic therapeutic approach for hypertension-related endothelial repair.
Collapse
Affiliation(s)
- Yong-Ping Bai
- aDepartment of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan bDepartment of Neurology, Sun Yat-Sen Memorial Hospital cDepartment of Pharmacology, Zhongshan School of Medicine dDepartment of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University eSun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine fCenter for Reproductive Medicine, The Sixth Affiliated Hospital gDepartment of Hypertension & Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zeng H, Jiang Y, Tang H, Ren Z, Zeng G, Yang Z. Abnormal phosphorylation of Tie2/Akt/eNOS signaling pathway and decreased number or function of circulating endothelial progenitor cells in prehypertensive premenopausal women with diabetes mellitus. BMC Endocr Disord 2016; 16:13. [PMID: 26936372 PMCID: PMC4776390 DOI: 10.1186/s12902-016-0093-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/25/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUNDS The number and activity of circulating endothelial progenitor cells (EPCs) in prehypertension is preserved in premenopausal women. However, whether this favorable effect still exists in prehypertensive premenopausal women with diabetes is not clear. METHODS This study compared the number and functional activity of circulating EPCs in normotensive or prehypertensive premenopausal women without diabetes mellitus and normotensive or prehypertensive premenopausal women with diabetes mellitus, evaluated the vascular endothelial function in each groups, and investigated the possible underlying mechanism. RESULTS We found that compared with normotensive premenopausal women, the number and function of circulating EPCs, as well as endothelial function evaluated by flow-mediated dilatation (FMD) in prehypertensive premenopausal women were preserved. In parallel, the Tie2/Akt/eNOS signaling pathway and the plasma NO level or NO secretion of circulating EPCs in prehypertensive premenopausal women was also retained. However, in presence of normotension or prehypertension with diabetes mellitus, the number or function of circulating EPCs and FMD in premenopausal women decreased. Similarly, the phosphorylation of Tie2/Akt/eNOS signaling pathway and the plasma NO level or NO secretion of circulating EPCs was reduced in prehypertension premenopausal with diabetes mellitus. CONCLUSION The present findings firstly demonstrate that the unfavorable effects of diabetes mellitus on number and activity of circulating EPCs in prehypertension premenopausal women, which is at least partially related to the abnormal phosphorylation of Tie2/Akt/eNOS signaling pathway and subsequently reduced nitric oxide bioavailability. The Tie2/Akt/eNOS signaling pathway may be a potential target of vascular protection in prehypertensive premenopausal women with diabetes mellitus.
Collapse
Affiliation(s)
- Haitao Zeng
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yanping Jiang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China
| | - Hailin Tang
- Cancer Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Zi Ren
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Gaofeng Zeng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Yang
- Department of Hypertension & Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
30
|
Zhen Y, Xiao S, Ren Z, Shen H, Su H, Tang Y, Zeng H. Increased endothelial progenitor cells and nitric oxide in young prehypertensive women. J Clin Hypertens (Greenwich) 2015; 17:298-305. [PMID: 25688720 PMCID: PMC8031957 DOI: 10.1111/jch.12493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/29/2022]
Abstract
This study investigated the effect of sex differences on circulating endothelial progenitor cells (EPCs) in prehypertension and its underlying mechanism. The authors found that premenopausal women show increased number and activity of circulating EPCs when compared with men, which was similar to enhanced nitric oxide (NO) level in plasma or culture medium. There was no difference in the number and activity of circulating EPCs and NO level between normotensive and prehypertensive premenopausal women. There was also no difference seen in levels of vascular endothelial growth factor and granulocyte macrophage colony-stimulating factor. Both number and activity of circulating EPCs were correlated with the level of NO. The present study firstly demonstrated that the number and activity of circulating EPCs were preserved in prehypertensive premenopausal women, which was related to the restoration of NO production. The sex differences in EPCs in prehypertension may be involved in the mechanism underlying vascular protection in premenopausal women.
Collapse
Affiliation(s)
- Yang Zhen
- Department of CardiologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Songhua Xiao
- Department of NeurologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuanzhouChina
| | - Zi Ren
- Department of Obstetrics and GynaecologyGuangdong General HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Hong‐wei Shen
- Department of Obstetrics and GynaecologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacauChina
| | - Yong‐Bo Tang
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Haitao Zeng
- Center for Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
31
|
Tian XL, Li Y. Endothelial cell senescence and age-related vascular diseases. J Genet Genomics 2014; 41:485-95. [PMID: 25269674 DOI: 10.1016/j.jgg.2014.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Advanced age is an independent risk factor for ageing-related complex diseases, such as coronary artery disease, stroke, and hypertension, which are common but life threatening and related to the ageing-associated vascular dysfunction. On the other hand, patients with progeria syndromes suffer from serious atherosclerosis, suggesting that the impaired vascular functions may be critical to organismal ageing, or vice versa. However, it remains largely unknown how vascular cells, particularly endothelial cell, become senescent and how the senescence impairs the vascular functions and contributes to the age-related vascular diseases over time. Here, we review the recent progress on the characteristics of vascular ageing and endothelial cell senescence in vitro and in vivo, evaluate how genetic and environmental factors as well as autophagy and stem cell influence endothelial cell senescence and how the senescence contributes to the age-related vascular phenotypes, such as atherosclerosis and increased vascular stiffness, and explore the possibility whether we can delay the age-related vascular diseases through the control of vascular ageing.
Collapse
Affiliation(s)
- Xiao-Li Tian
- Department of Human Population Genetics and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine (IMM), Peking University, Beijing 100871, China.
| | - Yang Li
- Department of Human Population Genetics and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine (IMM), Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Marketou ME, Kalyva A, Parthenakis FI, Pontikoglou C, Maragkoudakis S, Kontaraki JE, Chlouverakis G, Zacharis EA, Patrianakos A, Papadaki HA, Vardas PE. Circulating endothelial progenitor cells in hypertensive patients with increased arterial stiffness. J Clin Hypertens (Greenwich) 2014; 16:295-300. [PMID: 24641802 PMCID: PMC8031987 DOI: 10.1111/jch.12287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 11/29/2022]
Abstract
The potential association between arterial stiffening and circulating endothelial progenitor cells (EPCs) in patients with essential hypertension was investigated. Pulse wave velocity (PWV) was used to evaluate arterial stiffness in 24 patients with essential hypertension and 19 healthy controls. Blood samples were taken and immunostained with antibodies against the cell surface markers CD34, CD45, and CD133. Using flow cytometry, EPCs as a population of CD45-/CD34+/CD133+ cells were measured. Hypertensive patients were not found to have higher levels of circulating CD45-/CD34+/CD133+ compared with the control group (0.0026%±0.0031% vs 0.0023%±0.0023%, respectively; P=.7). Correlation analysis revealed a strong association between the number of CD45-/CD34+/CD133+ cells and PWV (r=0.58, P<.001), indicating that hypertensive patients with increased PWV have a greater percentage of CD45-/CD34+/CD133+ cells. Data showed a correlation between the number of circulating CD45-/CD34+/CD133+ cells and arterial stiffness, suggesting that those cells might have a role in arterial remodeling.
Collapse
Affiliation(s)
| | - Athanasia Kalyva
- Molecular Cardiology LaboratorySchool of MedicineUniversity of CreteCreteGreece
| | | | | | | | - Joanna E. Kontaraki
- Molecular Cardiology LaboratorySchool of MedicineUniversity of CreteCreteGreece
| | | | | | | | | | - Panos E. Vardas
- Department of CardiologyHeraklion University HospitalCreteGreece
| |
Collapse
|
33
|
Liu X, Zhang GX, Zhang XY, Xia WH, Yang Z, Su C, Qiu YX, Xu SY, Zhan H, Tao J. Lacidipine improves endothelial repair capacity of endothelial progenitor cells from patients with essential hypertension. Int J Cardiol 2013; 168:3317-26. [PMID: 23642821 DOI: 10.1016/j.ijcard.2013.04.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/08/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) play a critical role in maintaining the integrity of vascular endothelium following arterial injury. Lacidipine has a beneficial effect on endothelium of hypertensive patients, but limited data are available on EPCs-mediated endothelial protection. This study tests the hypothesis that lacidipine treatment can improve endothelial repair capacity of EPCs from hypertensive patients through increasing CXC chemokine receptor four (CXCR4) signaling. METHODS In vivo reendothelialization capacity of EPCs from hypertensive patients with or without in vitro lacidipine treatment was examined in a nude mouse model of carotid artery injury. Expression of CXCR4 and alteration in migration and adhesion functions of EPCs were evaluated. RESULTS Basal CXCR4 expression was markedly reduced in EPCs from hypertensive patients compared with normal subjects. In parallel, the phosphorylation of Janus kinase-2 (JAK-2) of EPCs, a CXCR4 downstream signaling, was also significantly decreased. Lacidipine promoted CXCR4/JAK-2 signaling expression of in vitro EPCs. Transplantation of EPCs pretreated with lacidipine significantly accelerated in vivo reendothelialization. The enhanced in vitro function and in vivo reendothelialization capacity of EPCs were inhibited by shRNA-mediated knockdown of CXCR4 expression or pretreatment with JAK-2 inhibitor AG490, respectively. In hypertensive patients, lacidipine treatment for 4 weeks also resulted in an upregulation of CXCR4/JAK-2 signaling of EPCs, which was associated with augmented EPCs-mediated reendothelialization and improved endothelial function. CONCLUSION Deterioration of CXCR4 signaling may lead to impaired EPCs-mediated reendothelialization of hypertensive patients. Lacidipine-modified EPCs via a partially CXCR4 signaling contribute to enhanced endothelial repair capacity in hypertension.
Collapse
Affiliation(s)
- Xing Liu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Department of Cardiovascular Disease, The Jiangmen Central Hospital, Jiangmen 529030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Protopsaltis I, Foussas S, Angelidi A, Gritzapis A, Sergentanis TΝ, Matsagos S, Tzirogiannis K, Panoutsopoulos GI, Dimitriadis G, Raptis S, Melidonis A. Impact of ADMA, endothelial progenitor cells and traditional cardiovascular risk factors on pulse wave velocity among prediabetic individuals. Cardiovasc Diabetol 2012; 11:141. [PMID: 23153108 PMCID: PMC3527304 DOI: 10.1186/1475-2840-11-141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/11/2012] [Indexed: 12/14/2022] Open
Abstract
Background Central arterial stiffness represents a well-established predictor of cardiovascular disease. Decreased circulating endothelial progenitor cells (EPCs), increased asymmetric dimethyl-arginine (ADMA) levels, traditional cardiovascular risk factors and insulin resistance have all been associated with increased arterial stiffness. The correlations of novel and traditional cardiovascular risk factors with central arterial stiffness in prediabetic individuals were investigated in the present study. Methods The study population consisted of 53 prediabetic individuals. Individuals were divided into groups of isolated impaired fasting glucose (IFG), isolated impaired glucose tolerance (IGT) and combined IGT-IFG. Age, sex, family history of diabetes, smoking history, body mass index (BMI), waist to hip ratio (WHR), waist circumference (WC), blood pressure, lipid profile, levels of high sensitive C-reactive protein (hsCRP), glomerular filtration rate (GFR), and history of antihypertensive or statin therapy were obtained from all participants. Insulin resistance was evaluated using the Homeostatic Model Assessment (HOMA-IR). Carotid -femoral pulse wave velocity was used as an index of arterial stiffness. Circulating EPC count and ADMA serum levels were also determined. Results Among studied individuals 30 (56.6%) subjects were diagnosed with isolated IFG, 9 (17%) with isolated IGT (17%) and 14 with combined IFG-IGT (26.4%). In univariate analysis age, mean blood pressure, fasting glucose, total cholesterol, LDL cholesterol, and ADMA levels positively correlated with pulse-wave velocity while exercise and GFR correlated negatively. EPC count did not correlate with PWV. In multivariate stepwise regression analysis PWV correlated independently and positively with LDL-Cholesterol (low density lipoprotein) and ADMA levels and negatively with exercise. Conclusions Elevated ADMA and LDL-C levels are strongly associated with increased arterial stiffness among pre-diabetic subjects. In contrast exercise inversely correlated with arterial stiffness.
Collapse
Affiliation(s)
- Ioannis Protopsaltis
- Diabetes Center, Tzanio General Hospital of Piraeus, Zanni and Afendouli 1, Piraeus 18537, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Oñate B, Vilahur G, Ferrer-Lorente R, Ybarra J, Díez-Caballero A, Ballesta-López C, Moscatiello F, Herrero J, Badimon L. The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB J 2012; 26:4327-36. [PMID: 22772162 DOI: 10.1096/fj.12-207217] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It has been demonstrated that the adipose tissue, a highly functional metabolic tissue, is a reservoir of mesenchymal stem cells. The potential use of adipose-derived stem cells (ADSCs) from white adipose tissue (WAT) for organ repair and regeneration has been considered because of their obvious benefits in terms of accessibility and quantity of available sample. However, the functional capability of ADSCs from subjects with different adiposity has not been investigated. It has been our hypothesis that ADSCs from adipose tissue of patients with metabolic syndrome and high adiposity may be functionally impaired. We report that subcutaneous WAT stromal vascular fraction (SVF) from nonobese individuals had a significantly higher number of CD90+ cells than SVF from obese patients. The isolated ADSCs from WAT of obese patients had reduced differentiation potential and were less proangiogenic. Therefore, ADSCs in adipose tissue of obese patients have lower capacity for spontaneous or therapeutic repair than ADSCs from nonobese metabolically normal individuals.
Collapse
Affiliation(s)
- Blanca Oñate
- Cardiovascular Research Center (CSIC-ICCC), Hospital de la Santa Creu i Sant Pau, Av. S. Antoni M. Claret 167, 08025 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 2012; 110:624-37. [PMID: 22343557 DOI: 10.1161/circresaha.111.243386] [Citation(s) in RCA: 515] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diverse subsets of endothelial progenitor cells (EPCs) are used for the treatment of ischemic diseases in clinical trials, and circulating EPCs levels are considered as biomarkers for coronary and peripheral artery disease. However, despite significant steps forward in defining their potential for both therapeutic and diagnostic purposes, further progress has been mired by unresolved questions around the definition and the mechanism of action of EPCs. Diverse culturing methods and detection of various combinations of different surface antigens were used to enrich and identify EPCs. These attempts were particularly challenged by the close relationship and overlapping markers of the endothelial and hematopoietic lineages. This article will critically review the most commonly used protocols to define EPCs by culture assays or by fluorescence-activated cell sorter in the context of their therapeutic or diagnostic use. We also delineate new research avenues to move forward our knowledge on EPC biology.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, University of Frankfurt, Theodor-Stern-Kai 7, Frankfurt, Germany
| | | | | |
Collapse
|