1
|
Wu T, Yang J, Xia J, Sun G. Effects of Licorice Functional Components Intakes on Blood Pressure: A Systematic Review with Meta-Analysis and NETWORK Toxicology. Nutrients 2024; 16:3768. [PMID: 39519602 PMCID: PMC11547873 DOI: 10.3390/nu16213768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE To investigate the effects of licorice functional ingredient intake on blood pressure, explore its potential mechanisms of action, and provide safety information for personalized nutritional interventions in special populations and for the application of licorice-derived functional foods. METHODS PubMed, Cochrane Library, Medline, Embase, EBSCO, ScienceDirect, and Web of Science databases were searched from inception to 31 August 2024. Randomized controlled trials (RCTs) investigating the intake of licorice or its functional components were included. The range of continuous variables was assessed using the weighted mean difference (WMD) with 95% confidence intervals. Genes associated with hypertension were screened using an online database. Machine learning, receiver operating characteristic(ROC) curve analysis, molecular docking, and gene set enrichment analysis (GSEA) were employed to explore the potential mechanisms underlying licorice-induced blood pressure fluctuations. RESULTS Eight RCTs (541 participants) were included in the meta-analysis, which indicated interventions containing glycyrrhizic acid (GA) as the main component increased systolic blood pressure (SBP) and diastolic blood pressure (DBP) (SBP: WMD [95% CI] = 3.48 [2.74, 4.21], p < 0.001; DBP: WMD [95% CI] = 1.27 [0.76, 1.78], p < 0.001). However, interventions dominated by licorice flavonoids(LF) had no significant effect on SBP or DBP (SBP: WMD [95% CI] = 0.58 [-1.15, 2.31], p = 0.511; DBP: WMD [95% CI] = 0.17 [-1.53, 1.88], p = 0.843). Three machine learning algorithms identified five biomarkers associated with hypertension: calmodulin 3 (CALM3), cluster of differentiation 9 (CD9), growth factor independence 1B transcriptional repressor (GFI1B), myosin light chain kinase (MYLK), and Ras suppressor-1 (RSU1). After removing biomarkers with lower validity and reliability, GFI1B, MYLK, and RSU1 were selected for subsequent analysis. The network toxicology results suggested that GA and its metabolite glycyrrhetinic acid may act on GFI1B, MYLK, and RSU1, influencing blood pressure fluctuations by modulating nitrogen metabolism signaling pathways. CONCLUSIONS There were distinct differences in the effects of licorice functional components on blood pressure. Functional constituents dominated by GA were shown to increase both SBP and DBP, whereas those dominated by LF did not exhibit significant effects on blood pressure. The hypertensive mechanism of GA may involve the modulation of GFI1B, MYLK, and RSU1 to regulate nitrogen metabolic pathways.
Collapse
Affiliation(s)
| | | | | | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (T.W.); (J.Y.); (J.X.)
| |
Collapse
|
2
|
Watson A, Fuess E, Laxalde J, Mitchell D. Glycyrrhizin intake higher than the current international guidelines has no detectable hypermineralocorticoid-like effect in dogs. J Anim Physiol Anim Nutr (Berl) 2024; 108:1906-1912. [PMID: 39087832 DOI: 10.1111/jpn.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Glycyrrhizin-enriched extracts from licorice root are associated with numerous health benefits and are widely used in phytotherapy. There is evidence that ingesting glycyrrhizin beyond threshold concentrations can impact the metabolism of cortisol, inhibiting its conversion to an inactive form, cortisone, via 11-hydroxysteroid dehydrogenase. A consequence can be a form of hypermineralocorticoidism, with elevated potassium excretion and associated hypertension, as demonstrated in rats and humans. Here, 3 orally dosed concentrations of glycyrrhizin (0.2, 0.4 and 0.6 mg/kg bodyweight/day) were assessed over 28 days in dogs. As the current guidelines reflect a lack of reliable data in this species, our aim was to provide relevant information for doses above the current guidelines. The specific purpose of this study was to demonstrate that an intake of licorice with a known therapeutic benefit to dogs does not cause hypermineralocorticoidism in this species. No changes in blood pressure, nor electrolyte excretion were observed in the dogs given these three glycyrrhizin concentrations.
Collapse
Affiliation(s)
| | - Elizabeth Fuess
- Royal Canin, Pet Health Nutrition Center, Lewisburg, Ohio, USA
| | | | | |
Collapse
|
3
|
Zhang Y, Sheng Z, Xiao J, Li Y, Huang J, Jia J, Zeng X, Li L. Advances in the roles of glycyrrhizic acid in cancer therapy. Front Pharmacol 2023; 14:1265172. [PMID: 37649893 PMCID: PMC10463042 DOI: 10.3389/fphar.2023.1265172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Since the first 70 years of reporting cancer chemotherapy, malignant tumors have been the second most common cause of death in children and adults. Currently, the commonly used anti-cancer methods include surgery, chemotherapy, radiotherapy, and immunotherapy. Although these treatment methods could alleviate cancer, they lead to different forms of side effects and have no particularly significant effect on prolonging the patients' life span. Glycyrrhizic acid (GL), a native Chinese herbal extract, has a wide range of pharmacological effects, such as anti-cancer, anti-inflammatory, antioxidant, and immune regulation. In this review, the anti-cancer effects and mechanisms of GL are summarized in various cancers. The inhibition of GL on chemotherapy-induced side effects, including hepatotoxicity, nephrotoxicity, genotoxicity, neurotoxicity and pulmonary toxicity, is highlighted. Therefore, GL may be a promising and ideal drug for cancer therapy.
Collapse
Affiliation(s)
- Yuqian Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Zixuan Sheng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jing Xiao
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Yang Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Biochemistry and Molecular Biology, Jiaxing University Medical College, Jiaxing, China
| | - Li Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| |
Collapse
|
4
|
Liu Z, Gao J, Ye X, Wang C, Zhao B. Endogenous Sulfur Dioxide Improves the Survival Rate of Sepsis by Improving the Oxidative Stress Response during Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6339355. [PMID: 35265263 PMCID: PMC8898775 DOI: 10.1155/2022/6339355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022]
Abstract
Objective To explore the regulation of endogenous sulfur dioxide on oxidative stress in lung injury induced by sepsis. Method Forty male Sprague Dawley rats were divided into control, sepsis, sepsis + SO2, and SO2 group randomly used to observe survival rate. The other group of twenty-eight rats were randomly divided as the same manner for mechanism research. The number of WBCS and the percentage of PMN cells were calculated. The microphotographs of morphological changes and the index of quantitative assessment (IQA) of lung tissues were calculated. The ratio of wet/dry (W/D) of lung tissues was calculated. Levels of H2O2, MDA, NO, MPO, SOD, GSH-px, and TNF-α in plasma and lung tissues were measured. Result The number of WBCS and the percentage of PMN cells decreased in sepsis (p all < 0.05), and rebound in sepsis+SO2 (p all < 0.05). The IQA and W/D of lung tissues increased in sepsis (p for W/D < 0.05), and decreased in sepsis+SO2 (p all < 0.05). H2O2 and MDA of plasma and lung tissues increased in sepsis (p all < 0.05) and rebound in sepsis+SO2 (p for H2O2 of plasma and lung tissues <0.05). NO and MPO of plasma and lung tissues increased in sepsis (p for NO and MPO of lung tissues <0.05) and rebound in sepsis+SO2 (p all < 0.05). SOD of plasma and lung tissues in sepsis group decreased (p all <0.05) and increased in sepsis+SO2 (p all < 0.05). GSH-px of plasma and lung tissues decreased in sepsis (p for plasma <0.05) and increased in sepsis+SO2 (p for GSH-px of lung tissues <0.05). TNF-α of plasma and lung tissues increased in sepsis (p all<0.05) and decreased in sepsis+SO2 (p for lung tissue <0.05). Conclusion Endogenous sulfur dioxide improves the survival rate of sepsis by improving the oxidative stress response during lung injury.
Collapse
Affiliation(s)
- Zhiwei Liu
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Jiaqi Gao
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xin Ye
- Department of Cardiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Cong Wang
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Bin Zhao
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|
5
|
Bioactive Candy: Effects of Licorice on the Cardiovascular System. Foods 2019; 8:foods8100495. [PMID: 31615045 PMCID: PMC6836258 DOI: 10.3390/foods8100495] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Licorice, today chiefly utilized as a flavoring additive in tea, tobacco and candy, is one of the oldest used herbs for medicinal purposes and consists of up to 300 active compounds. The main active constituent of licorice is the prodrug glycyrrhizin, which is successively converted to 3β-monoglucuronyl-18β-glycyrrhetinic acid (3MGA) and 18β-glycyrrhetinic acid (GA) in the intestines. Despite many reported health benefits, 3MGA and GA inhibit the 11-β-hydrogenase type II enzyme (11β-HSD2) oxidizing cortisol to cortisone. Through activation of mineralocorticoid receptors, high cortisol levels induce a mild form of apparent mineralocorticoid excess in the kidney and increase systemic vascular resistance. Continuous inhibition of 11β-HSD2 related to excess licorice consumption will create a state of hypernatremia, hypokalemia and increased fluid volume, which can cause serious life-threatening complications especially in patients already suffering from cardiovascular diseases. Two recent meta-analyses of 18 and 26 studies investigating the correlation between licorice intake and blood pressure revealed statistically significant increases both in systolic (5.45 mmHg) and in diastolic blood pressure (3.19/1.74 mmHg). This review summarizes and evaluates current literature about the acute and chronic effects of licorice ingestion on the cardiovascular system with special focus on blood pressure. Starting from the molecular actions of licorice (metabolites) inside the cells, it describes how licorice intake is affecting the human body and shows the boundaries between the health benefits of licorice and possible harmful effects.
Collapse
|
6
|
Fox CJ, Cornett EM, Hart BM, Kaye AJ, Patil SS, Turpin MC, Valdez A, Urman RD, Kaye AD. Pulmonary vasodilators: Latest evidence and outcomes in the perioperative setting. Best Pract Res Clin Anaesthesiol 2018; 32:237-250. [PMID: 30322463 DOI: 10.1016/j.bpa.2018.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022]
Abstract
Numerous conditions give rise to pulmonary arterial hypertension (PAH), with most of them being idiopathic. Signs and symptoms are generally difficult to recognize initially because they present as nonspecific and typically are mistaken for age-related physiological processes or alternate medical conditions. Many advances have been made toward PAH-specific therapies that have led to advanced clinical management of the disease. The present investigation describes new pulmonary vasodilator agents that are currently available or under development that could impact perioperative management. The 6-min walk test is the gold standard in assessing the efficacy of any pulmonary hypertension treatment, and the only drug to show any mortality benefit in pulmonary hypertension is epoprostenol. The present investigation also describes the latest evidence on using these medications in the perioperative period, including clinical trials and practice guidelines. Future direction for research and clinical management of pulmonary hypertension is described.
Collapse
Affiliation(s)
- Charles J Fox
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Brendon M Hart
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Aaron J Kaye
- Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Shilpadevi S Patil
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Michelle Carroll Turpin
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| | - Angelica Valdez
- Northwestern State University, 1800 Line Ave, Shreveport, LA, 71106, USA.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
| | - Alan D Kaye
- Department of Anesthesiology, LSU Health Sciences Center, Room 656, 1542 Tulane Ave., New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Nazari S, Rameshrad M, Hosseinzadeh H. Toxicological Effects of Glycyrrhiza glabra (Licorice): A Review. Phytother Res 2017; 31:1635-1650. [PMID: 28833680 DOI: 10.1002/ptr.5893] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022]
Abstract
Licorice (Glycyrrhiza glabra) has been considered as an herbal drug since ancient time. Nowadays, it is a well-known spice that possesses worth pharmacological effects. However, some relevant articles have revealed negative impacts of licorice in health. By considering the great wishes in using herbal medicine, it is important to show adverse effects of herbal medicine in health. At present, there are misunderstandings toward the safety of herbal medicines. Herein, we gathered scientific research projects on the toxicity effects of licorice and glycyrrhizin to highlight their safety. In this regards, we categorized our findings about the toxicity effects of licorice and glycyrrhizin in acute, sub-acute, sub-chronic, and chronic states. Besides, we discussed on the cytotoxicity, genotoxicity, mutagenicity, and carcinogenicity of licorice and glycyrrhizin as well as their developmental toxicity. This review disclosed that G. glabra and glycyrrhizin salts are moderately toxic. They need to be used with caution during pregnancy. G. glabra and glycyrrhizin possess selective cytotoxic effects on cancerous cells. The most important side effects of licorice and glycyrrhizin are hypertension and hypokalemic-induced secondary disorders. Licorice side effects are increased by hypokalemia, prolonged gastrointestinal transient time, decreased type 2 11-beta-hydroxysteroid dehydrogenase activities, hypertension, anorexia nervosa, old age, and female sex. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Somayeh Nazari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Chen CC, Kolosov D, Kelly SP. The liquorice root derivative glycyrrhetinic acid can ameliorate ionoregulatory disturbance in rainbow trout ( Oncorhynchus mykiss ) abruptly exposed to ion-poor water. Comp Biochem Physiol A Mol Integr Physiol 2016; 199:120-129. [DOI: 10.1016/j.cbpa.2016.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 01/11/2023]
|
9
|
Scientific Opinion on the safety and efficacy of glycyrrhizic acid ammoniated (chemical group 30, miscellaneous substances) when used as a flavouring for all animal species. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.3971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
10
|
Chen CC, Kolosov D, Kelly SP. Effect of the liquorice root derivatives on salt and water balance in a teleost fish, rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2014; 180:86-97. [PMID: 25460830 DOI: 10.1016/j.cbpa.2014.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 01/10/2023]
Abstract
The effect of liquorice root derivatives (LRDs) glycyrrhizic acid (GL) and glycyrrhetinic acid (18βGA) on salt and water balance and end points of gill ion transport in a freshwater teleost, (rainbow trout) was examined after feeding fish diets containing GL or 18βGA (0, 5, 50 or 500 µg/g diet) for a two week period. Serum cortisol levels and gill 11β-hydroxysteroid dehydrogenase type 2 mRNA abundance decreased in fish fed GL but increased (at select doses) in fish fed 18βGA. At higher doses of GL, gill Na(+)-K(+)-ATPase and H(+)-ATPase activity increased, while cystic fibrosis transmembrane conductance regulator type II mRNA abundance significantly decreased at the lowest dose of GL. End points of gill transcellular ion transport were not significantly altered in fish fed 18βGA, except for a reduction in Na(+)-K(+)-ATPase activity at a 50 µg/g dose. In contrast, high doses of GL and 18βGA increased gill transcript abundance of the tight junction protein claudin-31 (cldn-31). Other end points of gill paracellular transport differed in fishes fed LRDs. Tricellulin mRNA abundance was increased by high dose GL and decreased by high dose 18βGA, and cldn-23a and cldn-27b mRNA abundance significantly decreased in response to GL irrespective of dose. Despite the above observations, systemic end points of salt and water balance (i.e. serum [Na(+)] and [Cl(-)] as well as muscle moisture) were unaffected by LRDs. Therefore data suggest that LRDs can alter end points of ion transport in fishes but that overall salt and water balance need not be perturbed.
Collapse
Affiliation(s)
- Chun Chih Chen
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3.
| | - Dennis Kolosov
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Scott P Kelly
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
11
|
Yang PS, Kim DH, Lee YJ, Lee SE, Kang WJ, Chang HJ, Shin JS. Glycyrrhizin, inhibitor of high mobility group box-1, attenuates monocrotaline-induced pulmonary hypertension and vascular remodeling in rats. Respir Res 2014; 15:148. [PMID: 25420924 PMCID: PMC4248446 DOI: 10.1186/s12931-014-0148-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 11/10/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND High mobility group box-1 (HMGB1), a proinflammatory cytokine, plays a pivotal role in tissue remodeling and angiogenesis, both of which are crucial for the pathogenesis of pulmonary arterial hypertension. In this study, we explored the relationship between HMGB1 and pulmonary hypertension and whether glycyrrhizin, an inhibitor of HMGB1, attenuates disease progression in an animal model of pulmonary hypertension induced by monocrotaline sodium (MCT). METHODS After inducing pulmonary hypertension through a single subcutaneous injection of MCT (60 mg/kg) to Sprague-Dawley rats, we administered daily intraperitoneal injections of either glycyrrhizin (GLY, 50 mg/kg), an inhibitor of HMGB1, or saline (control) for either 4 or 6 weeks. RESULTS Expression levels of HMGB1 in serum increased from the second week after MCT injection and remained elevated throughout the experiment periods. Lung tissue levels of HMGB1 assessed by immunohistochemical staining at 4 weeks after MCT injection also increased. Chronic inhibition of HMGB1 by GLY treatment reduced the MCT-induced increase in right ventricular (RV) systolic pressure, RV hypertrophy (ratio of RV to [left ventricle + septum]), and pulmonary inflammation. MCT-induced muscularization of the pulmonary artery was also attenuated in the GLY-treated group. As assessed 6 weeks after MCT injection, the GLY-treated group exhibited increased survival (90% [18 of 20]) when compared with the control group (60% [12 of 20]; p =0.0027). CONCLUSIONS Glycyrrhizin, an inhibitor of HMGB1, attenuates pulmonary hypertension progression and pulmonary vascular remodeling in the MCT-induced pulmonary hypertension rat model. Further studies are needed to confirm the potential of HMGB1 as a novel therapeutic target for pulmonary hypertension.
Collapse
Affiliation(s)
- Pil-Sung Yang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University Health System, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| | - Dae-Hoon Kim
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University Health System, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| | - Yong Joon Lee
- Departments of Microbiology, Yonsei University College of Medicine, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| | - Sang-Eun Lee
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University Health System, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| | - Won Jun Kang
- Departments of Nuclear Medicine, Yonsei University College of Medicine, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University Health System, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752, Republic of Korea. .,Severance Biomedical Science Institute, Yonsei University Health System, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| | - Jeon-Soo Shin
- Departments of Microbiology, Yonsei University College of Medicine, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752, Republic of Korea. .,Severance Biomedical Science Institute, Yonsei University Health System, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
12
|
Protective effects of glycyrrhizin in a gut hypoxia (ischemia)-reoxygenation (reperfusion) model. Intensive Care Med 2008; 35:687-97. [DOI: 10.1007/s00134-008-1334-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 10/04/2008] [Indexed: 11/27/2022]
|
13
|
Isbrucker RA, Burdock GA. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol 2006; 46:167-92. [PMID: 16884839 DOI: 10.1016/j.yrtph.2006.06.002] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Indexed: 11/28/2022]
Abstract
Licorice (or 'liquorice') is a plant of ancient origin and steeped in history. Licorice extracts and its principle component, glycyrrhizin, have extensive use in foods, tobacco and in both traditional and herbal medicine. As a result, there is a high level of use of licorice and glycyrrhizin in the US with an estimated consumption of 0.027-3.6 mg glycyrrhizin/kg/day. Both products have been approved for use in foods by most national and supranational regulatory agencies. Biochemical studies indicate that glycyrrhizinates inhibit 11beta-hydroxysteroid dehydrogenase, the enzyme responsible for inactivating cortisol. As a result, the continuous, high level exposure to glycyrrhizin compounds can produce hypermineralocorticoid-like effects in both animals and humans. These effects are reversible upon withdrawal of licorice or glycyrrhizin. Other in vivo and clinical studies have reported beneficial effects of both licorice and glycyrrhizin consumption including anti-ulcer, anti-viral, and hepatoprotective responses. Various genotoxic studies have indicated that glycyrrhizin is neither teratogenic nor mutagenic, and may possess anti-genotoxic properties under certain conditions. The pharmacokinetics of glycyrrhizin have been described and show that its bioavailability is reduced when consumed as licorice; this has hampered attempts to establish clear dose-effect levels in animals and humans. Based on the in vivo and clinical evidence, we propose an acceptable daily intake of 0.015-0.229 mg glycyrrhizin/kg body weight/day.
Collapse
Affiliation(s)
- R A Isbrucker
- Burdock Group, 888 17th Street, NW, Suite 810 Washington, DC 20006, USA
| | | |
Collapse
|
14
|
A theoretical analysis of transport phenomena in membrane concentration of liquorice solutions: a FEM approach. J FOOD ENG 2005. [DOI: 10.1016/j.jfoodeng.2004.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Navarre-Belhassen C, Cambonie G, Boluda C, Hillaire-Buys D. An unexpected case of primary pulmonary hypertension of the neonate (PPHN). Potential role of topical administration of enoxolone. J Perinat Med 2003; 30:437-9. [PMID: 12442611 DOI: 10.1515/jpm.2002.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Ruschitzka F, Quaschning T, Noll G, deGottardi A, Rossier MF, Enseleit F, Hürlimann D, Lüscher TF, Shaw SG. Endothelin 1 type a receptor antagonism prevents vascular dysfunction and hypertension induced by 11beta-hydroxysteroid dehydrogenase inhibition: role of nitric oxide. Circulation 2001; 103:3129-35. [PMID: 11425780 DOI: 10.1161/01.cir.103.25.3129] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD) prevents inappropriate activation of the nonselective mineralocorticoid receptors by glucocorticoids. Renal activity of 11beta-HSD is decreased in patients with apparent mineralocorticoid excess (SAME), licorice-induced hypertension, and essential hypertension. Although expressed in vascular cells, the role of 11beta-HSD in the regulation of vascular tone remains to be determined. METHODS AND RESULTS lycyrrhizic acid (GA; 50 mg/kg IP, twice daily for 7 days) caused a significant inhibition of 11beta-HSD activity and induced hypertension in Wistar-Kyoto rats (157 versus 127 mm Hg in controls; P<0.01). After 11beta-HSD inhibition, aortic endothelial nitric oxide (NO) synthase (eNOS) protein content, nitrate tissue levels, and acetylcholine-induced release of NO were blunted (all P<0.05 versus controls). In contrast, vascular prepro-endothelin (ET)-1 gene expression, ET-1 protein levels, and vascular reactivity to ET-1 were enhanced by GA treatment (P<0.05 versus controls). Chronic ET(A) receptor blockade with LU135252 (50 mg. kg(-1). d(-1)) normalized blood pressure, ET-1 tissue content, vascular reactivity to ET-1, vascular eNOS protein content, and nitrate tissue levels and improved NO-mediated endothelial function in GA-treated rats (P<0.05 to 0.01 versus untreated and verapamil-treated controls). In human endothelial cells, GA increased production of ET-1 in the presence of corticosterone, which indicates that activation of the vascular ET-1 system by 11beta-HSD inhibition can occur independently of changes in blood pressure but is dependent on the presence of glucocorticoids. CONCLUSIONS Chronic ET(A) receptor blockade normalizes blood pressure, prevents upregulation of vascular ET-1, and improves endothelial dysfunction in 11beta-HSD inhibitor-induced hypertension and may emerge as a novel therapeutic approach in cardiovascular disease associated with reduced 11beta-HSD activity.
Collapse
MESH Headings
- 11-beta-Hydroxysteroid Dehydrogenases
- Acetylcholine/pharmacology
- Animals
- Blood Pressure/drug effects
- Body Weight/drug effects
- Cells, Cultured
- Corticosterone/pharmacology
- Dose-Response Relationship, Drug
- Endothelin Receptor Antagonists
- Endothelin-1/drug effects
- Endothelin-1/metabolism
- Endothelin-1/pharmacology
- Endothelins/genetics
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Gene Expression Regulation/drug effects
- Glycyrrhizic Acid/pharmacology
- Heart Rate/drug effects
- Humans
- Hydroxysteroid Dehydrogenases/antagonists & inhibitors
- Hydroxysteroid Dehydrogenases/metabolism
- Hypertension/chemically induced
- Hypertension/prevention & control
- Male
- Nitrates/metabolism
- Nitric Oxide/physiology
- Nitric Oxide Synthase/drug effects
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type III
- Norepinephrine/pharmacology
- Phenylpropionates/pharmacology
- Potassium Chloride/pharmacology
- Protein Precursors/genetics
- Pyrimidines/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- Receptor, Endothelin A
- Receptor, Endothelin B
- Receptors, Endothelin/genetics
- Vascular Diseases/physiopathology
- Vascular Diseases/prevention & control
- Vasoconstriction/drug effects
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
- Verapamil/pharmacology
Collapse
Affiliation(s)
- F Ruschitzka
- Cardiology, Cardiovascular Research and Institute of Physiology, University Hospital Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lacaille-Dubois[xc*] M, Wagner H. Bioactive saponins from plants: An update. BIOACTIVE NATURAL PRODUCTS (PART B) 2000. [DOI: 10.1016/s1572-5995(00)80015-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Abstract
Chemoprotective potential of naturally occurring phytochemicals in food is a major area of scientific interest. Results acquired from epidemiologic studies suggest a reduced risk of degenerative diseases with high phytochemical consumption. Bioavailability of phytochemicals is a critical issue, though their significant absorption has been demonstrated. Phytochemicals possess an array of biochemical and pharmacological qualities like antioxidative, anticarcinogenic, antimicrobial, cholesterol-lowering and antithrombotic activities.
Collapse
Affiliation(s)
- W Andlauer
- Institute for Biological Chemistry & Nutrition, University of Hohenheim, Stuttgart, Germany.
| | | | | |
Collapse
|