1
|
Li LQ, Zhang J, Wang R, Li JX, Gu YQ. Establishment and evaluation of a reversible two-kidney, one-clip renovascular hypertensive rat model. Exp Ther Med 2017; 13:3291-3296. [PMID: 28587402 PMCID: PMC5450695 DOI: 10.3892/etm.2017.4386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/03/2017] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to establish and evaluate a novel and reversible two-kidney, one-clip renovascular hypertensive rat model with a titanium vascular clip. A total of 40 male Sprague-Dawley rats were evenly and randomly divided into a sham-operated group, and 3, 7, 12 and 28D groups (namely removing the vascular clip in the renovascular hypertensive model after 3, 7, 12 and 28 days, respectively). The systolic blood pressure (SBP) and plasma renin activity (PRA) were measured, and color duplex imaging was conducted before placing the clips, as well as before and after removing them. After placing the vascular clips, SBP and PRA in the 3, 7, 12 and 28D groups were significantly increased (SBP: Sham-operated vs. 3D groups, P=0.020; 3 vs. 7D groups, P=0.008; 7 vs. 28D groups, P=0.019; 12 vs. 28D groups, P=0.039, and between other groups P<0.001. PRA: 3 vs. 7D groups, P=0.001; 7 vs. 12D groups, P=0.004; 12 vs. 28D groups, P=0.040, and between other groups, P<0.001). After removing the clips, SBP were significantly reduced in the 3 and 7D groups (P=0.023, 0.040, 0.066 and 0.314 in the 3, 7, 12 and 28D groups, respectively), but were still significantly higher than that before placing clips in the 7, 12 and 28D groups (P=0.067, P=0.005, P<0.001 and P<0.001 in the 3, 7, 12 and 28D groups, respectively). After removing the clips, PRA was significantly reduced in each group (P<0.001, P<0.001, P=0.012 and P=0.049 in 3, 7, 12 and 28D groups, respectively), but still higher than that before placing the clips (P<0.001, P=0.001, P=0.001 and P=0.003 in 3, 7, 12 and 28D groups, respectively). Vascular imaging also indicates this model has a reversible property. In conclusion, a reversible renovascular hypertension rat model is feasible, and provides a basis for research on clinical ischemic nephropathy and renal artery revascularization.
Collapse
Affiliation(s)
- Li-Qiang Li
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, P.R. China
| | - Jian Zhang
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, P.R. China
| | - Rong Wang
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Jian-Xin Li
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, P.R. China
| | - Yong-Quan Gu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
2
|
Ritter JK, Li G, Xia M, Boini K. Anandamide and its metabolites: what are their roles in the kidney? Front Biosci (Schol Ed) 2016; 8:264-77. [PMID: 27100705 DOI: 10.2741/s461] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anandamide (AEA) is the N-acyl ethanolamide of arachidonic acid, an agonist of cannabinoid and non-cannabinoid receptors in the body. The kidneys are enriched in AEA and in enzymes that metabolize AEA, but the roles of AEA and its metabolites in the kidney remain poorly understood. This system likely is involved in the regulation of renal blood flow and hemodynamics and of tubular sodium and fluid reabsorption. It may act as a neuromodulator of the renal sympathetic nervous system. AEA and its cyclooxygenase-2 metabolites, the prostamides, in the renal medulla may represent a unique antihypertensive system involved in the long-term control of blood pressure. AEA and its metabolites are also implicated as modulators of inflammation and mediators of signaling in inflammation. AEA and its metabolites may be influential in chronic kidney disease states associated with inflammation and cardiovascular diseases associated with hyperhomocysteinemia. The current knowledge of the roles of AEA and its derivatives highlights the need for further research to define and potentially exploit the role of this endocannabinoid system in the kidney.
Collapse
Affiliation(s)
- Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Box 980613, 1217 E. Marshall Street, Richmond, VA,
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Box 980613, 1217 E. Marshall Street, Richmond, VA
| | - Min Xia
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Krishna Boini
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Box 980613, 1217 E. Marshall Street, Richmond, VA
| |
Collapse
|
3
|
|
4
|
Bergström G, Evans RG. Mechanisms underlying the antihypertensive functions of the renal medulla. ACTA ACUST UNITED AC 2004; 181:475-86. [PMID: 15283761 DOI: 10.1111/j.1365-201x.2004.01321.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is good evidence that the renal medulla plays a pivotal role in long-term regulation of blood pressure. 'Renal medullary' blood pressure regulating systems have been postulated to involve both exocrine (pressure natriuresis/diuresis) and endocrine [renal medullary depressor hormone (RMDH)] functions. However, recent studies indicate that pressure diuresis/natriuresis dominates the antihypertensive renal response to increased renal perfusion pressure, suggesting little physiological role for a putative RMDH in compensatory responses to acutely increased blood pressure. The medullary circulation appears to play a key role in mediating pressure diuresis, although the precise mechanisms involved remain controversial. Counter-regulatory vasodilator mechanisms (e.g. nitric oxide), at least partly mediated through cross-talk between the vasculature and the tubular epithelium, protect the medullary circulation from the vasoconstrictor effects of hormonal factors such as angiotensin II. These mechanisms also appear to contribute to compensatory responses to increased salt intake in salt-resistant individuals. Failure of these mechanisms predisposes the organism towards the development of hypertension, appears to underlie the development of some forms of experimental hypertension, and may even contribute to the pathogenesis of essential hypertension.
Collapse
Affiliation(s)
- G Bergström
- Department of Clinical Physiology, Cardiovascular Institute, Göteborg University, Göteborg, Sweden
| | | |
Collapse
|
5
|
Mattson DL. Importance of the renal medullary circulation in the control of sodium excretion and blood pressure. Am J Physiol Regul Integr Comp Physiol 2003; 284:R13-27. [PMID: 12482743 DOI: 10.1152/ajpregu.00321.2002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The control of renal medullary perfusion and the impact of alterations in medullary blood flow on renal function have been topics of research interest for almost four decades. Many studies have examined the vascular architecture of the renal medulla, the factors that regulate renal medullary blood flow, and the influence of medullary perfusion on sodium and water excretion and arterial pressure. Despite these studies, there are still a number of important unanswered questions in regard to the control of medullary perfusion and the influence of medullary blood flow on renal excretory function and blood pressure. This review will first address the vascular architecture of the renal medulla and the potential mechanisms whereby medullary perfusion may be regulated. The known extrarenal and local systems that influence the medullary vasculature will then be summarized. Finally, this review will present an overview of the evidence supporting the concept that selective changes in medullary perfusion can have a potent influence on sodium and water excretion with a long-term influence on arterial blood pressure regulation.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
6
|
Nyström HC, Jia J, Johansson M, Lambert G, Bergström G. Neurohormonal influences on maintenance and reversal of two-kidney one-clip renal hypertension. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 175:245-51. [PMID: 12100364 DOI: 10.1046/j.1365-201x.2002.00997.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The factors involved in maintenance and reversal of mean arterial blood pressure (MAP) in the chronic two-kidney one-clip hypertensive rat (2K1C-RHR) are still debated. The reduction in MAP after reversal of 2K1C hypertension has been ascribed either to release of a renal medullary depressor hormone (RMDH) or suppression of the renin-angiotensin and/or sympathetic nervous system. We studied in conscious rats: (i) The effects of angiotensin II receptor blockade (ARB; candesartan), sympathetic blockade (propranolol and phentolamine) or a combination on MAP in 6-week long 2K1C-RHR; (ii) The effects of reversal of 2K1C hypertension by removal of the constricting clip (unclipping, UC) or nephrectomy (Nx) on MAP, plasma renin activity (PRA) and noradrenaline (NA) spillover rates. The results show that: (i) MAP in the 2K1C-RHR was almost normalized by ARB but not significantly affected by the sympathetic blockade. The combination was not more effective than ARB alone; (ii) UC and Nx reduced MAP in 2K1C to similar levels as ARB. No significant changes in PRA or catecholamines could be detected in UC and Nx groups. We conclude that hypertension in 2K1C-RHR is maintained by the renin-angiotensin system without much contribution from the sympathetic nervous system. Furthermore, we found no evidence that UC of our model of 2K1C was associated with a generalized decrease in sympathetic tone or substantial release of RMDH from the unclipped kidney. Thus, we conclude that in the present model of 2K1C, both maintenance and reversal of hypertension are controlled by the renin-angiotensin system.
Collapse
Affiliation(s)
- H C Nyström
- Department of Physiology, Sahlgrenska University Hospital, Göteborg University, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
7
|
Bergström G, Johansson I, Wickman A, Gan L, Thorup C. Brief losartan treatment in young spontaneously hypertensive rats abates long-term blood pressure elevation by effects on renal vascular structure. J Hypertens 2002; 20:1413-21. [PMID: 12131539 DOI: 10.1097/00004872-200207000-00029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We studied the importance of regional vascular structural changes for the long-term antihypertensive effect of brief angiotensin II receptor blockade with losartan in young spontaneously hypertensive rats (SHRs). DESIGN/METHODS SHRs were treated from 3 to 8 weeks of age with losartan (SHRLos, 30 mg/kg per day in drinking water) or vehicle (SHRCon). Mean arterial blood pressure (MAP) was measured using a telemetric technique from 12 to 25 weeks of age. Indices of vascular structure in the renal and hindquarter limb (HQ) were assessed using a haemodynamic perfusion technique at 13-15 weeks of age. RESULTS MAP in SHRLos was reduced by 20-30 mmHg throughout the study (P < 0.001) and left ventricular weights were reduced (P < 0.05). The slope of the pressure/flow relationship was significantly changed (P < 0.001) in both kidneys and HQ vascular beds, suggesting greater average lumen dimensions in SHRLos. Pressure-glomerular filtration rate (GFR) curves of SHRLos kidneys were shifted to the left (P < 0.001), suggesting that the reduction in renal vascular resistance was predominantly preglomerular. The changes in structural indices of the heart and HQ closely followed the reduction in MAP. However, resistance at maximal dilatation in SHRLos kidneys was changed out of proportion to the lowering in MAP (P < 0.01). CONCLUSIONS Brief losartan treatment in young SHRs reduces long-term MAP. The reduced MAP is associated with higher average renal and skeletal muscle vascular dimensions at maximal dilatation, predominantly in the pre-capillary vasculature. The reduction in vascular resistance of the kidney appears to be out of proportion to the reduction in MAP and it may be speculated that this is of primary importance in the long-term hypotensive effect of brief angiotensin II antagonism in SHRs.
Collapse
Affiliation(s)
- Göran Bergström
- Department of Physiology, Sahlgrenska University Hospital, Göteborg University, Sweden.
| | | | | | | | | |
Collapse
|
8
|
Treeck B, Roald AB, Tenstad O, Aukland K. Effect of exogenous and endogenous angiotensin II on intrarenal distribution of glomerular filtration rate in rats. J Physiol 2002; 541:1049-57. [PMID: 12068062 PMCID: PMC2290377 DOI: 10.1113/jphysiol.2002.018390] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2002] [Accepted: 03/18/2002] [Indexed: 11/08/2022] Open
Abstract
Different changes in glomerular filtration rates (GFR) in deep and superficial glomeruli have been suggested to influence renal NaCl excretion and concentrating ability. Angiotensin II (AngII) has been implicated in such changes, but the experimental evidence has been conflicting, probably because of the methodological limitation of just one 'snapshot' measurement of local GFR per kidney. We have therefore studied the effect of AngII and AT(1)-receptor blockade on glomerular filtration in outer, middle and inner cortex (OC, MC and IC, respectively) in pentobarbitone-anaesthetised rats using the aprotinin (Ap) method, providing control and experimental measurements in the same kidney. Glomerular filtration rate per gram cortical tissue was measured based on 'free' glomerular filtration of Ap followed by complete tubular uptake and a 20 min sojourn in the proximal tubular cells before breakdown and incipient return to the plasma.(125)I-labelled Ap was injected I.V. to determine control Ap clearance, followed after 13 min by injection of AngII or the A1 type AngII receptor blocker losartan and 2 min thereafter by (131)I-labelled Ap to determine clearance in the experimental period. Tracer activity in frequent blood samples and in tissue samples allowed calculation of GFR in the two periods. Mean GFR control values were: 1.13 ml min(-1) in whole kidney and 1.44, 1.27 and 0.76 ml min(-1) per gram cortical tissue in OC, MC and IC, respectively. The most sensitive and comprehensive measure of altered GFR distribution is the ratio between the relative filtration change in inner versus that in outer cortex, F = (IC(E)/IC(C))/(OC(E)/OC(C)), where subscripts E and C stand for experimental and control, respectively. F values greater than 1.00 directly indicate and quantify a relatively greater increase of filtration rate in inner than in outer cortex. We found in salt-replete rats that at practically unchanged total GFR, intravenous and intra-arterial infusion of AngII increased F to 1.07 and 1.04 (P < 0.05) whereas losartan reduced F to 0.99. After pretreatment with the inhibitor of nitric oxide production L-NAME, losartan increased total GFR by 8 % and F fell to 0.95 (P < 0.05). In salt-depleted rats losartan reduced F to 0.95 (P < 0.05) at unchanged total GFR. All IC/OC changes induced by losartan were significantly different from that obtained by AngII infusions. We conclude that deep nephrons have higher postglomerular AngII tone and also higher AngII sensitivity than superficial nephrons. The better preserved GFR in deep cortex during AngII action may contribute towards maintaining the renal concentrating ability by providing NaCl for reabsorption by the ascending limb of the loop of Henle.
Collapse
Affiliation(s)
- Birte Treeck
- Department of Physiology, University of Bergen, Norway
| | | | | | | |
Collapse
|
9
|
Correia AG, Bergström G, Jia J, Anderson WP, Evans RG. Dominance of pressure natriuresis in acute depressor responses to increased renal artery pressure in rabbits and rats. J Physiol 2002; 538:901-10. [PMID: 11826173 PMCID: PMC2290088 DOI: 10.1113/jphysiol.2001.013280] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Increasing renal artery pressure (RAP) activates pressure diuresis/natriuresis and inhibits renal renin release. There is also evidence that increasing RAP stimulates release of a putative depressor hormone from the renal medulla, although this hypothesis remains controversial. We examined the relative roles of these antihypertensive mechanisms in the acute depressor responses to increased RAP in anaesthetized rabbits and rats. In rabbits, an extracorporeal circuit was established which allows RAP to be set and controlled without direct effects on systemic haemodynamics. When RAP was maintained at approximately 65 mmHg, cardiac output (CO) and mean arterial pressure (MAP) did not change significantly. In contrast, when RAP was increased to approximately 160 mmHg, CO and MAP fell 20 +/- 5 % and 36 +/- 5 %, respectively, over 30 min. Urine flow also increased more than 28-fold when RAP was increased. When compound sodium lactate was infused intravenously at a rate equal to urine flow, neither CO nor MAP fell significantly in response to increased RAP. In 1 kidney-1 clip hypertensive rats, MAP fell by 54 +/- 10 mmHg over a 2 h period after unclipping. In rats in which isotonic NaCl was administered intravenously at a rate equal to urine flow, MAP did not change significantly after unclipping (-14 +/- 9 mmHg). Our results suggest that the depressor responses to increasing RAP in these experimental models are chiefly attributable to hypovolaemia secondary to pressure diuresis/natruresis. These models therefore appear not to be bioassays for release of a putative renal medullary depressor hormone.
Collapse
|
10
|
Grisk O, Klöting I, Exner J, Spiess S, Schmidt R, Junghans D, Lorenz G, Rettig R. Long-term arterial pressure in spontaneously hypertensive rats is set by the kidney. J Hypertens 2002; 20:131-8. [PMID: 11791036 DOI: 10.1097/00004872-200201000-00019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We investigated whether arterial pressure in spontaneously hypertensive rats (SHR) can be normalized by a kidney graft from normotensive histocompatible donors. In addition, the effect of differential genetic predisposition to hypertension of recipients of an SHR kidney on the development of post-transplantation hypertension was studied. METHODS SHR were transplanted with a kidney from congenic rats (BB.1K) homozygous for a 2 cM segment of SHR chromosome 20, including the major histocompatibility complex class Ia and class II genes. BB.1K and F1 hybrids (F1H, SHR x Wistar-Kyoto rats) were transplanted with an SHR kidney and the development of renal post-transplantation hypertension was monitored. RESULTS Thirty days after renal transplantation, mean arterial pressure (MAP) was 116 +/- 4 mmHg in SHR with a BB.1K kidney (n = 8) versus 168 +/- 2 mmHg in sham-operated SHR (n = 10); P < 0.001. Cumulative renal sodium balance (mmol/100 g body weight) over 21 days after bilateral nephrectomy was 6.8 +/- 0.6 in SHR with a BB.1K kidney versus 10.8 +/- 1.6 in sham-operated SHR (P < 0.05). Within 60 days of transplantation, MAP increased in BB.1K and in F1H transplanted with an SHR kidney (n = 7 per group) by 38 +/- 5 mmHg and 43 +/- 8 mmHg, respectively. CONCLUSIONS In SHR, arterial pressure can be normalized by a kidney graft from normotensive donors. The genetic predisposition of the recipients to hypertension does not modify the rate and the extent of the arterial pressure rise induced by an SHR kidney graft.
Collapse
Affiliation(s)
- Olaf Grisk
- Department of Physiology, University of Greifswald, Greifswalder Strasse 11c, D-17495 Karlsburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wickman A, Andersson IJ, Jia J, Hedin L, Bergström G. Endothelial nitric oxide synthase protein is reduced in the renal medulla of two-kidney, one-clip hypertensive rats. J Hypertens 2001; 19:1665-73. [PMID: 11564988 DOI: 10.1097/00004872-200109000-00020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We studied endothelial nitric oxide synthase (eNOS) expression in the kidneys of two-kidney, one-clip renal hypertensive rats (2K1C) before and after removal of the clip (unclipping, UC). We hypothesised that the haemodynamic changes induced by 2K1C and UC would change eNOS expression in the two kidneys. METHODS Six weeks after inducing 2K1C, mean arterial pressure (MAP) was measured in conscious rats and hypertension reversed by UC. Left and right kidney eNOS protein in cortex and outer medulla was semi-quantified using immunoblotting. Groups were; normotensive (n = 10), 2K1C (n = 10), 3 h (n = 10), 48 h (n = 7) and 4 weeks (n = 7) after UC. The effect of 7 days of aldosterone or angiotensin II (Ang II) infusion on medullary eNOS protein was tested as well as the effect of L-NAME (nitric oxide (NO) synthase inhibitor) on medullary blood flow (MBF) in anaesthetized 2K1C. RESULTS UC reduced MAP from 178 +/- 5 to 134 +/- 3 mmHg after 3 h and normalized MAP at 48 h and 4 weeks. The medulla from 2K1C kidneys contained about 33% less eNOS protein compared with normotensive kidneys (P < 0.05). This difference was still evident at 3 h (P < 0.05), but completely reversed at 48 h and 4 weeks after UC. Similar levels of eNOS expression were seen in the left and right kidney at all time points. Cortical eNOS was increased in kidneys from 2K1C. Neither Ang II nor aldosterone affected eNOS expression in the medulla. MBF was under similar influence of NO in 2K1C compared with normotensive kidneys. CONCLUSIONS 2K1C is associated with reduced levels of eNOS protein in the renal medulla of both clipped and contralateral kidney. eNOS expression in right and left kidney was not changed despite expected large changes in haemodynamics of the two kidneys. The reduced level of eNOS may be associated with a reduction in MBF and thus be of patho-physiological importance in renovascular hypertension.
Collapse
Affiliation(s)
- A Wickman
- Department of Physiology, Institute of Physiology and Pharmacology, Göteborg University, Sweden
| | | | | | | | | |
Collapse
|
12
|
Bergström G, Nyström HC, Jia J, Evans RG. Effects of the ET(A)/ET(B) antagonist, TAK-044, on blood pressure and renal excretory function after unclipping of conscious one-kidney-one-clip hypertensive rats. J Hypertens 2001; 19:659-65. [PMID: 11327643 DOI: 10.1097/00004872-200103001-00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Restoring renal perfusion pressure (unclipping) of one-kidney-one-clip renal hypertensive (1 K1C) rats normalizes mean arterial pressure (MAP) rapidly. This has been attributed to salt/volume losses or release of the putative renal medullary depressor hormone (RMDH). OBJECTIVE To investigate the effects of endothelin receptor A and B (ET(A)/ET(B)) antagonism on unclipping. DESIGN AND METHODS Telemetric devices were implanted in male Wistar 1K1C rats for measurement of conscious MAP. Hypertension was reversed by unclipping with the animal under brief anaesthesia. Seven rats were treated with the ET(A)/ET(B) antagonist, TAK-044 (two doses of 10 mg/kg intraperitoneally in 24 h), and eight rats received its vehicle. In order to investigate whether endothelin receptor antagonism could release RMDH under resting conditions, TAK-044 was administered to telemetered non-clipped intact and chemically renal medullectomized rats (BEA treatment). RESULTS TAK-044 did not affect resting MAP, urine flow or sodium excretion in 1K1C rats. However, after unclipping, the TAK-044-treated group showed a more marked reduction in MAP during the first 24 h after unclipping (P< 0.01). TAK-044 also reduced urine flow and sodium excretion during the first 8 h after unclipping (P< 0.05). TAK-044 reduced resting MAP (P< 0.05) to a similar extent in intact and BEA rats. CONCLUSIONS TAK-044 potentiated the reduction in MAP after unclipping, independently of changes in urine flow and sodium excretion. It also reduced MAP in normotensive rats--an effect that was not dependent on an intact renal medulla. Potentiation of the depressor response to unclipping by TAK-044 could be the result of an interaction of endogenous endothelin receptors with renal depressor mechanisms--possibly, the release, actions, or both, of the putative RMDH.
Collapse
Affiliation(s)
- G Bergström
- Department of Physiology, University of Göteborg, Sweden.
| | | | | | | |
Collapse
|
13
|
Abstract
The experiments outlined in this chapter utilized a novel infusion technique to deliver an antisense oligonucleotide (and an enzyme inhibitor) directly into the renal medullary interstitial space of conscious rats. Antisense treatment led to a selective decrease in nNOS protein and reduced total NOS enzymatic activity in the renal medulla of the infused rats while three other gene products found in the renal medulla (iNOS, eNOS, and beta-actin) were unaltered. Physiological studies in rats demonstrated that infusion of the antisense oligonucleotide into the renal medullary interstitial space increased mean arterial pressure. The increase in blood pressure was dependent on the sodium intake of the rats, was not mimicked when a scrambled oligonucleotide was infused, and was reversible when the antisense infusion was stopped. To confirm the functional data obtained with the antisense oligonucleotide, renal medullary interstitial infusion of the nNOS enzyme inhibitor 7-NI was also shown to lead to a similar increase in arterial pressure and decrease in total NOS activity in the renal medulla. Together, the antisense oligonucleotide, the enzyme inhibitor, and the interstitial infusion technique were used to demonstrate that nNOS found in the renal medulla is important in the chronic regulation of arterial pressure. The experiments summarized in this chapter outline a strategy that can potentially be used to examine the functional effects of many different proteins in this region of the body. Through the use of antisense oligonucleotides and other pharmacological agents, we can hope to gain a more comprehensive understanding of the factors that control renal medullary tubular and vascular function and consequently fluid and electrolyte homeostasis and blood pressure.
Collapse
Affiliation(s)
- D L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee 53226, USA
| |
Collapse
|
14
|
Affiliation(s)
- U Humke
- Department of General and Paediatric Urology, University Hospital of Saarland, Homburg/Saar, Germany.
| | | |
Collapse
|
15
|
|
16
|
Bergström G, Evans RG. Effects of renal medullary infusion of a vasopressin V1 agonist on renal antihypertensive mechanisms in rabbits. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R76-85. [PMID: 9688963 DOI: 10.1152/ajpregu.1998.275.1.r76] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The factors responsible for the development of hypertension during chronic activation of intrarenal V1 receptors are unknown. We therefore tested whether medullary interstitial infusion of the selective V1-receptor agonist [Phe2,Ile3,Orn8]vasopressin (V1 agonist) influences renal antihypertensive mechanisms initiated by increased renal perfusion pressure (RPP). In intact anesthetized rabbits, the V1 agonist (10 ng . kg-1 . min-1) reduced medullary perfusion by 36 +/- 7%, whereas cortical perfusion was reduced by only 14 +/- 2%. An extracorporeal circuit was used to increase RPP in a stepwise manner from 65 to 85, 110, 130, and 160 mmHg for consecutive 20-min periods. Increased RPP reduced mean arterial pressure by 35 +/- 8% in vehicle-treated rabbits, but by only 10 +/- 3% in V1 agonist-treated rabbits. Simultaneously, pressure-diuresis-natriuresis was induced; urine flow and sodium excretion increased similarly in the two groups of rabbits, but hematocrit did not change. We suggest that the depressor response to increased RPP is mainly due to release of a putative renal medullary depressor hormone (RMDH). Suppression of the release and/or actions of RMDH may therefore contribute to the hypertensive effect of chronic V1 receptor activation.
Collapse
Affiliation(s)
- G Bergström
- Department of Physiology, Monash University, Clayton, Victoria 3168, Australia
| | | |
Collapse
|