1
|
Huang RS, Zhou JJ, Feng YY, Shi M, Guo F, Gou SJ, Salerno S, Ma L, Fu P. Pharmacological Inhibition of Macrophage Toll-like Receptor 4/Nuclear Factor-kappa B Alleviates Rhabdomyolysis-induced Acute Kidney Injury. Chin Med J (Engl) 2018; 130:2163-2169. [PMID: 28836571 PMCID: PMC5598327 DOI: 10.4103/0366-6999.213406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Acute kidney injury (AKI) is the most common and life-threatening systemic complication of rhabdomyolysis. Inflammation plays an important role in the development of rhabdomyolysis-induced AKI. This study aimed to investigate the kidney model of AKI caused by rhabdomyolysis to verify the role of macrophage Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. Methods: C57BL/6 mice were injected with a 50% glycerin solution at bilateral back limbs to induce rhabdomyolysis, and CLI-095 or pyrrolidine dithiocarbamate (PDTC) was intraperitoneally injected at 0.5 h before molding. Serum creatinine levels, creatine kinase, the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and hematoxylin and eosin stainings of kidney tissues were tested. The infiltration of macrophage, mRNA levels, and protein expression of TLR4 and NF-κB were investigated by immunofluorescence double-staining techniques, reverse transcriptase-quantitative polymerase chain reaction, and Western blotting, respectively. In vitro, macrophage RAW264.7 was stimulated by ferrous myoglobin; the cytokines, TLR4 and NF-κB expressions were also detected. Results: In an in vivo study, using CLI-095 or PDTC to block TLR4/NF-κB, functional and histologic results showed that the inhibition of TLR4 or NF-κB alleviated glycerol-induced renal damages (P < 0.01). CLI-095 or PDTC administration suppressed proinflammatory cytokine (TNF-α, IL-6, and IL-1β) production and macrophage infiltration into the kidney (P < 0.01). Moreover, in an in vitro study, CLI-095 or PDTC suppressed myoglobin-induced expression of TLR4, NF-κB, and proinflammatory cytokine levels in macrophage RAW264.7 cells (P < 0.01). Conclusion: The pharmacological inhibition of TLR4/NF-κB exhibited protective effects on rhabdomyolysis-induced AKI by the regulation of proinflammatory cytokine production and macrophage infiltration.
Collapse
Affiliation(s)
- Rong-Shuang Huang
- Kidney Research Institute, Department of Internal Medicine, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiao-Jiao Zhou
- Division of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu-Ying Feng
- Kidney Research Institute, Department of Internal Medicine, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Shi
- Kidney Research Institute, Department of Internal Medicine, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Fan Guo
- Kidney Research Institute, Department of Internal Medicine, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Shen-Ju Gou
- Kidney Research Institute, Department of Internal Medicine, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Stephen Salerno
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Liang Ma
- Kidney Research Institute, Department of Internal Medicine, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Fu
- Kidney Research Institute, Department of Internal Medicine, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Protective Role for Antioxidants in Acute Kidney Disease. Nutrients 2017; 9:nu9070718. [PMID: 28686196 PMCID: PMC5537833 DOI: 10.3390/nu9070718] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/26/2017] [Accepted: 07/04/2017] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury causes significant morbidity and mortality in the community and clinic. Various pathologies, including renal and cardiovascular disease, traumatic injury/rhabdomyolysis, sepsis, and nephrotoxicity, that cause acute kidney injury (AKI), induce general or regional decreases in renal blood flow. The ensuing renal hypoxia and ischemia promotes the formation of reactive oxygen species (ROS) such as superoxide radical anions, peroxides, and hydroxyl radicals, that can oxidatively damage biomolecules and membranes, and affect organelle function and induce renal tubule cell injury, inflammation, and vascular dysfunction. Acute kidney injury is associated with increased oxidative damage, and various endogenous and synthetic antioxidants that mitigate source and derived oxidants are beneficial in cell-based and animal studies. However, the benefit of synthetic antioxidant supplementation in human acute kidney injury and renal disease remains to be realized. The endogenous low-molecular weight, non-proteinaceous antioxidant, ascorbate (vitamin C), is a promising therapeutic in human renal injury in critical illness and nephrotoxicity. Ascorbate may exert significant protection by reducing reactive oxygen species and renal oxidative damage via its antioxidant activity, and/or by its non-antioxidant functions in maintaining hydroxylase and monooxygenase enzymes, and endothelium and vascular function. Ascorbate supplementation may be particularly important in renal injury patients with low vitamin C status.
Collapse
|
3
|
Duong TTH, Chami B, McMahon AC, Fong GM, Dennis JM, Freedman SB, Witting PK. Pre-treatment with the synthetic antioxidant T-butyl bisphenol protects cerebral tissues from experimental ischemia reperfusion injury. J Neurochem 2014; 130:733-47. [PMID: 24766199 DOI: 10.1111/jnc.12747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 04/16/2014] [Accepted: 04/20/2014] [Indexed: 12/30/2022]
Abstract
Treatments to inhibit or repair neuronal cell damage sustained during focal ischemia/reperfusion injury in stroke are largely unavailable. We demonstrate that dietary supplementation with the antioxidant di-tert-butyl-bisphenol (BP) before injury decreases infarction and vascular complications in experimental stroke in an animal model. We confirm that BP, a synthetic polyphenol with superior radical-scavenging activity than vitamin E, crosses the blood-brain barrier and accumulates in rat brain. Supplementation with BP did not affect blood pressure or endogenous vitamin E levels in plasma or cerebral tissue. Pre-treatment with BP significantly lowered lipid, protein and thiol oxidation and decreased infarct size in animals subjected to middle cerebral artery occlusion (2 h) and reperfusion (24 h) injury. This neuroprotective action was accompanied by down-regulation of hypoxia inducible factor-1α and glucose transporter-1 mRNA levels, maintenance of neuronal tissue ATP concentration and inhibition of pro-apoptotic factors that together enhanced cerebral tissue viability after injury. That pre-treatment with BP ameliorates oxidative damage and preserves cerebral tissue during focal ischemic insult indicates that oxidative stress plays at least some causal role in promoting tissue damage in experimental stroke. The data strongly suggest that inhibition of oxidative stress through BP scavenging free radicals in vivo contributes significantly to neuroprotection. We demonstrate that pre-treatment with ditert-butyl bisphenol(Di-t-Bu-BP) inhibits lipid, protein, and total thiol oxidation and decreases caspase activation and infarct size in rats subjected to middle cerebral artery occlusion (2 h) and reperfusion (24 h) injury. These data suggest that inhibition of oxidative stress contributes significantly to neuroprotection.
Collapse
Affiliation(s)
- Thi Thuy Hong Duong
- Vascular Biology Group, ANZAC Research Institute, Concord Hospital, Concord, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
4
|
McMahon AC, Parry SN, Benson VL, Witting PK, Le Couteur DG. Beneficial effects of the synthetic antioxidant tert-butyl bisphenol on the hepatic microcirculation in a rat model of diabetes mellitus. Acta Diabetol 2013; 50:645-9. [PMID: 22183926 DOI: 10.1007/s00592-011-0358-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/29/2011] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus is associated with oxidative injury to the vasculature. Here, the link between oxidative stress and ultrastructural changes in the hepatic microcirculation was investigated as well as the effects of a synthetic antioxidant, tert-butyl bisphenol (tBP). The study focused on the impact of experimental diabetes on liver sinusoidal endothelial cell (LSEC) fenestrations, which are pores in the liver endothelium that facilitate substrate transfer between blood and hepatocytes. Adult male rats were rendered diabetic using streptozotocin (60 mg/kg) and administered 1-2 IU insulin daily. After 8 weeks, animals received either 100 mg/kg tBP or vehicle alone, on 2 consecutive days. Livers were harvested 24 h later under isofluorane anaesthesia (5% v/v in O2(g) by inhalation) and fixed for scanning electron microscopy to evaluate fenestrations or for immuno-histochemical assessment of nitrotyrosine, a marker of nitrosative stress. Median fenestration diameter increased significantly following 8 weeks of diabetes (80 nm vs. 70 nm controls; P < 0.001). LSEC porosity increased by ~50% (P < 0.001). Treatment with tBP reversed these changes completely. Periportal nitrotyrosine staining was increased in diabetic livers, and this was abrogated by tBP, indicating that tBP reduced nitrosative stress in the liver. Early diabetes caused an increase in fenestration diameter and porosity. This was reversed by acute treatment with tBP, suggesting a link between nitrosative stress and regulation of liver endothelial fenestrations, and indicates that antioxidant therapy may protect the liver microvasculature against the effects of diabetes mellitus.
Collapse
Affiliation(s)
- Aisling C McMahon
- Centre for Education and Research on Ageing, ANZAC Medical Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia,
| | | | | | | | | |
Collapse
|
5
|
Shanu A, Groebler L, Kim HB, Wood S, Weekley CM, Aitken JB, Harris HH, Witting PK. Selenium inhibits renal oxidation and inflammation but not acute kidney injury in an animal model of rhabdomyolysis. Antioxid Redox Signal 2013; 18:756-69. [PMID: 22937747 PMCID: PMC3555114 DOI: 10.1089/ars.2012.4591] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Acute kidney injury (AKI) is a manifestation of rhabdomyolysis (RM). Extracellular myoglobin accumulating in the kidney after RM promotes oxidative damage, which is implicated in AKI. AIM To test whether selenium (Se) supplementation diminishes AKI and improves renal function. RESULTS Dietary selenite increased Se in the renal cortex, as demonstrated by X-ray fluorescence microscopy. Experimental RM-stimulated AKI as judged by increased urinary protein/creatinine, clusterin, and kidney injury molecule-1 (KIM-1), decreased creatinine clearance (CCr), increased plasma urea, and damage to renal tubules. Concentrations of cholesterylester (hydro)peroxides and F₂-isoprostanes increased in plasma and renal tissues after RM, while aortic and renal cyclic guanidine monophosphate (cGMP; marker of nitric oxide (NO) bioavailability) decreased. Renal superoxide dismutase-1, phospho-P65, TNFα gene, MCP-1 protein, and the 3-chloro-tyrosine/tyrosine ratio (Cl-Tyr/Tyr; marker of neutrophil activation) all increased after RM. Dietary Se significantly decreased renal lipid oxidation, phospho-P65, TNFα gene expression, MCP-1 and Cl-Tyr/Tyr, improved NO bioavailability in aorta but not in the renal microvasculature, and inhibited proteinuria. However, CCr, plasma urea and creatinine, urinary clusterin, and histopathological assessment of AKI remained unchanged. Except for the Se++ group, renal angiotensin-receptor-1/2 gene/protein expression increased after RM with parallel increases in MEK1/2 inhibitor-sensitive MAPkinase (ERK) activity. INNOVATION We employed synchrotron radiation to identify Se distribution in kidneys, in addition to assessing reno-protection after RM. CONCLUSION Se treatment has some potential as a therapeutic for AKI as it inhibits oxidative damage and inflammation and decreases proteinuria, albeit histopathological changes to the kidney and some plasma and urinary markers of AKI remain unaffected after RM.
Collapse
Affiliation(s)
- Anu Shanu
- Discipline of Pathology, Redox Biology Group, Bosch Institute, The University of Adelaide, Australia
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Feng Y, Liu Y, Wang L, Cai X, Wang D, Wu K, Chen H, Li J, Lei W. Sustained oxidative stress causes late acute renal failure via duplex regulation on p38 MAPK and Akt phosphorylation in severely burned rats. PLoS One 2013; 8:e54593. [PMID: 23349934 PMCID: PMC3547934 DOI: 10.1371/journal.pone.0054593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 12/13/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Clinical evidence indicates that late acute renal failure (ARF) predicts high mortality in severely burned patients but the pathophysiology of late ARF remains undefined. This study was designed to test the hypothesis that sustained reactive oxygen species (ROS) induced late ARF in a severely burned rat model and to investigate the signaling mechanisms involved. MATERIALS AND METHODS Rats were exposed to 100°C bath for 15 s to induce severe burn injury (40% of total body surface area). Renal function, ROS generation, tubular necrosis and apoptosis, and phosphorylation of MAPK and Akt were measured during 72 hours after burn. RESULTS Renal function as assessed by serum creatinine and blood urea nitrogen deteriorated significantly at 3 h after burn, alleviated at 6 h but worsened at 48 h and 72 h, indicating a late ARF was induced. Apoptotic cells and cleavage caspase-3 in the kidney went up slowly and turned into significant at 48 h and 72 h. Tubular cell ROS production shot up at 6 h and continuously rose during the 72-h experiment. Scavenging ROS with tempol markedly attenuated tubular apoptosis and renal dysfunction at 72 h after burn. Interestingly, renal p38 MAPK phosphorylation elevated in a time dependent manner whereas Akt phosphorylation increased during the first 24 h but decreased at 48 h after burn. The p38 MAPK specific inhibitor SB203580 alleviated whereas Akt inhibitor exacerbated burn-induced tubular apoptosis and renal dysfunction. Furthermore, tempol treatment exerted a duplex regulation through inhibiting p38 MAPK phosphorylation but further increasing Akt phosphorylation at 72 h postburn. CONCLUSIONS These results demonstrate that sustained renal ROS overproduction induces continuous tubular cell apoptosis and thus a late ARF at 72 h after burn in severely burned rats, which may result from ROS-mediated activation of p38 MAPK but a late inhibition of Akt phosphorylation.
Collapse
Affiliation(s)
- Yafei Feng
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Yi Liu
- Department of Oral Implantology, School of Stomatology, Fourth Military Medical University, Xi'an, China
- Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoqing Cai
- Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Dexin Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kaimin Wu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongli Chen
- Department of Toxicology, Fourth Military Medical University, Xi'an, China
| | - Jia Li
- Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Wei Lei
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Groebler LK, Wang XS, Kim HB, Shanu A, Hossain F, McMahon AC, Witting PK. Cosupplementation with a synthetic, lipid-soluble polyphenol and vitamin C inhibits oxidative damage and improves vascular function yet does not inhibit acute renal injury in an animal model of rhabdomyolysis. Free Radic Biol Med 2012; 52:1918-28. [PMID: 22343418 DOI: 10.1016/j.freeradbiomed.2012.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 02/02/2012] [Accepted: 02/04/2012] [Indexed: 12/21/2022]
Abstract
We investigated whether cosupplementation with synthetic tetra-tert-butyl bisphenol (BP) and vitamin C (Vit C) ameliorated oxidative stress and acute kidney injury (AKI) in an animal model of acute rhabdomyolysis (RM). Rats were divided into groups: Sham and Control (normal chow), and BP (receiving 0.12% w/w BP in the diet; 4 weeks) with or without Vit C (100mg/kg ascorbate in PBS ip at 72, 48, and 24h before RM induction). All animals (except the Sham) were treated with 50% v/v glycerol/PBS (6 mL/kg injected into the hind leg) to induce RM. After 24h, urine, plasma, kidneys, and aortae were harvested. Lipid oxidation (assessed as cholesteryl ester hydroperoxides and hydroxides and F(2)-isoprostanes accumulation) increased in the kidney and plasma and this was coupled with decreased aortic levels of cyclic guanylylmonophosphate (cGMP). In renal tissues, RM stimulated glutathione peroxidase (GPx)-4, superoxide dismutase (SOD)-1/2 and nuclear factor kappa-beta (NFκβ) gene expression and promoted AKI as judged by formation of tubular casts, damaged epithelia, and increased urinary levels of total protein, kidney-injury molecule-1 (KIM-1), and clusterin. Supplementation with BP±Vit C inhibited the two indices of lipid oxidation, down-regulated GPx-4, SOD1/2, and NF-κβ gene responses and restored aortic cGMP, yet renal dysfunction and altered kidney morphology persisted. By contrast, supplementation with Vit C alone inhibited oxidative stress and diminished cast formation and proteinuria, while other plasma and urinary markers of AKI remained elevated. These data indicate that lipid- and water-soluble antioxidants may differ in terms of their therapeutic impact on RM-induced renal dysfunction.
Collapse
Affiliation(s)
- Ludwig K Groebler
- Discipline of Pathology, Redox Biology Group and Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
Comparing the potential renal protective activity of desferrioxamine B and the novel chelator desferrioxamine B-N-(3-hydroxyadamant-1-yl)carboxamide in a cell model of myoglobinuria. Biochem J 2011; 435:669-77. [PMID: 21320071 DOI: 10.1042/bj20101728] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accumulating Mb (myoglobin) in the kidney following severe burns promotes oxidative damage and inflammation, which leads to acute renal failure. The potential for haem-iron to induce oxidative damage has prompted testing of iron chelators [e.g. DFOB (desferrioxamine B)] as renal protective agents. We compared the ability of DFOB and a DFOB-derivative {DFOB-AdAOH [DFOB-N-(3-hydroxyadamant-1-yl)carboxamide]} to protect renal epithelial cells from Mb insult. Loading kidney-tubule epithelial cells with dihydrorhodamine-123 before exposure to 100 μM Mb increased rhodamine-123 fluorescence relative to controls (absence of Mb), indicating increased oxidative stress. Extracellular Mb elicited a reorganization of the transferrin receptor as assessed by monitoring labelled transferrin uptake with flow cytometry and inverted fluorescence microscopy. Mb stimulated HO-1 (haem oxygenase-1), TNFα (tumour necrosis factor α), and both ICAM (intercellular adhesion molecule) and VCAM (vascular cell adhesion molecule) gene expression and inhibited epithelial monolayer permeability. Pre-treatment with DFOB or DFOB-AdAOH decreased Mb-mediated rhodamine-123 fluorescence, HO-1, ICAM and TNFα gene expression and restored monolayer permeability. MCP-1 (monocyte chemotactic protein 1) secretion increased in cells exposed to Mb-insult and this was abrogated by DFOB or DFOB-AdAOH. Cells treated with DFOB or DFOB-AdAOH alone showed no change in permeability, MCP-1 secretion or HO-1, TNFα, ICAM or VCAM gene expression. Similarly to DFOB, incubation of DFOB-AdAOH with Mb plus H2O2 yielded nitroxide radicals as detected by EPR spectroscopy, indicating a potential antioxidant activity in addition to metal chelation; Fe(III)-loaded DFOB-AdAOH showed no nitroxide radical formation. Overall, the chelators inhibited Mb-induced oxidative stress and inflammation and improved epithelial cell function. DFOB-AdAOH showed similar activity to DFOB, indicating that this novel low-toxicity chelator may protect the kidney after severe burns.
Collapse
|
9
|
Kim HB, Shanu A, Wood S, Parry SN, Collet M, McMahon A, Witting PK. Phenolic antioxidants tert-butyl-bisphenol and vitamin E decrease oxidative stress and enhance vascular function in an animal model of rhabdomyolysis yet do not improve acute renal dysfunction. Free Radic Res 2011; 45:1000-12. [PMID: 21726176 DOI: 10.3109/10715762.2011.590137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rhabdomyolysis (RM) caused by severe burn releases extracellular myoglobin (Mb) that accumulates in the kidney. Extracellular Mb is a pro-oxidant. This study tested whether supplementation with tert-butyl-bisphenol (BP) or vitamin E (Vit E, as α-tocopherol) at 0.12% w/w in the diet inhibits acute renal failure (ARF) in an animal model of RM. After RM-induction in rats, creatinine clearance decreased (p < 0.01), proteinuria increased (p < 0.001) and renal-tubule damage was detected. Accompanying ARF, biomarkers of oxidative stress (lipid oxidation and hemeoxygenase-1 (HO-1) gene and protein activity) increased in the kidney (p < 0.05). Supplemented BP or Vit E decreased lipid oxidation (p < 0.05) and HO-1 gene/activity and restored aortic cyclic guanylyl monophosphate in control animals (p < 0.001), yet ARF was unaffected. Antioxidant supplementation inhibited oxidative stress, yet was unable to ameliorate ARF in this animal model indicating that oxidative stress in kidney and vascular cells may not be causally related to renal dysfunction elicited by RM.
Collapse
Affiliation(s)
- Hyun Bo Kim
- Discipline of Pathology, Redox Biology Group, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Wang HC, Brumaghim JL. Polyphenol Compounds as Antioxidants for Disease Prevention: Reactive Oxygen Species Scavenging, Enzyme Regulation, and Metal Chelation Mechanisms in E. coliand Human Cells. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1083.ch005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hsiao C. Wang
- Chemistry Department, Clemson University, Clemson, South Carolina 29634-0973
| | - Julia L. Brumaghim
- Chemistry Department, Clemson University, Clemson, South Carolina 29634-0973
| |
Collapse
|