1
|
Shahpasand S, Khatami SH, Ehtiati S, Alehossein P, Salmani F, Toutounchi AH, Zarei T, Shahmohammadi MR, Khodarahmi R, Aghamollaii V, Tafakhori A, Karima S. Therapeutic potential of the ketogenic diet: A metabolic switch with implications for neurological disorders, the gut-brain axis, and cardiovascular diseases. J Nutr Biochem 2024; 132:109693. [PMID: 38880191 DOI: 10.1016/j.jnutbio.2024.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The Ketogenic Diet (KD) is a dietary regimen that is low in carbohydrates, high in fats, and contains adequate protein. It is designed to mimic the metabolic state of fasting. This diet triggers the production of ketone bodies through a process known as ketosis. The primary objective of KD is to induce and sustain ketosis, which has been associated with numerous health benefits. Recent research has uncovered promising therapeutic potential for KD in the treatment of various diseases. This includes evidence of its effectiveness as a dietary strategy for managing intractable epilepsy, a form of epilepsy that is resistant to medication. We are currently assessing the efficacy and safety of KD through laboratory and clinical studies. This review focuses on the anti-inflammatory properties of the KD and its potential benefits for neurological disorders and the gut-brain axis. We also explore the existing literature on the potential effects of KD on cardiac health. Our aim is to provide a comprehensive overview of the current knowledge in these areas. Given the encouraging preliminary evidence of its therapeutic effects and the growing understanding of its mechanisms of action, randomized controlled trials are warranted to further explore the rationale behind the clinical use of KD. These trials will ultimately enhance our understanding of how KD functions and its potential benefits for various health conditions. We hope that our research will contribute to the body of knowledge in this field and provide valuable insights for future studies.
Collapse
Affiliation(s)
- Sheyda Shahpasand
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parsa Alehossein
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Alireza Haghbin Toutounchi
- Department of general surgery,Imam Hosein medical and educational center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Tayebe Zarei
- Clinical Trial Department, Behbalin Co., Ltd., Tehran, Iran
| | - Mohammad Reza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vajiheh Aghamollaii
- Neurology Department, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
| |
Collapse
|
2
|
Charlot A, Lernould A, Plus I, Zoll J. [Beneficial effects of ketogenic diet for Alzheimer's disease management]. Biol Aujourdhui 2023; 217:253-263. [PMID: 38018953 DOI: 10.1051/jbio/2023031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 11/30/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects almost 1 million people in France and 55 million in the world. This pathology is a global health preoccupation because of the lack of efficient curative treatment and the increase of its prevalence. During the last decade, the comprehension of pathophysiological mechanisms involved in AD have been improved. Amyloid plaques and neurofibrillary tangles accumulation are characteristic of Alzheimer's brain patients, accompanied by increased brain inflammation and oxidative stress, impaired cerebral metabolism of glucose and mitochondrial function. Treatment of AD includes different approaches, as pharmacology, psychology support, physiotherapy, and speech therapy. However, these interventions do not have a curative effect, but only compensatory on the disease. Ketogenic diet (KD), a low-carbohydrates and high-fat diet, associated with a medium-chain triglycerides intake (MCTs) might induce benefices for Alzheimer disease patients. Carbohydrate restriction and MCTs promotes the production of ketone bodies from fatty acid degradation. These metabolites replacing glucose, serve the brain as energetic substrates, and induce neuroprotective effects. Such a nutritional support might slow down the disease progression and improve cognitive abilities of patients. This review aims to examine the neuroprotective mechanisms of KD in AD progression and describes the advantages and limitations of KD as a therapeutic strategy.
Collapse
Affiliation(s)
- Anouk Charlot
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Alix Lernould
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Irène Plus
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Joffrey Zoll
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| |
Collapse
|
3
|
Ramezani M, Fernando M, Eslick S, Asih PR, Shadfar S, Bandara EMS, Hillebrandt H, Meghwar S, Shahriari M, Chatterjee P, Thota R, Dias CB, Garg ML, Martins RN. Ketone bodies mediate alterations in brain energy metabolism and biomarkers of Alzheimer's disease. Front Neurosci 2023; 17:1297984. [PMID: 38033541 PMCID: PMC10687427 DOI: 10.3389/fnins.2023.1297984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD is a progressive neurodegenerative disorder characterized by cognitive dysfunction, including learning and memory deficits, and behavioral changes. Neuropathology hallmarks of AD such as amyloid beta (Aβ) plaques and neurofibrillary tangles containing the neuron-specific protein tau is associated with changes in fluid biomarkers including Aβ, phosphorylated tau (p-tau)-181, p-tau 231, p-tau 217, glial fibrillary acidic protein (GFAP), and neurofilament light (NFL). Another pathological feature of AD is neural damage and hyperactivation of astrocytes, that can cause increased pro-inflammatory mediators and oxidative stress. In addition, reduced brain glucose metabolism and mitochondrial dysfunction appears up to 15 years before the onset of clinical AD symptoms. As glucose utilization is compromised in the brain of patients with AD, ketone bodies (KBs) may serve as an alternative source of energy. KBs are generated from the β-oxidation of fatty acids, which are enhanced following consumption of ketogenic diets with high fat, moderate protein, and low carbohydrate. KBs have been shown to cross the blood brain barrier to improve brain energy metabolism. This review comprehensively summarizes the current literature on how increasing KBs support brain energy metabolism. In addition, for the first time, this review discusses the effects of ketogenic diet on the putative AD biomarkers such as Aβ, tau (mainly p-tau 181), GFAP, and NFL, and discusses the role of KBs on neuroinflammation, oxidative stress, and mitochondrial metabolism.
Collapse
Affiliation(s)
- Matin Ramezani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Malika Fernando
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Shaun Eslick
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Prita R. Asih
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sina Shadfar
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Heidi Hillebrandt
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Silochna Meghwar
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Maryam Shahriari
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Pratishtha Chatterjee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Rohith Thota
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Cintia B. Dias
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Manohar L. Garg
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Ralph N. Martins
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
4
|
Sakr HF, Sirasanagandla SR, Das S, Bima AI, Elsamanoudy AZ. Insulin Resistance and Hypertension: Mechanisms Involved and Modifying Factors for Effective Glucose Control. Biomedicines 2023; 11:2271. [PMID: 37626767 PMCID: PMC10452601 DOI: 10.3390/biomedicines11082271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Factors such as aging, an unhealthy lifestyle with decreased physical activity, snacking, a standard Western diet, and smoking contribute to raising blood pressure to a dangerous level, increasing the risk of coronary artery disease and heart failure. Atherosclerosis, or aging of the blood vessels, is a physiological process that has accelerated in the last decades by the overconsumption of carbohydrates as the primary sources of caloric intake, resulting in increased triglycerides and VLDL-cholesterol and insulin spikes. Classically, medications ranging from beta blockers to angiotensin II blockers and even calcium channel blockers were used alone or in combination with lifestyle modifications as management tools in modern medicine to control arterial blood pressure. However, it is not easy to control blood pressure or the associated complications. A low-carbohydrate, high-fat (LCHF) diet can reduce glucose and insulin spikes, improve insulin sensitivity, and lessen atherosclerosis risk factors. We reviewed articles describing the etiology of insulin resistance (IR) and its impact on arterial blood pressure from databases including PubMed, PubMed Central, and Google Scholar. We discuss how the LCHF diet is beneficial to maintaining arterial blood pressure at normal levels, slowing down the progression of atherosclerosis, and reducing the use of antihypertensive medications. The mechanisms involved in IR associated with hypertension are also highlighted.
Collapse
Affiliation(s)
- Hussein F. Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; (S.R.S.); (S.D.)
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; (S.R.S.); (S.D.)
| | - Abdulhadi I. Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.Z.E.)
| | - Ayman Z. Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.Z.E.)
| |
Collapse
|
5
|
Gholami Mahmoudian Z, Ghanbari A, Rashidi I, Amiri I, Komaki A. Minocycline effects on memory and learning impairment in the beta-amyloid-induced Alzheimer's disease model in male rats using behavioral, biochemical, and histological methods. Eur J Pharmacol 2023:175784. [PMID: 37179042 DOI: 10.1016/j.ejphar.2023.175784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease (AD), as an advanced neurodegenerative disease, is characterized by the everlasting impairment of memory, which is determined by hyperphosphorylation of intracellular Tau protein and accumulation of beta-amyloid (Aβ) in the extracellular space. Minocycline is an antioxidant with neuroprotective effects that can freely cross the blood-brain barrier (BBB). This study investigated the effect of minocycline on the changes in learning and memory functions, activities of blood serum antioxidant enzymes, neuronal loss, and the number of Aβ plaques after AD induced by Aβ in male rats. Healthy adult male Wistar rats (200-220g) were divided randomly into 11 groups (n = 10). The rats received minocycline (50 and 100 mg/kg/day; per os (P.O.)) before, after, and before/after AD induction for 30 days. At the end of the treatment course, behavioral performance was measured by standardized behavioral paradigms. Subsequently, brain samples and blood serum were collected for histological and biochemical analysis. The results indicated that Aβ injection impaired learning and memory performances in the Morris water maze test, reduced exploratory/locomotor activities in the open field test, and enhanced anxiety-like behavior in the elevated plus maze. The behavioral deficits were accompanied by hippocampal oxidative stress (decreased glutathione (GSH) peroxidase enzyme activity and increased malondialdehyde (MDA) levels in the brain (hippocampus) tissue), increased number of Aβ plaques, and neuronal loss in the hippocampus evidenced by Thioflavin S and H&E staining, respectively. Minocycline improved anxiety-like behavior, recovered Aβ-induced learning and memory deficits, increased GSH and decreased MDA levels, and prevented neuronal loss and the accumulation of Aβ plaques. Our results demonstrated that minocycline has neuroprotective effects and can reduce memory dysfunction, which are due to its antioxidant and anti-apoptotic effects.
Collapse
Affiliation(s)
| | - Ali Ghanbari
- Department of Anatomical Science, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Iraj Rashidi
- Department of Anatomical Science, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Iraj Amiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
6
|
Qin Y, Bai D, Tang M, Zhang M, Zhao L, Li J, Yang R, Jiang G. Ketogenic Diet Alleviates Brain Iron Deposition and Cognitive Dysfunction via Nrf2-mediated Ferroptosis pathway in APP/PS1 Mouse. Brain Res 2023; 1812:148404. [PMID: 37164173 DOI: 10.1016/j.brainres.2023.148404] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Progressive cognitive decline and increased brain iron deposition with age are important features of Alzheimer's disease. Previous studies have found that the short-term ketogenic diet has neuroprotective effects in a variety of neurodegenerative diseases, but the effects of an early and long-term ketogenic diet on brain iron content and cognition of Alzheimer's disease have not been reported. In our study, 8-week-old APP/PS1 mice were given a 12-month ketogenic or standard diet, while C57BL/6 mice matched with the age and genetic background of APP/PS1 mice were used as normal controls to be given a standard diet for the same length of time. We found that 12 months of an early ketogenic diet improved the impaired learning and memory ability of APP/PS1 mice. The improvement of cognitive function may be related to the reduction of amyloid-beta deposition and neuronal ferroptosis. The mechanism was achieved by the regulation of ferroptosis-related pathways after activation of nuclear factor erythroid 2-related factor 2 by ketogenic diet-induced elevated β-hydroxybutyrate. In addition, blood biochemical results showed that compared with the standard diet group of the disease, although the early and long-term ketogenic diet increased blood lipids to some extent, it seemed to reduce liver, renal, and myocardial damage caused by genetic differences. This will provide a piece of positive evidence for the early and long-term use of ketogenic diets in people at risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Yaya Qin
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Dazhang Bai
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Ming Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Ming Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Li Zhao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Jia Li
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Rui Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China.
| |
Collapse
|
7
|
Majumdar A, Siva Venkatesh IP, Basu A. Short-Chain Fatty Acids in the Microbiota-Gut-Brain Axis: Role in Neurodegenerative Disorders and Viral Infections. ACS Chem Neurosci 2023; 14:1045-1062. [PMID: 36868874 DOI: 10.1021/acschemneuro.2c00803] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The gut-brain axis (GBA) is the umbrella term to include all bidirectional communication between the brain and gastrointestinal (GI) tract in the mammalian body. Evidence from over two centuries describes a significant role of GI microbiome in health and disease states of the host organism. Short-chain fatty acids (SCFAs), mainly acetate, butyrate, and propionate that are the physiological forms of acetic acid, butyric acid, and propionic acid respectively, are GI bacteria derived metabolites. SCFAs have been reported to influence cellular function in multiple neurodegenerative diseases (NDDs). In addition, the inflammation modulating properties of SCFAs make them suitable therapeutic candidates in neuroinflammatory conditions. This review provides a historical background of the GBA and current knowledge of the GI microbiome and role of individual SCFAs in central nervous system (CNS) disorders. Recently, a few reports have also identified the effects of GI metabolites in the case of viral infections. Among these viruses, the flaviviridae family is associated with neuroinflammation and deterioration of CNS functions. In this context, we additionally introduce SCFA based mechanisms in different viral pathogenesis to understand the former's potential as agents against flaviviral disease.
Collapse
Affiliation(s)
- Atreye Majumdar
- National Brain Research Centre, Manesar, Haryana 122052, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India
| |
Collapse
|
8
|
Xu Y, Zheng F, Zhong Q, Zhu Y. Ketogenic Diet as a Promising Non-Drug Intervention for Alzheimer’s Disease: Mechanisms and Clinical Implications. J Alzheimers Dis 2023; 92:1173-1198. [PMID: 37038820 DOI: 10.3233/jad-230002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is mainly characterized by cognitive deficits. Although many studies have been devoted to developing disease-modifying therapies, there has been no effective therapy until now. However, dietary interventions may be a potential strategy to treat AD. The ketogenic diet (KD) is a high-fat and low-carbohydrate diet with adequate protein. KD increases the levels of ketone bodies, providing an alternative energy source when there is not sufficient energy supply because of impaired glucose metabolism. Accumulating preclinical and clinical studies have shown that a KD is beneficial to AD. The potential underlying mechanisms include improved mitochondrial function, optimization of gut microbiota composition, and reduced neuroinflammation and oxidative stress. The review provides an update on clinical and preclinical research on the effects of KD or medium-chain triglyceride supplementation on symptoms and pathophysiology in AD. We also detail the potential mechanisms of KD, involving amyloid and tau proteins, neuroinflammation, gut microbiota, oxidative stress, and brain metabolism. We aimed to determine the function of the KD in AD and outline important aspects of the mechanism, providing a reference for the implementation of the KD as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yunlong Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Neonatology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Fuxiang Zheng
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Qi Zhong
- Department of Neurology, Shenzhen Luohu People’s Hospital; The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Nuwaylati D, Eldakhakhny B, Bima A, Sakr H, Elsamanoudy A. Low-Carbohydrate High-Fat Diet: A SWOC Analysis. Metabolites 2022; 12:1126. [PMID: 36422267 PMCID: PMC9695571 DOI: 10.3390/metabo12111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Insulin resistance (IR) plays a role in the pathogenesis of many diseases, such as type 2 diabetes mellitus, cardiovascular disease, non-alcoholic fatty liver disease, obesity, and neurodegenerative diseases, including Alzheimer's disease. The ketogenic diet (KD) is a low-carbohydrate/high-fat diet that arose in the 1920s as an effective treatment for seizure control. Since then, the KD has been studied as a therapeutic approach for various IR-related disorders with successful results. To date, the use of the KD is still debatable regarding its safety. Some studies have acknowledged its usefulness, while others do not recommend its long-term implementation. In this review, we applied a SWOC (Strengths, Weaknesses, Opportunities, and Challenges) analysis that revealed the positive, constructive strengths of the KD, its potential complications, different conditions that can make used for it, and the challenges faced by both physicians and subjects throughout a KD. This SWOC analysis showed that the KD works on the pathophysiological mechanism of IR-related disorders such as chronic inflammation, oxidative stress and mitochondrial stress. Furthermore, the implementation of the KD as a potential adjuvant therapy for many diseases, including cancer, neurodegenerative disorders, polycystic ovary syndrome, and pain management was proven. On the other hand, the short and long-term possible undesirable KD-related effects, including nutritional deficiencies, growth retardation and nephrolithiasis, should be considered and strictly monitored. Conclusively, this review provides a context for decision-makers, physicians, researchers, and the general population to focus on this dietary intervention in preventing and treating diseases. Moreover, it draws the attention of scientists and physicians towards the opportunities and challenges associated with the KD that requires attention before KD initiation.
Collapse
Affiliation(s)
- Dena Nuwaylati
- Clinical Biochemistry Department, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Basmah Eldakhakhny
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Abdulhadi Bima
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Hussein Sakr
- Physiology Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ayman Elsamanoudy
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
10
|
Shcherbakova K, Schwarz A, Apryatin S, Karpenko M, Trofimov A. Supplementation of Regular Diet With Medium-Chain Triglycerides for Procognitive Effects: A Narrative Review. Front Nutr 2022; 9:934497. [PMID: 35911092 PMCID: PMC9334743 DOI: 10.3389/fnut.2022.934497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 01/09/2023] Open
Abstract
It is now widely accepted that ketosis (a physiological state characterized by elevated plasma ketone body levels) possesses a wide range of neuroprotective effects. There is a growing interest in the use of ketogenic supplements, including medium-chain triglycerides (MCT), to achieve intermittent ketosis without adhering to a strict ketogenic diet. MCT supplementation is an inexpensive and simple ketogenic intervention, proven to benefit both individuals with normal cognition and those suffering from mild cognitive impairment, Alzheimer's disease, and other cognitive disorders. The commonly accepted paradigm underlying MCT supplementation trials is that the benefits stem from ketogenesis and that MCT supplementation is safe. However, medium-chain fatty acids (MCFAs) may also exert effects in the brain directly. Moreover, MCFAs, long-chain fatty acids, and glucose participate in mutually intertwined metabolic pathways. Therefore, the metabolic effects must be considered if the desired procognitive effects require administering MCT in doses larger than 1 g/kg. This review summarizes currently available research on the procognitive effects of using MCTs as a supplement to regular feed/diet without concomitant reduction of carbohydrate intake and focuses on the revealed mechanisms linked to particular MCT metabolites (ketone bodies, MCFAs), highlighting open questions and potential considerations.
Collapse
Affiliation(s)
- Ksenia Shcherbakova
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia,*Correspondence: Ksenia Shcherbakova
| | - Alexander Schwarz
- Laboratory of the Molecular Mechanisms of Neuronal Interactions, Institute of Evolutionary Physiology and Biochemistry (RAS), Saint Petersburg, Russia
| | - Sergey Apryatin
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Marina Karpenko
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexander Trofimov
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
11
|
Song Y, Wang K, Loor JJ, Jiang Q, Yang Y, Jiang S, Liu S, He J, Feng X, Du X, Lei L, Gao W, Liu G, Li X. β-Hydroxybutyrate inhibits apoptosis in bovine neutrophils through activating ERK1/2 and AKT signaling pathways. J Dairy Sci 2022; 105:3477-3489. [DOI: 10.3168/jds.2021-21259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022]
|
12
|
Jiang Z, Yin X, Wang M, Chen T, Wang Y, Gao Z, Wang Z. Effects of Ketogenic Diet on Neuroinflammation in Neurodegenerative Diseases. Aging Dis 2022; 13:1146-1165. [PMID: 35855338 PMCID: PMC9286903 DOI: 10.14336/ad.2021.1217] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/17/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
| | | | | | | | | | - Zhongbao Gao
- Correspondence should be addressed to: Dr. Zhenfu Wang () and Dr. Zhongbao Gao (), The Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhenfu Wang
- Correspondence should be addressed to: Dr. Zhenfu Wang () and Dr. Zhongbao Gao (), The Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
13
|
Ren J, Zhang S, Wang X, Deng Y, Zhao Y, Xiao Y, Liu J, Chu L, Qi X. MEF2C ameliorates learning, memory, and molecular pathological changes in Alzheimer’s disease in vivo and in vitro. Acta Biochim Biophys Sin (Shanghai) 2021; 54:77-90. [PMID: 35130621 PMCID: PMC9909301 DOI: 10.3724/abbs.2021012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Myocyte enhancer factor 2C (MEF2C) is highly expressed in the nervous system, and regulates neuro-development, synaptic plasticity, and inflammation. However, its mechanism in Alzheimer's disease (AD) is underestimated. In this study, the role and mechanism of MEF2C were investigated in the brain tissue specimens from patients with AD, APPswe/PSEN1dE9 double transgenic (APP/PS1_DT) mice, and SH-SY5Y cells treated with β-amyloid peptide (Aβ). The results indicated that the expression of MEF2C is significantly reduced, and the expression of MEF2C/Aβ in different parts of brain is negatively correlated in patients with AD. Knockdown of MEF2C promotes cell apoptosis and the level of β-amyloid precursor protein cleaving enzyme 1 (BACE) but reduces BACE2 expression. In addition, knockdown of enhances the generation and aggregation of Aβ in the cortex of APP/PS1_DT mice, reduces the expression of synaptic proteins, exacerbates the ability of learning and memory of APP/PS1_DT mice, damages the structure of mitochondria, increases the oxidative stress (OS) level, and inhibits the expression levels of members of the Nrf2-ARE signal pathway. In summary, inhibition of MEF2C exacerbates the toxic effect of Aβ and , damages synaptic plasticity, reduces the ability of learning and memory of APP/PS1 mice, and increases the level of OS via the Nrf2-ARE signal pathway.
Collapse
Affiliation(s)
- Jiamou Ren
- Key Laboratory of Endemic and Ethnic DiseasesMinistry of Education & Key Laboratory of Medical Molecular Biology of Guizhou ProvinceGuizhou Medical UniversityGuiyang550004China,Department of Laboratory Medicinethe 4th People′s Hospital of GuiyangGuiyang550004China
| | - Shuli Zhang
- Chinese People′s Liberation ArmySecret Service Center Sanatorium of XiamenXiamen361000China
| | - Xiaoling Wang
- Key Laboratory of Endemic and Ethnic DiseasesMinistry of Education & Key Laboratory of Medical Molecular Biology of Guizhou ProvinceGuizhou Medical UniversityGuiyang550004China
| | - Yuxin Deng
- Key Laboratory of Endemic and Ethnic DiseasesMinistry of Education & Key Laboratory of Medical Molecular Biology of Guizhou ProvinceGuizhou Medical UniversityGuiyang550004China
| | - Yi Zhao
- Key Laboratory of Endemic and Ethnic DiseasesMinistry of Education & Key Laboratory of Medical Molecular Biology of Guizhou ProvinceGuizhou Medical UniversityGuiyang550004China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic DiseasesMinistry of Education & Key Laboratory of Medical Molecular Biology of Guizhou ProvinceGuizhou Medical UniversityGuiyang550004China
| | - Jian Liu
- Department of NeurosurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyang550004China
| | - Liangzhao Chu
- Department of NeurosurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyang550004China,Correspondence address. Tel: +86-851-86752814; E-mail: (X.Q.) / E-mail: (L.C.)@qq.com
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic DiseasesMinistry of Education & Key Laboratory of Medical Molecular Biology of Guizhou ProvinceGuizhou Medical UniversityGuiyang550004China,Translational Medicine Research CenterGuizhou Medical UniversityGuiyang550004China,Correspondence address. Tel: +86-851-86752814; E-mail: (X.Q.) / E-mail: (L.C.)@qq.com
| |
Collapse
|
14
|
Yang X, Wang R, Zhou H, Wang L, Wang R, Li H, Tan B, Wu Q, Xu X, Cui L, Li Z, Li H. β-hydroxybutyrate Alleviates Learning and Memory Impairment Through the SIRT1 Pathway in D-Galactose-Injured Mice. Front Pharmacol 2021; 12:751028. [PMID: 34880753 PMCID: PMC8645592 DOI: 10.3389/fphar.2021.751028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Learning and memory impairment is a common clinical symptom of aging and nervous system injuries, and seriously affects quality of life. Memory impairment is associated with increased oxidative stress (OS) and inflammatory response. β-hydroxybutyrate (BHBA) is a water-soluble endogenous small-molecule ketone body that easily crosses the blood-brain barrier and has shown neuroprotection activities. In this study, we investigated the effects and mechanisms of BHBA on D-galactose (D-gal)-induced memory impairment in mice by in vitro and in vivo experiments. BHBA was administered intragastrically to D-gal-injured C57BL/6 mice for 42 days. Water maze performance, the morphology of the hippocampus with Nissl staining, the ACh content, OS, and inflammation status were examined. To further investigate the mechanism, hippocampal neuronal cells (HT22) were treated with BHBA with or without the SIRT1 inhibitor or small interfering RNAs against sirt1 (si-SIRT1) before incubation with D-gal. BHBA significantly improved water maze performance; increased the ACh content, SOD activity, and SIRT1 expression; and decreased AChE and LDH activity, ROS, MDA, IL-1β, TNF-α contents, and NLRP3 expression. Further studies with the SIRT inhibitor or siRNAs against sirt1 reversed the above effects of BHBA. Collectively, BHBA inhibited hippocampal OS and the inflammation process to alleviate learning and memory impairment through activating the SIRT1 pathway in D-gal-injured mice, suggesting that BHBA could be a potential option for drug development of learning and memory impairment induced by nervous system injuries.
Collapse
Affiliation(s)
- Xiaojing Yang
- College of Pharmacy, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Ruonan Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Hailun Zhou
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Li Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Rui Wang
- Dalian Key Laboratory of Hematology, Department of Hematology, the Second Hospital of Dalian Medical University, Institute of Stem Cell Transplantation of Dalian Medical University, Dalian, China
| | - Haomin Li
- Department of Neurosurgery, Foshan Affiliated Hospital to Sun Yat -Sen University and the First People's Hospital of Foshan, Foshan, China
| | - Baodong Tan
- Department of Neurosurgery, Foshan Affiliated Hospital to Sun Yat -Sen University and the First People's Hospital of Foshan, Foshan, China
| | - Qiong Wu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Xin Xu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lianxu Cui
- Department of Neurosurgery, Foshan Affiliated Hospital to Sun Yat -Sen University and the First People's Hospital of Foshan, Foshan, China
| | - Zaiyu Li
- Department of Neurosurgery, Foshan Affiliated Hospital to Sun Yat -Sen University and the First People's Hospital of Foshan, Foshan, China
| | - Hua Li
- College of Pharmacy, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Wang JH, Guo L, Wang S, Yu NW, Guo FQ. The potential pharmacological mechanisms of β-hydroxybutyrate for improving cognitive functions. Curr Opin Pharmacol 2021; 62:15-22. [PMID: 34891124 DOI: 10.1016/j.coph.2021.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/09/2023]
Abstract
β-Hydroxybutyl acid (βOHB), the most prevalent type of ketone in the human body, is involved in the pathogenesis of cognitive disorders, especially Alzheimer's dementia (AD), through a variety of mechanisms, such as enhancing mitochondrial metabolism, regulating signaling molecule, increasing histone acetylation, affecting the metabolism of Aβ and Tau proteins, inhibiting inflammation and lipid metabolism, and regulating intestinal microbes. Based on the above findings, clinical drug development in AD has begun to focus on βOHB.
Collapse
Affiliation(s)
- Jian-Hong Wang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lei Guo
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Su Wang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Neng-Wei Yu
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Fu-Qiang Guo
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
16
|
Vahideh Mirzaei, Eidi A, Manaheji H, Oryan S, Zaringhalam J. β-Hydroxybutyrate Attenuates Clinical Symptoms and Pain Behaviors in MOG-Induced Encephalomyelitis. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Carranza-Naval MJ, Vargas-Soria M, Hierro-Bujalance C, Baena-Nieto G, Garcia-Alloza M, Infante-Garcia C, del Marco A. Alzheimer's Disease and Diabetes: Role of Diet, Microbiota and Inflammation in Preclinical Models. Biomolecules 2021; 11:biom11020262. [PMID: 33578998 PMCID: PMC7916805 DOI: 10.3390/biom11020262] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Epidemiological studies show the association between AD and type 2 diabetes (T2DM), although the mechanisms are not fully understood. Dietary habits and lifestyle, that are risk factors in both diseases, strongly modulate gut microbiota composition. Also, the brain-gut axis plays a relevant role in AD, diabetes and inflammation, through products of bacterial metabolism, like short-chain fatty acids. We provide a comprehensive review of current literature on the relation between dysbiosis, altered inflammatory cytokines profile and microglia in preclinical models of AD, T2DM and models that reproduce both diseases as commonly observed in the clinic. Increased proinflammatory cytokines, such as IL-1β and TNF-α, are widely detected. Microbiome analysis shows alterations in Actinobacteria, Bacteroidetes or Firmicutes phyla, among others. Altered α- and β-diversity is observed in mice depending on genotype, gender and age; therefore, alterations in bacteria taxa highly depend on the models and approaches. We also review the use of pre- and probiotic supplements, that by favoring a healthy microbiome ameliorate AD and T2DM pathologies. Whereas extensive studies have been carried out, further research would be necessary to fully understand the relation between diet, microbiome and inflammation in AD and T2DM.
Collapse
Affiliation(s)
- Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Salus Infirmorum, Universidad de Cadiz, 11005 Cadiz, Spain
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Carmen Hierro-Bujalance
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Gloria Baena-Nieto
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Department of Endocrinology, Jerez Hospital, Jerez de la Frontera, 11407 Cadiz, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Carmen Infante-Garcia
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Correspondence: (C.I.-G.); (A.d.M.)
| | - Angel del Marco
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Correspondence: (C.I.-G.); (A.d.M.)
| |
Collapse
|
18
|
Kong G, Liu J, Li R, Lin J, Huang Z, Yang Z, Wu X, Huang Z, Zhu Q, Wu X. Ketone Metabolite β-Hydroxybutyrate Ameliorates Inflammation After Spinal Cord Injury by Inhibiting the NLRP3 Inflammasome. Neurochem Res 2021; 46:213-229. [PMID: 33108630 DOI: 10.1007/s11064-020-03156-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/18/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Ketogenic diet (KD) has been shown to be beneficial in a range of neurological disorders, with ketone metabolite β-hydroxybutyrate (βOHB) reported to block the nucleotide oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in bone marrow-derived macrophages. In this study, we show that pretreatment with KD or in situ βOHB suppressed macrophages/microglia activation and the overproduction of inflammatory cytokines, while KD downregulated the expression of NLRP3 inflammasome. Moreover, KD promoted macrophages/microglia transformation from the M1 phenotype to the M2a phenotype following spinal cord injury (SCI) in the in vivo study. Rats in the KD group demonstrated improved behavioral and electrophysiological recovery after SCI when compared to those rats in the standard diet group. The in vitro study performed on BV2 cells indicated that βOHB inhibited an LPS+ATP-induced inflammatory response and decreased NLRP3 protein levels. Our data demonstrated that pretreatment with KD attenuated neuroinflammation following SCI, probably by inhibiting NLRP3 inflammasome and shifting the activation state of macrophages/microglia from the M1 to the M2a phenotype. Therefore, the ketone metabolite βOHB might provide a potential future therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Ganggang Kong
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junhao Liu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Rong Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Junyu Lin
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zucheng Huang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zhou Yang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Xiuhua Wu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Qingan Zhu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| | - Xiaoliang Wu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
19
|
Mahajan VR, Elvig SK, Vendruscolo LF, Koob GF, Darcey VL, King MT, Kranzler HR, Volkow ND, Wiers CE. Nutritional Ketosis as a Potential Treatment for Alcohol Use Disorder. Front Psychiatry 2021; 12:781668. [PMID: 34916977 PMCID: PMC8670944 DOI: 10.3389/fpsyt.2021.781668] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing brain disorder, characterized by compulsive alcohol seeking and disrupted brain function. In individuals with AUD, abstinence from alcohol often precipitates withdrawal symptoms than can be life threatening. Here, we review evidence for nutritional ketosis as a potential means to reduce withdrawal and alcohol craving. We also review the underlying mechanisms of action of ketosis. Several findings suggest that during alcohol intoxication there is a shift from glucose to acetate metabolism that is enhanced in individuals with AUD. During withdrawal, there is a decline in acetate levels that can result in an energy deficit and could contribute to neurotoxicity. A ketogenic diet or ingestion of a ketone ester elevates ketone bodies (acetoacetate, β-hydroxybutyrate and acetone) in plasma and brain, resulting in nutritional ketosis. These effects have been shown to reduce alcohol withdrawal symptoms, alcohol craving, and alcohol consumption in both preclinical and clinical studies. Thus, nutritional ketosis may represent a unique treatment option for AUD: namely, a nutritional intervention that could be used alone or to augment the effects of medications.
Collapse
Affiliation(s)
- Vikrant R Mahajan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Sophie K Elvig
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Valerie L Darcey
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - M Todd King
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Henry R Kranzler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Corinde E Wiers
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Si J, Wang Y, Xu J, Wang J. Antiepileptic effects of exogenous β-hydroxybutyrate on kainic acid-induced epilepsy. Exp Ther Med 2020; 20:177. [PMID: 33101467 PMCID: PMC7579833 DOI: 10.3892/etm.2020.9307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/10/2020] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to explore the potential anticonvulsant effects of β-hydroxybutyrate (BHB) in a kainic acid (KA)-induced rat epilepsy model. The KA-induced rat seizure model was established and BHB was administrated intraperitoneally at a dose of 4 mmol/kg 30 min prior to KA injection. Hippocampal tissues were then obtained 1, 3 and 7 days following KA administration, following which the expression levels of neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) were measured using a double immunofluorescence labeling method. In addition, the contents of glutathione (GSH), γ-aminobutyric acid (GABA) and ATP were measured using ELISA. Pretreatment with BHB markedly increased the expression of NSE after KA injection compared with that in the normal saline (NS) + KA group, suggesting that the application of BHB could alleviate neuronal damage in rats. The protective effect of BHB may be associated with suppressed inflammatory responses, which was indicated by the observed inhibition of GFAP expression in rats in the BHB + KA group compared with that in the NS + KA group. It was also found that GSH and GABA contents were notably increased after the rats were pretreated with BHB compared with those in the NS + KA group. To conclude, the application of exogenous BHB can serve as a novel therapeutic agent for epilepsy.
Collapse
Affiliation(s)
- Jianping Si
- Department of Pediatrics, The People's Hospital of Guangrao, Dongying, Shandong 257300, P.R. China
| | - Yingyan Wang
- Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Jing Xu
- Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Jiwen Wang
- Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
21
|
Neuroinflammation Mediated by NLRP3 Inflammasome After Intracerebral Hemorrhage and Potential Therapeutic Targets. Mol Neurobiol 2020; 57:5130-5149. [PMID: 32856203 DOI: 10.1007/s12035-020-02082-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Intracerebral hemorrhage (ICH) is the most fatal subtype of stroke; there is still a lack of effective treatment. Microglia are a major component of the innate immune system, and they respond to acute brain injury by activating and forming classic M1-like (pro-inflammatory) or alternative M2-like (anti-inflammatory) phenotype. The existence of the polarization indicates that the role of microglia in disease's progression and recovery after ICH is still unclear, perhaps involving microglial secretion of anti-inflammatory or pro-inflammatory cytokines and chemokines. The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is considered to be the main participant in neuroinflammation. Recent evidence has shown that NLRP3 inflammasome can be activated after ICH, resulting in inflammatory cascade reactions and aggravating brain injury. Furthermore, previous studies have reported that NLRP3 inflammasome is mainly present in microglia, so we speculate that its activation may be strongly associated with microglial polarization. Many scholars have investigated the role of brain injury caused by NLRP3 inflammasome after ICH, but the precise operating mechanisms remain uncertain. This review summarized the activation mechanism of NLRP3 inflammasome after ICH and the possible mechanism of NLRP3 inflammasome promoting neuroinflammation and aggravating nerve injury and discussed the relevant potential therapeutic targets.
Collapse
|
22
|
Tippairote T, Janssen S, Chunhabundit R. Restoration of metabolic tempo through time-restricted eating (TRE) as the preventive measure for metabolic diseases. Crit Rev Food Sci Nutr 2020; 61:2444-2453. [PMID: 32551943 DOI: 10.1080/10408398.2020.1781050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The characteristics of healthy bioenergetics are the overall balance of energy intake and expenditure, the alternate switching for different metabolic fuels, and the temporal rhythm of eating and fasting. These three bioenergetic attributes, herein, are termed as the metabolic tempo. Cumulative studies revealed the beneficial health effects of fasting. Most of the fasting regimens harness their innate mechanisms of enhancing metabolic fuel switching, thus improving metabolic flexibility. The emerging time-restricted eating (TRE) regimen includes the restoration of diurnal eating and fasting rhythms, improve the metabolic flexibility, while spontaneously reduces the food intake despite the ad-libitum eating. TRE thus simultaneously improves all three bioenergetic-tempo attributes when compared to the energy balance control in general obesity control. We reviewed fifteen human studies of TRE and TRE-liked interventions from 2007 to 2019. These studies reported promising beneficial metabolic effects on body weight, glycemic, and lipid controls while demonstrating most of the fasting-related metabolic and epigenetic responses in overweight and obese individuals. TRE is practically possible for long-termed implementation. Despite its potentials to restore the underlying dysregulated bioenergetics., there is no study confirming that TRE could prevent the development of common metabolic diseases in healthy subjects after long-term implementation. This gap of knowledge warrants future investigation.
Collapse
Affiliation(s)
- Torsak Tippairote
- Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand.,Nutritional and Environmental Medicine Department, BBH Hospital, Bangkok, Thailand
| | - Sarah Janssen
- Nutritional and Environmental Medicine Department, BBH Hospital, Bangkok, Thailand
| | | |
Collapse
|
23
|
Karimi-Sales R, Ashiri M, Hafizi M, Kalanaky S, Maghsoudi AH, Fakharzadeh S, Maghsoudi N, Nazaran MH. Neuroprotective Effect of New Nanochelating-Based Nano Complex, ALZc3, Against Aβ (1-42)-Induced Toxicity in Rat: a Comparison with Memantine. Pharm Res 2020; 37:48. [PMID: 32020309 DOI: 10.1007/s11095-020-2773-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The current drugs for Alzheimer's disease (AD) are only used to slow or delay the progression of the pathology. So using a novel technology is a necessity to synthesize more effective medications to control this most common cause of dementia. In this study, using nanochelating technology, ALZc3 was synthesized and its therapeutic effects were evaluated in comparison with memantine on a well-known rat model of AD, which is based on Amyloid-βeta (Aβ) injection into the brain. MATERIALS AND METHODS Aβ (1-42) was injected bilaterally into the CA1 area of the hippocampus of male rats and then animals were treated daily by oral administration of Alz-C3, memantine or their vehicles. Activities of antioxidant enzymes catalase and superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) levels, as well as Bax/Bcl-2 ratio, caspase-3 activation, and TNF-α expression were evaluated 7 days after Aβ injection. Finally, learning and memory of the rats were assessed by Morris water maze test. RESULTS ALZc3 and memantine improved memory impairment and antioxidant activity and reduced TNF-α expression, caspase-3 activity and Bax/Bcl-2 ratio in the rat's hippocampus. The results showed a superiority of ALZC3 compared to memantine in reducing caspase-3, increasing CAT activity in Aβ (1-42)-injected groups and improving apoptosis factor in healthy mice. CONCLUSION These results indicated that ALZc3 could significantly prevent the memory impairment and Aβ (1-42) toxicity. Thus, ALZc3 could be a promising novel anti-AD agent.
Collapse
Affiliation(s)
- Ramin Karimi-Sales
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrafarin Ashiri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Amir Hossein Maghsoudi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran.,Humer Daroo, TUMS pharmaceutical incubation center, Kargar Shomali, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
24
|
Camberos-Luna L, Massieu L. Therapeutic strategies for ketosis induction and their potential efficacy for the treatment of acute brain injury and neurodegenerative diseases. Neurochem Int 2019; 133:104614. [PMID: 31785349 DOI: 10.1016/j.neuint.2019.104614] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
The therapeutic use of ketone bodies (KB) against acute brain injury and neurodegenerative disorders has lately been suggested by many studies. Several mechanisms responsible for the protective action of KB have been described, including metabolic, anti-inflammatory and epigenetic. However, it is still not clear whether a specific mechanism of action can be associated with a particular neurological disorder. Different strategies to induce ketosis including the ketogenic diet (KD), caloric restriction (CR), intermittent fasting (IF), as well as the administration of medium chain triglycerides (MCTs), exogenous ketones or KB derivatives, have been used in animal models of brain injury and in humans. They have shown different degrees of success to prevent neuronal damage, motor alterations and cognitive decline. However, more investigation is needed in order to establish safe protocols for clinical application. Throughout the present review, we describe the different approaches that have been used to elevate blood KB and discuss their effectiveness considering their advantages and limitations, as tested in models of brain injury, neurodegeneration and clinical research. We also describe the mechanisms of action of KB in non-pathologic conditions and in association with their protective effect against neuronal damage in acute neurological disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lucy Camberos-Luna
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico.
| | - Lourdes Massieu
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico.
| |
Collapse
|
25
|
Haque ME, Akther M, Jakaria M, Kim IS, Azam S, Choi DK. Targeting the microglial NLRP3 inflammasome and its role in Parkinson's disease. Mov Disord 2019; 35:20-33. [PMID: 31680318 DOI: 10.1002/mds.27874] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/20/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022] Open
Abstract
Excessive activation of microglia and subsequent release of proinflammatory cytokines play a crucial role in neuroinflammation and neurodegeneration in Parkinson's disease (PD). Components of the nucleotide-binding oligomerization domain and leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome complex, leucine-rich-repeat- and pyrin-domain-containing 3, caspase-1, and apoptosis-associated speck-like protein containing a CARD, are highly expressed in activated microglia in PD patient brains. Findings suggest that neurotoxins, aggregation of α-synuclein, mitochondrial reactive oxygen species, and disrupted mitophagy are the key regulators of microglial leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome activation and release of interleukin-1β and interleukin-18 caspase-1-mediated pyroptotic cell death in the substantia nigra of the brain. Although this evidence suggests the leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome may be a potential drug target for treatment of PD, the exact mechanism of how the microglia sense these stimuli and initiate leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome signaling is unknown. Here, the molecular mechanism and regulation of microglial leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome activation and its role in the pathogenesis of PD are discussed. Moreover, the potential of both endogenous and synthetic leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome modulators, long noncoding RNA, microRNA to develop novel therapeutics to treat PD is presented. Overall, we recommend that the microglial leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome can be a potential target for PD treatment. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Md Ezazul Haque
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Mahbuba Akther
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Md Jakaria
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - In-Su Kim
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea.,Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
26
|
Shaping the Nrf2-ARE-related pathways in Alzheimer's and Parkinson's diseases. Ageing Res Rev 2019; 54:100942. [PMID: 31415806 DOI: 10.1016/j.arr.2019.100942] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
A failure in redox homeostasis is a common hallmark of Alzheimer's Disease (AD) and Parkinson's Disease (PD), two age-dependent neurodegenerative disorders (NDD), causing increased oxidative stress, oxidized/damaged biomolecules, altered neuronal function and consequent cell death. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a redox-regulated transcription factor, results in upregulation of cytoprotective and antioxidant enzymes/proteins, protecting against oxidative stress. Nrf2 regulation is achieved by various proteins and pathways, at both cytoplasmatic and nuclear level; however, the elaborate network of mechanisms involved in Nrf2 regulation may restrain Nrf2 pathway normal activity. Indeed, altered Nrf2 activity is involved in aging and NDD, such as AD and PD. Therefore, understanding the diversity of Nrf2 control mechanisms and regulatory proteins is of high interest, since more effective NDD therapeutics can be identified. In this review, we first introduce Keap1-Nrf2-ARE structure, function and regulation, with a special focus on the several pathways involved in Nrf2 positive and negative modulation, namely p62, PKC, PI3K/Akt/GSK-3β, NF-kB and p38 MAPK. We then briefly describe the evidences for oxidative stress and Nrf2 pathway deregulation in different stages of NDDs. Finally, we discuss the potential of Nrf2-related pathways as potential therapeutic targets to possibly prevent or slowdown NDD progression.
Collapse
|
27
|
Gureev AP, Shaforostova EA, Popov VN. Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1α Signaling Pathways. Front Genet 2019; 10:435. [PMID: 31139208 PMCID: PMC6527603 DOI: 10.3389/fgene.2019.00435] [Citation(s) in RCA: 400] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is a general degenerative process related to deterioration of cell functions in the entire organism. Mitochondria, which play a key role in energy homeostasis and metabolism of reactive oxygen species (ROS), require lifetime control and constant renewal. This explains recently peaked interest in the processes of mitochondrial biogenesis and mitophagy. The principal event of mitochondrial metabolism is regulation of mitochondrial DNA (mtDNA) transcription and translation, which is a complex coordinated process that involves at least two systems of transcription factors. It is commonly believed that its major regulatory proteins are PGC-1α and PGC-1β, which act as key factors connecting several regulator cascades involved in the control of mitochondrial metabolism. In recent years, the number of publications on the essential role of Nrf2/ARE signaling in the regulation of mitochondrial biogenesis has grown exponentially. Nrf2 is induced by various xenobiotics and oxidants that oxidize some Nrf2 negative regulators. Thus, ROS, in particular H2O2, were found to be strong Nrf2 activators. At present, there are two major concepts of mitochondrial biogenesis. Some authors suggest direct involvement of Nrf2 in the regulation of this process. Others believe that Nrf2 regulates expression of the antioxidant genes, while the major and only regulator of mitochondrial biogenesis is PGC-1α. Several studies have demonstrated the existence of the regulatory loop involving both PGC-1α and Nrf2. In this review, we summarized recent data on the Nrf2 role in mitochondrial biogenesis and its interaction with PGC-1α in the context of extending longevity.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
28
|
Guo Q, Liu S, Wang S, Wu M, Li Z, Wang Y. Beta-hydroxybutyric acid attenuates neuronal damage in epileptic mice. Acta Histochem 2019; 121:455-459. [PMID: 30954274 DOI: 10.1016/j.acthis.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022]
Abstract
β-Hydroxybutyric acid (BHBA) reportedly has neuroprotective and anti-oxidation properties. The present study aimed to investigate the protective effects of BHBA against epilepsy. C57BL/6 J mice were exposed to lithium chloride and pilocarpine to induce epilepsy and then were administrated with 300 mg/kg/day BHBA for 30 days. The learning impairment was evaluated via Morris Water Maze. Neuron loss and cell apoptosis were detected through Nissl staining and TUNEL staining. The levels of oxidative stress-related factors were determined by commercial kits. The protein expression levels of AMP-activated protein kinase (AMPK), p-AMPK, peroxisome proliferator-activated receptor alpha (PPARα), anti-apoptotic Bcl-2, and pro-apoptotic Bax were measured through Western blots. It was found BHBA improved epilepsy- caused learning deficiency and attenuated epilepsy-mediated neuron loss and cell apoptosis in the hippocampus. BHBA ameliorated oxidative stress via decreasing the levels of reactive oxygen species and malondialdehyde plus strengthening the activities of glutathione peroxidase and superoxide dismutase. BHBA also promoted the phosphorylation of AMPK and upregulated PPARα in the epileptic hippocampus. In conclusion, BHBA attenuates neuronal damage in epileptic mice, which is associated with its anti-apoptotic and anti-oxidative effects as well as the activation of AMPK and PPARα.
Collapse
Affiliation(s)
- Qinghui Guo
- Children's Medical Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China
| | - Shangming Liu
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Shandan Wang
- Children's Medical Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China
| | - Meiyan Wu
- Children's Medical Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China
| | - Zhaoxia Li
- Children's Medical Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China
| | - Yibiao Wang
- Children's Medical Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China.
| |
Collapse
|
29
|
Komaki H, Faraji N, Komaki A, Shahidi S, Etaee F, Raoufi S, Mirzaei F. Investigation of protective effects of coenzyme Q10 on impaired synaptic plasticity in a male rat model of Alzheimer’s disease. Brain Res Bull 2019; 147:14-21. [DOI: 10.1016/j.brainresbull.2019.01.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 01/03/2019] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
|
30
|
Therapeutic Approaches to Alzheimer’s Disease Through Modulation of NRF2. Neuromolecular Med 2019; 21:1-11. [DOI: 10.1007/s12017-018-08523-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/29/2018] [Indexed: 12/30/2022]
|
31
|
Wu D, Wen X, Wang Y, Han X, Wang S, Shen M, Fan S, Zhuang J, Zhang Z, Shan Q, Li M, Hu B, Sun C, Lu J, Chen G, Zheng Y. Retracted
: Effect of microRNA‐186 on oxidative stress injury of neuron by targeting interleukin 2 through the janus kinase‐signal transducer and activator of transcription pathway in a rat model of Alzheimer’s disease. J Cell Physiol 2018; 233:9488-9502. [DOI: 10.1002/jcp.26843] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Dong‐Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Yong‐Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Xin‐Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Shao‐Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- School of Environment Science and Spatial Informatics China University of Mining and Technology Xuzhou China
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology Around Hongze Lake, School of Life Sciences Huaiyin Normal University Huaian China
| | - Zi‐Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Meng‐Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Chun‐Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Gui‐Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center Nanjing University Nanjing China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center Nanjing University Nanjing China
| | - Yuan‐Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| |
Collapse
|
32
|
β-Ecdysterone protects SH-SY5Y cells against β-amyloid-induced apoptosis via c-Jun N-terminal kinase- and Akt-associated complementary pathways. J Transl Med 2018; 98:489-499. [PMID: 29330470 DOI: 10.1038/s41374-017-0009-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/19/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Recently, the significantly higher incidence of Alzheimer's disease (AD) in women than in men has been attributed to the loss of neuroprotective estrogen after menopause. Does phytoestrogen have the ability to protect against amyloid-β (Aβ) toxicity? The aim of this study was to evaluate hypothesis that β-ecdysterone (β-Ecd) protects SH-SY5Y cells from Aβ-induced apoptosis by separate signaling pathways involving protein kinase B (Akt) and c-Jun N-terminal kinase (JNK). Here, we demonstrate that phytoestrogen β-Ecd inhibits Aβ-triggered mitochondrial apoptotic pathway, as indicated by Bcl-2/Bax ratio elevation, cytochrome c (cyt c) release reduction, and caspase-9 inactivation. Interestingly, β-Ecd upregulates Bcl-2 expression in SH-SY5Y cells under both basal and Aβ-challenged conditions, but downregulates Bax expression only in Aβ-challenged conditions. Subsequently, Akt-dependent NF-κB activation is required for Bcl-2 upregulation, but not Bax downregulation, in response to β-Ecd, which was validated by the use of LY294002 and Bay11-7082. Notably, β-Ecd attenuates the Aβ-evoked reactive oxygen species (ROS) production, apoptosis signal-regulating kinase 1 (ASK1) phosphorylation and JNK activation without altering the basal ASK1 phosphorylation and JNK activation. ROS-scavenging by diphenyleneiodonium (DPI) abrogated the ability of β-Ecd to alter the activation of ASK1. Simultaneously, inhibition of JNK by SP600125 abolished β-Ecd-induced Bax downregulation in Aβ-challenged SH-SY5Y cells, whereas LY294002 failed to do so. Consequently, β-Ecd possesses neuroprotection by different and complementary pathways, which together promote a Bcl-2/Bax ratio. These data support our hypothesis and suggest that β-Ecd is a promising candidate for the treatment of AD.
Collapse
|
33
|
Zhang J, Li X, Ren Y, Zhao Y, Xing A, Jiang C, Chen Y, An L. Intermittent Fasting Alleviates the Increase of Lipoprotein Lipase Expression in Brain of a Mouse Model of Alzheimer's Disease: Possibly Mediated by β-hydroxybutyrate. Front Cell Neurosci 2018; 12:1. [PMID: 29386999 PMCID: PMC5776118 DOI: 10.3389/fncel.2018.00001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
Intermittent fasting has been demonstrated to protect against Alzheimer's disease (AD), however, the mechanism is unclear. Histone acetylation and lipoprotein lipase (LPL) are involved in AD progression. Importantly, LPL has been documented to be regulated by histone deacetylases (HDACs) inhibitors (increase histone acetylation level) in adipocyte and mesenchymal stem cells, or by fasting in adipose and muscle tissues. In brain, however, whether histone acetylation or fasting regulates LPL expression is unknown. This study was designed to demonstrate intermittent fasting may protect against AD through increasing β-hydroxybutyrate, a HDACs inhibitor, to regulate LPL. We also investigated microRNA-29a expression associating with regulation of LPL and histone acetylation. The results showed LPL mRNA expression was increased and microRNA-29a expression was decreased in the cerebral cortex of AD model mice (APP/PS1), which were alleviated by intermittent fasting. No significant differences were found in the total expression of LPL protein (brain-derived and located in capillary endothelial cells from peripheral tissues) in the cerebral cortex of APP/PS1 mice. Further study indicated that LPL located in capillary endothelial cells was decreased in the cerebral cortex of APP/PS1 mice, which was alleviated by intermittent fasting. LPL and microRNA-29a expression were separately increased and down-regulated in 2 μM Aβ25−35-exposed SH-SY5Y cells, but respectively decreased and up-regulated in 10 μM Aβ25−35-exposed cells, which were all reversed by β-hydroxybutyrate. The increase of HDAC2/3 expression and the decrease of acetylated H3K9 and H4K12 levels were alleviated in APP/PS1 mice by intermittent fasting treatment, as well in 2 or 10 μM Aβ25−35-exposed cells by β-hydroxybutyrate treatment. These findings above suggested the results from APP/PS1 mice were consistent with those from cells treated with 2 μM Aβ25−35. Interestingly, LPL expression was reduced (0.2-folds) and microRNA-29a expression was up-regulated (1.7-folds) in HDAC2-silenced cells, but respectively increased (1.3-folds) and down-regulated (0.8-folds) in HDAC3-silenced cells. Furthermore, LPL expression was decreased in cells treated with microRNA-29a mimic and increased with inhibitor treatment. In conclusion, intermittent fasting inhibits the increase of brain-derived LPL expression in APP/PS1 mice partly through β-hydroxybutyrate-mediated down-regulation of microRNA-29a expression. HDAC2/3 may be implicated in the effect of β-hydroxybutyrate on microRNA-29a expression.
Collapse
Affiliation(s)
- Jingzhu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Xinhui Li
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Yahao Ren
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Yue Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Aiping Xing
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Congmin Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Yanqiu Chen
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Li An
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
34
|
Zhang J, Zhan Z, Li X, Xing A, Jiang C, Chen Y, Shi W, An L. Intermittent Fasting Protects against Alzheimer's Disease Possible through Restoring Aquaporin-4 Polarity. Front Mol Neurosci 2017; 10:395. [PMID: 29238290 PMCID: PMC5712566 DOI: 10.3389/fnmol.2017.00395] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022] Open
Abstract
The impairment of amyloid-β (Aβ) clearance in the brain plays a causative role in Alzheimer's disease (AD). Polarity distribution of aquaporin-4 (AQP4) is important to remove Aβ from brain. AQP4 polarity can be influenced by the ratio of two AQP4 isoforms M1 and M23 (AQP4-M1/M23), however, it is unknown whether the ratio of AQP4-M1/M23 changes in AD. Histone deacetylase 3 has been reported to be significantly increased in AD brain. Moreover, evidence indicated that microRNA-130a (miR-130a) possibly mediates the regulation of histone deacetylase 3 on AQP4-M1/M23 ratio by repressing the transcriptional activity of AQP4-M1 in AD. This study aimed to investigate whether intermittent fasting (IF), increasing the level of an endogenous histone deacetylases inhibitor β-hydroxybutyrate, restores AQP4 polarity via miR-130a mediated reduction of AQP4-M1/M23 ratio in protection against AD. The results showed that IF ameliorated cognitive dysfunction, prevented brain from Aβ deposition, and restored the AQP4 polarity in a mouse model of AD (APP/PS1 double-transgenic mice). Additionally, IF down-regulated the expression of AQP4-M1 and histone deacetylase 3, reduced AQP4-M1/M23 ratio, and increased miR-130a expression in the cerebral cortex of APP/PS1 mice. In vitro, β-hydroxybutyrate was found to down-regulate the expression of AQP4-M1 and histone deacetylase 3, reduce AQP4-M1/M23 ratio, and increase AQP4-M23 and miR-130a expression in 2 μM Aβ-treated U251 cells. Interestingly, on the contrary to the result observed in 2 μM Aβ-treated cells, AQP4 expression was obviously decreased in cells exposed to 10 μM Aβ. miR-130a mimic decreased the expression of AQP4-M1 and the ratio of AQP4-M1/M23, as well as silencing histone deacetylase 3 caused the up-regulation of AQP4 and miR-130a, and the reduction of AQP4-M1/M23 ratio in U251 cells. In conclusion, IF exhibits beneficial effects against AD. The mechanism may be associated with recovery of AQP4 polarity, resulting from the reduction of AQP4-M1/M23 ratio. Furthermore, β-hydroxybutyrate may partly mediate the effect of IF on the reduction of AQP4-M1/M23 ratio in AD, in which miR-130a and histone deacetylase 3 may be implicated.
Collapse
Affiliation(s)
- Jingzhu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Zhipeng Zhan
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.,Department of Nutrition and Food Hygiene, School of Public Health, Jinzhou Medical University, Jinzhou, China
| | - Xinhui Li
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Aiping Xing
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Congmin Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Yanqiu Chen
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Wanying Shi
- Department of Clinical Nutrition, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Li An
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
35
|
Kong G, Huang Z, Ji W, Wang X, Liu J, Wu X, Huang Z, Li R, Zhu Q. The Ketone Metabolite β-Hydroxybutyrate Attenuates Oxidative Stress in Spinal Cord Injury by Suppression of Class I Histone Deacetylases. J Neurotrauma 2017; 34:2645-2655. [PMID: 28683591 DOI: 10.1089/neu.2017.5192] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ketone metabolite β-hydroxybutyrate (βOHB), is reported to be neuroprotective after spinal cord injury (SCI) in rats, but the underlying mechanism remains unknown. The present study aims to investigate effects of βOHB on suppression of oxidative stress and inhibition of class I histone deacetylases (HDACs) in in vivo and in vitro models. Rats were fed with ketogenic diet (KD) or standard diet (SD) for 3 weeks. A C5 hemi-contusion injury was applied to these animals on the 14th day of experiment, and spinal cord samples were harvested on the 1st, 3rd and 7th days after SCI, respectively. The blood ketone levels were significantly higher in the KD groups. KD reduced oxidative stress markers and reactive oxygen species (ROS) products, downregulated the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)2 and NOX4, and upregulated the expression of forkhead box group O (FOXO)3a, mitochondrial superoxide dismutase (MnSOD), and catalase after SCI. The in vitro study, performed on PC12 cells, indicated that βOHB inhibited H2O2-induced ROS production, decreased NOX2 and NOX4 protein levels, and upregulated FOXO3a, MnSOD, and catalase levels in a dose-dependent manner, which was consistent with the in vivo results. The ketone metabolite βOHB inhibited HDAC1, HDAC2, and HDAC3 activity, but not HDAC8 in SCI rats and PC12 cells. Depletion of HDAC1 or HDAC2 with small interfering RNA (siRNA) attenuated H2O2-induced ROS production and protein carbonylation and elevated FOXO3a protein levels, meanwhile reducing NOX2 and NOX4 protein expression in PC12 cells. Our results indicate that the ketone metabolite βOHB attenuates oxidative stress in SCI by inhibition of class I HDACs, and selected suppression of HDAC1 or HDAC2 regulates FOXO3a, NOX2, and NOX4 expression. Therefore, the ketone metabolite βOHB may be a novel promising therapeutic agent for SCI.
Collapse
Affiliation(s)
- Ganggang Kong
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Zucheng Huang
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Wei Ji
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Xiaomeng Wang
- 2 Department of Spinal Surgery, Longyan First Hospital , Fujian, China
| | - Junhao Liu
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Xiuhua Wu
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Zhiping Huang
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Rong Li
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Qingan Zhu
- 1 Department of Spinal Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
36
|
Si J, Wang S, Liu N, Yang X, Wang Y, Li L, Wang J, Lv X. Anticonvulsant effect of exogenous β-hydroxybutyrate on kainic acid-induced epilepsy. Exp Ther Med 2017; 14:765-770. [PMID: 28672997 DOI: 10.3892/etm.2017.4552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/10/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the anticonvulsant effects of β-hydroxybutyrate (BHB) in a kainic acid (KA)-induced rat seizure model. The concentrations of BHB and glucose were detected in the blood prior to exogenous BHB administration. Three different doses of BHB (2, 4 and 8 mmol/kg) were then injected into male Wistar rats intraperitoneally, and the concentrations of BHB and glucose in the blood were detected. Rats received 0.9% normal saline intraperitoneally at a dose of 4 ml/kg as a control. Subsequently, a KA-induced rat seizure model was established and the anticonvulsant effects of BHB were investigated. The onset time of seizure and the degree of seizure behavior were recorded. Nissl and Timm staining were used to evaluate neuronal loss and mossy fiber sprouting, respectively. The present study demonstrated that exogenous BHB administration could significantly increase BHB concentration in the blood and this concentration was maintained for 90 min without affecting blood glucose levels. Furthermore, it was determined that a dose of 4 mmol/kg BHB is optimal for exogenous administration. The onset time of seizure was significantly prolonged in BHB-pretreated rats (63.31±4.050 min) compared with the control group (37.08±1.958 min; P=0.039). In addition, neuronal loss and mossy fiber sprouting were both alleviated in the BHB-pretreated model group. Exogenous BHB administration at a dose of 4 mmol/kg may be an alternative to a ketogenic diet to exert a protective effect in the epileptic model induced by KA. The results of the present study may allow novel therapeutic strategies to be developed to treat epilepsy.
Collapse
Affiliation(s)
- Jianping Si
- Department of Neurology, Children's Medical Center, Qilu Hospital of Shandong University, Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Pediatrics, The People's Hospital of Guangrao, Dongying, Shandong 257300, P.R. China
| | - Shaohui Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33606, USA
| | - Ning Liu
- Institute of Pediatric Research, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, P.R. China
| | - Xiaofei Yang
- Department of Pediatrics, Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Ying Wang
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Ling Li
- Institute of Pediatric Research, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, P.R. China
| | - Jiwen Wang
- Department of Neurology, Children's Medical Center, Qilu Hospital of Shandong University, Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xin Lv
- Institute of Pediatric Research, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
37
|
Qian J, Zhu W, Lu M, Ni B, Yang J. D-β-hydroxybutyrate promotes functional recovery and relieves pain hypersensitivity in mice with spinal cord injury. Br J Pharmacol 2017; 174:1961-1971. [PMID: 28320049 DOI: 10.1111/bph.13788] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 03/05/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Spinal cord injury (SCI) leads to severe motor and sensory dysfunction and significantly reduces the quality of life. The aim of the present work was to investigate the effect of administration of exogenous D-β-hydroxybutyrate (DBHB) on functional recovery and neuropathic pain in spinal cord-injured mice. EXPERIMENTAL APPROACH Mice were given a moderate-severe thoracic spinal contusion injury at the T9-10 level and treated with exogenous DBHB. KEY RESULTS Treatment of SCI mice with DBHB markedly improved locomotor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. DBHB treatment partly prevented the SCI-induced loss of motor neurons and suppressed microglial and glial activation. DBHB treatment enhanced histone acetylation and up-regulated expression of the transcription factor FOXO3a, catalase and SOD2 in injured region of SCI mice. DBHB treatment suppressed SCI-induced NLRP3 inflammasome activation and reduced protein expression of IL-1β and IL-18. In addition, DBHB treatment improved mitochondrial function and abated oxidative stress following SCI. CONCLUSIONS AND IMPLICATIONS DBHB promoted functional recovery and relieved pain hypersensitivity in mice with SCI, possibly through inhibition of histone deacetylation and NLRP3 inflammasome activation and preservation of mitochondrial function. DBHB could thus be envisaged as a potential use of interventions for SCI but remains to be tested in humans.
Collapse
Affiliation(s)
- Jiao Qian
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenjun Zhu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ming Lu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bin Ni
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Yang
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
38
|
Song L, Pei L, Yao S, Wu Y, Shang Y. NLRP3 Inflammasome in Neurological Diseases, from Functions to Therapies. Front Cell Neurosci 2017; 11:63. [PMID: 28337127 PMCID: PMC5343070 DOI: 10.3389/fncel.2017.00063] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/22/2017] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation has been identified as a causative factor of multiple neurological diseases. The nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome, a subcellular multiprotein complex that is abundantly expressed in the central nervous system (CNS), can sense and be activated by a wide range of exogenous and endogenous stimuli such as microbes, aggregated and misfolded proteins, and adenosine triphosphate, which results in activation of caspase-1. Activated caspase-1 subsequently leads to the processing of interleukin-1β (IL-1β) and interleukin-18 (IL-18) pro-inflammatory cytokines and mediates rapid cell death. IL-1β and IL-18 drive inflammatory responses through diverse downstream signaling pathways, leading to neuronal damage. Thus, the NLRP3 inflammasome is considered a key contributor to the development of neuroinflammation. In this review article, we briefly discuss the structure and activation the NLRP3 inflammasome and address the involvement of the NLRP3 inflammasome in several neurological disorders, such as brain infection, acute brain injury and neurodegenerative diseases. In addition, we review a series of promising therapeutic approaches that target the NLRP3 inflammasome signaling including anti-IL-1 therapy, small molecule NLRP3 inhibitors and other compounds, however, these approaches are still experimental in neurological diseases. At present, it is plausible to generate cell-specific conditional NLRP3 knockout (KO) mice via the Cre system to investigate the role of the NLRP3 inflammasome, which may be instrumental in the development of novel pharmacologic investigations for neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Limin Song
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Lei Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
39
|
Shuaib S, Goyal B. Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β 42 monomer: insights from molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:663-678. [PMID: 28162045 DOI: 10.1080/07391102.2017.1291363] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by loss of intellectual functioning of brain and memory loss. According to amyloid cascade hypothesis, aggregation of amyloid-β42 (Aβ42) peptide can generate toxic oligomers and their accumulation in the brain is responsible for the onset of AD. In spite of carrying out a large number of experimental studies on inhibition of Aβ42 aggregation by small molecules, the detailed inhibitory mechanism remains elusive. In the present study, comparable molecular dynamics (MD) simulations were performed to elucidate the inhibitory mechanism of a sulfonamide inhibitor C1 (2,5-dichloro-N-(4-piperidinophenyl)-3-thiophenesulfonamide), reported for its in vitro and in vivo anti-aggregation activity against Aβ42. MD simulations reveal that C1 stabilizes native α-helix conformation of Aβ42 by interacting with key residues in the central helix region (13-26) with hydrogen bonds and π-π interactions. C1 lowers the solvent-accessible surface area of the central hydrophobic core (CHC), KLVFF (16-20), that confirms burial of hydrophobic residues leading to the dominance of helical conformation in the CHC region. The binding free energy analysis with MM-PBSA demonstrates that Ala2, Phe4, Tyr10, Gln15, Lys16, Leu17, Val18, Phe19, Phe20, Glu22, and Met35 contribute maximum to binding free energy (-43.1 kcal/mol) between C1 and Aβ42 monomer. Overall, MD simulations reveal that C1 inhibits Aβ42 aggregation by stabilizing native helical conformation and inhibiting the formation of aggregation-prone β-sheet conformation. The present results will shed light on the underlying inhibitory mechanism of small molecules that show potential in vitro anti-aggregation activity against Aβ42.
Collapse
Affiliation(s)
- Suniba Shuaib
- a Department of Chemistry , School of Basic and Applied Sciences, Sri Guru Granth Sahib World University , Fatehgarh Sahib 140406 , Punjab , India
| | - Bhupesh Goyal
- a Department of Chemistry , School of Basic and Applied Sciences, Sri Guru Granth Sahib World University , Fatehgarh Sahib 140406 , Punjab , India
| |
Collapse
|
40
|
Salameh A, Dhein S, Dähnert I, Klein N. Neuroprotective Strategies during Cardiac Surgery with Cardiopulmonary Bypass. Int J Mol Sci 2016; 17:ijms17111945. [PMID: 27879647 PMCID: PMC5133939 DOI: 10.3390/ijms17111945] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/02/2016] [Accepted: 11/15/2016] [Indexed: 12/27/2022] Open
Abstract
Aortocoronary bypass or valve surgery usually require cardiac arrest using cardioplegic solutions. Although, in principle, in a number of cases beating heart surgery (so-called off-pump technique) is possible, aortic or valve surgery or correction of congenital heart diseases mostly require cardiopulmonary arrest. During this condition, the heart-lung machine also named cardiopulmonary bypass (CPB) has to take over the circulation. It is noteworthy that the invention of a machine bypassing the heart and lungs enabled complex cardiac operations, but possible negative effects of the CPB on other organs, especially the brain, cannot be neglected. Thus, neuroprotection during CPB is still a matter of great interest. In this review, we will describe the impact of CPB on the brain and focus on pharmacological and non-pharmacological strategies to protect the brain.
Collapse
Affiliation(s)
- Aida Salameh
- Clinic for Paediatric Cardiology Heart Centre, University of Leipzig, 04289 Leipzig, Germany.
| | - Stefan Dhein
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany.
| | - Ingo Dähnert
- Clinic for Paediatric Cardiology Heart Centre, University of Leipzig, 04289 Leipzig, Germany.
| | - Norbert Klein
- Department of Cardiology, Angiology and Internal Intensive Care Medicine, St. Georg Hospital, Academic Medical Centre, University of Leipzig, 04129 Leipzig, Germany.
| |
Collapse
|
41
|
Greco T, Glenn TC, Hovda DA, Prins ML. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity. J Cereb Blood Flow Metab 2016; 36:1603-13. [PMID: 26661201 PMCID: PMC5012517 DOI: 10.1177/0271678x15610584] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/14/2015] [Indexed: 01/24/2023]
Abstract
Cerebral metabolism of ketones after traumatic brain injury (TBI) improves neuropathology and behavior in an age-dependent manner. Neuroprotection is attributed to improved cellular energetics, although other properties contribute to the beneficial effects. Oxidative stress is responsible for mitochondrial dysfunction after TBI. Ketones decrease oxidative stress, increase antioxidants and scavenge free radicals. It is hypothesized that ketogenic diet (KD) will decrease post-TBI oxidative stress and improve mitochondria. Postnatal day 35 (PND35) male rats were given sham or controlled cortical impact (CCI) injury and placed on standard (STD) or KD. Ipsilateral cortex homogenates and mitochondria were assayed for markers of oxidative stress, antioxidant expression and mitochondrial function. Oxidative stress was significantly increased at 6 and 24 h post-injury and attenuated by KD while inducing protein expression of antioxidants, NAD(P)H dehydrogenase quinone 1 (NQO1) and superoxide dismutase (SOD1/2). Complex I activity was inhibited in STD and KD groups at 6 h and normalized by 24 h. KD significantly improved Complex II-III activity that was reduced in STD at 6 h. Activity remained reduced at 24 h in STD and unchanged in KD animals. These results strongly suggest that ketones improve post-TBI cerebral metabolism by providing alternative substrates and through antioxidant properties, preventing oxidative stress-mediated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Tiffany Greco
- Department of Neurosurgery, Los Angeles, CA, USA The UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - Thomas C Glenn
- Department of Neurosurgery, Los Angeles, CA, USA The UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - David A Hovda
- Department of Neurosurgery, Los Angeles, CA, USA The UCLA Brain Injury Research Center, Los Angeles, CA, USA The Interdepartmental Program for Neuroscience, Los Angeles, CA, USA Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mayumi L Prins
- Department of Neurosurgery, Los Angeles, CA, USA The UCLA Brain Injury Research Center, Los Angeles, CA, USA The Interdepartmental Program for Neuroscience, Los Angeles, CA, USA
| |
Collapse
|
42
|
Johnson DA, Johnson JA. Nrf2--a therapeutic target for the treatment of neurodegenerative diseases. Free Radic Biol Med 2015; 88:253-267. [PMID: 26281945 PMCID: PMC4809057 DOI: 10.1016/j.freeradbiomed.2015.07.147] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022]
Abstract
The brain is very sensitive to changes in redox status; thus maintaining redox homeostasis in the brain is critical for the prevention of accumulating oxidative damage. Aging is the primary risk factor for developing neurodegenerative diseases. In addition to age, genetic and environmental risk factors have also been associated with disease development. The primary reactive insults associated with the aging process are a result of oxidative stress (OS) and nitrosative stress (NS). Markers of increased oxidative stress, protein and DNA modification, inflammation, and dysfunctional proteostasis have all been implicated in contributing to the progression of neurodegeneration. The ability of the cell to combat OS/NS and maintain a clearance mechanism for misfolded aggregating proteins determines whether or not it will survive. A critical pathway in this regard is the Nrf2 (nuclear factor erythroid 2-related factor 2)- antioxidant response element (ARE) pathway. Nrf2 activation has been shown to mitigate a number of pathologic mechanisms associated with Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. This review will focus on the role of Nrf2 in these diseases and the potential for Nrf2 activation to attenuate disease progression.
Collapse
Affiliation(s)
- Delinda A Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Jeffrey A Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|