1
|
Lee JE, Kim JY, Leem J. Efficacy of Trametinib in Alleviating Cisplatin-Induced Acute Kidney Injury: Inhibition of Inflammation, Oxidative Stress, and Tubular Cell Death in a Mouse Model. Molecules 2024; 29:2881. [PMID: 38930946 PMCID: PMC11206428 DOI: 10.3390/molecules29122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cisplatin, a platinum-based chemotherapeutic, is effective against various solid tumors, but its use is often limited by its nephrotoxic effects. This study evaluated the protective effects of trametinib, an FDA-approved selective inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK1/2), against cisplatin-induced acute kidney injury (AKI) in mice. The experimental design included four groups, control, trametinib, cisplatin, and a combination of cisplatin and trametinib, each consisting of eight mice. Cisplatin was administered intraperitoneally at a dose of 20 mg/kg to induce kidney injury, while trametinib was administered via oral gavage at 3 mg/kg daily for three days. Assessments were conducted 72 h after cisplatin administration. Our results demonstrate that trametinib significantly reduces the phosphorylation of MEK1/2 and extracellular signal-regulated kinase 1/2 (ERK1/2), mitigated renal dysfunction, and ameliorated histopathological abnormalities. Additionally, trametinib significantly decreased macrophage infiltration and the expression of pro-inflammatory cytokines in the kidneys. It also lowered lipid peroxidation by-products, restored the reduced glutathione/oxidized glutathione ratio, and downregulated NADPH oxidase 4. Furthermore, trametinib significantly inhibited both apoptosis and necroptosis in the kidneys. In conclusion, our data underscore the potential of trametinib as a therapeutic agent for cisplatin-induced AKI, highlighting its role in reducing inflammation, oxidative stress, and tubular cell death.
Collapse
Affiliation(s)
- Joung Eun Lee
- Department of Emergency Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jung-Yeon Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| |
Collapse
|
2
|
Pasupulati AK, Nagati V, Paturi ASV, Reddy GB. Non-enzymatic glycation and diabetic kidney disease. VITAMINS AND HORMONES 2024; 125:251-285. [PMID: 38997166 DOI: 10.1016/bs.vh.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Chronic diabetes leads to various complications including diabetic kidney disease (DKD). DKD is a major microvascular complication and the leading cause of morbidity and mortality in diabetic patients. Varying degrees of proteinuria and reduced glomerular filtration rate are the cardinal clinical manifestations of DKD that eventually progress into end-stage renal disease. Histopathologically, DKD is characterized by renal hypertrophy, mesangial expansion, podocyte injury, glomerulosclerosis, and tubulointerstitial fibrosis, ultimately leading to renal replacement therapy. Amongst the many mechanisms, hyperglycemia contributes to the pathogenesis of DKD via a mechanism known as non-enzymatic glycation (NEG). NEG is the irreversible conjugation of reducing sugars onto a free amino group of proteins by a series of events, resulting in the formation of initial Schiff's base and an Amadori product and to a variety of advanced glycation end products (AGEs). AGEs interact with cognate receptors and evoke aberrant signaling cascades that execute adverse events such as oxidative stress, inflammation, phenotypic switch, complement activation, and cell death in different kidney cells. Elevated levels of AGEs and their receptors were associated with clinical and morphological manifestations of DKD. In this chapter, we discussed the mechanism of AGEs accumulation, AGEs-induced cellular and molecular events in the kidney and their impact on the pathogenesis of DKD. We have also reflected upon the possible options to curtail the AGEs accumulation and approaches to prevent AGEs mediated adverse renal outcomes.
Collapse
Affiliation(s)
- Anil K Pasupulati
- Department of Biochemistry, University of Hyderabad, Hyderabad, India.
| | - Veerababu Nagati
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | - Atreya S V Paturi
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | - G Bhanuprakash Reddy
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
3
|
Osmakov DI, Kalinovskii AP, Belozerova OA, Andreev YA, Kozlov SA. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int J Mol Sci 2022; 23:6031. [PMID: 35682715 PMCID: PMC9181380 DOI: 10.3390/ijms23116031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| |
Collapse
|
4
|
Zhu DW, Yu Q, Jiang MF, Wang DD, Shen YH. Exploring the Anti-Pulmonary Fibrosis Mechanism of Jingyin Granule by Network Pharmacology Strategy. Front Pharmacol 2022; 13:825667. [PMID: 35222040 PMCID: PMC8874130 DOI: 10.3389/fphar.2022.825667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis (PF) is a clinically common disease caused by many factors, which will lead to lung function decline and even respiratory failure. Jingyin granule has been confirmed to have anti-inflammatory and antiviral effects by former studies, and has been recommended for combating H1N1 influenza A virus (H1N1) infection and Coronavirus disease 2019 (COVID-19) in China. At present, studies have shown that patients with severe COVID-19 infection developed lung fibrotic lesions. Although Jingyin granule can improve symptoms in COVID-19 patients, no study has yet reported whether it can attenuate the process of PF. Here, we explored the underlying mechanism of Jingyin granule against PF by network pharmacology combined with in vitro experimental validation. In the present study, the active ingredients as well as the corresponding action targets of Jingyin granule were firstly collected by TCMSP and literature data, and the disease target genes of PF were retrieved by disease database. Then, the common targets were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and then a PPI network and an ingredient–target network were constructed. Next, UPLC-MS was used to isolate and identify selected representative components in Jingyin granule. Finally, LPS was used to induce the A549 cell fibrosis model to verify the anti-PF effect of Jingyin granule in vitro. Our results indicated that STAT3, JUN, RELA, MAPK3, TNF, MAPK1, IL-6, and AKT1 were core targets of action and bound with good affinity to selected components, and Jingyin granule may alleviate PF progression by Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT3), the mammalian nuclear factor-κB (NF-κB), the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), tumor necrosis factor (TNF), and the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathways. Overall, these results provide future therapeutic strategies into the mechanism study of Jingyin granule on PF.
Collapse
Affiliation(s)
- De-wei Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qun Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mei-fang Jiang
- SPH Xing Ling Sci. & Tech. Pharmaceutical Co., Ltd., Shanghai, China
| | - Dan-dan Wang
- SPH Xing Ling Sci. & Tech. Pharmaceutical Co., Ltd., Shanghai, China
| | - Yun-hui Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yun-hui Shen,
| |
Collapse
|
5
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
6
|
Liu X, Wang J, Dou P, Zhang X, Ran X, Liu L, Dou D. The Ameliorative Effects of Arctiin and Arctigenin on the Oxidative Injury of Lung Induced by Silica via TLR-4/NLRP3/TGF- β Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5598980. [PMID: 34336106 PMCID: PMC8313330 DOI: 10.1155/2021/5598980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 06/26/2021] [Indexed: 12/26/2022]
Abstract
Silicosis remains one of the most serious diseases worldwide, with no effective drug for its treatment. Our research results have indicated that arctiin and arctigenin could increase the mitochondrial membrane potential, which in turn reduces the production of reactive oxygen species (ROS), blocks the polarization of macrophages, and inhibits the differentiation of myofibroblasts to reduce oxidative stress, inflammation, and fibrosis. Further, our study revealed that arctiin and arctigenin suppressed the activation of NLRP3 inflammasome through the TLR-4/Myd88/NF-κB pathway and the silica-induced secretion of TNF-α, IL-1β, TGF-β, and α-SMA. Besides, the silica-induced increase in the levels of serum ceruloplasmin and HYP was also inhibited. Results of metabolomics indicated that arctiin and arctigenin could regulate the abnormal metabolic pathways associated with the development of silicosis, which involve pantothenate and CoA biosynthesis, cysteine and methionine metabolism, linoleic acid metabolism, and arginine and proline metabolism successively. Furthermore, the analysis of metabolomics, together with network topological analysis in different phases of silicosis, revealed that urine myristic acid, serum 4-hydroxyproline, and L-arginine could be regarded as diagnosis biomarkers in the early phase and formation of pulmonary fibrosis in the latter phases of silicosis. Arctiin and arctigenin could downregulate the increased levels of myristic acid in the early phase and serum 4-hydroxyproline in the latter phase of silicosis. Interestingly, the integration of TLR-4/NLRP3/TGF-β signaling and metabolomics verified the importance of macrophage polarization in the silicosis fibrosis process. To the best of our knowledge, this is the first study reporting that arctiin and arctigenin both can ameliorate silicosis effectively, and the former is a little stronger than its aglycone arctigenin because of its high oral bioavailability, low toxicity, and multimolecular active metabolites as determined by AdmetSAR and molecular docking analysis.
Collapse
Affiliation(s)
- Xueying Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jian Wang
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, Shenyang 110032, China
| | - Peiyuan Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xu Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xiaoku Ran
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Linlin Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| |
Collapse
|
7
|
Gao F, Zhang Y, Yang Z, Wang M, Zhou Z, Zhang W, Ren Y, Han X, Wei M, Sun Z, Nie S. Arctigenin Suppressed Epithelial-Mesenchymal Transition Through Wnt3a/β-Catenin Pathway in PQ-Induced Pulmonary Fibrosis. Front Pharmacol 2020; 11:584098. [PMID: 33390951 PMCID: PMC7772408 DOI: 10.3389/fphar.2020.584098] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/20/2020] [Indexed: 11/20/2022] Open
Abstract
Arctigenin (ATG), a major bioactive substance of Fructus Arctii, counters renal fibrosis; however, whether it protects against paraquat (PQ)-induced lung fibrosis remains unknown. The present study was to determine the effect of ATG on PQ-induced lung fibrosis in a mouse model and the underlying mechanism. Firstly, we found that ATG suppressed PQ-induced pulmonary fibrosis by blocking the epithelial-mesenchymal transition (EMT). ATG reduced the expressions of Vimentin and α-SMA (lung fibrosis markers) induced by PQ and restored the expressions of E-cadherin and Occludin (two epithelial markers) in vivo and in vitro. Besides, the Wnt3a/β-catenin signaling pathway was significantly activated in PQ induced pulmonary fibrosis. Further analysis showed that pretreatment of ATG profoundly abrogated PQ-induced EMT-like phenotypes and behaviors in A549 cells. The Wnt3a/β-catenin signaling pathway was repressed by ATG treatment. The overexpression of Wnt3a could weaken the therapeutic effect of ATG in A549 cells. These findings suggested that ATG could serve as a new therapeutic candidate to inhibit or even reverse EMT-like changes in alveolar type II cells during PQ-induced lung fibrosis, and unraveled that the Wnt3a/β-catenin pathway might be a mechanistic tool for ATG to control pulmonary fibrosis.
Collapse
Affiliation(s)
- Fei Gao
- Department of Emergency Medicine, Jinling Clinical College of Nanjing Medical University, Nanjing, China.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Emergency Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yun Zhang
- Department of Emergency Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiyi Zhou
- Department of Pathology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoqin Han
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mei Wei
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Clinical College of Nanjing Medical University, Nanjing, China.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Jiang L, Deng Y, Li W, Lu Y. Arctigenin suppresses fibroblast activity and extracellular matrix deposition in hypertrophic scarring by reducing inflammation and oxidative stress. Mol Med Rep 2020; 22:4783-4791. [PMID: 33174021 PMCID: PMC7646887 DOI: 10.3892/mmr.2020.11539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Hypertrophic scars (HSs) are a progressive fibroproliferation disorder caused by abnormal tissue repair after deep skin injury, and are characterized by continuous activation of fibroblasts and excessive deposition of extracellular matrix. Arctigenin (ATG), a phytomedicine derived from certain plants, displays antifibrotic effects in certain diseases, such as oral submucous fibrosis and peritoneal fibrosis. In the present study, to determine the antifibrotic potential of ATG in HS, a bleomycin (BLM)-induced skin fibrosis murine model was established. C57BL/6 mice were randomly divided into Control group, BLM group and BLM+ATG group. At 1 day post-bleomycin induction, the BLM+ATG group was intraperitoneally injected with 3 mg/kg/day ATG for 28 consecutive days. Pathological changes in the skin tissues were observed by hematoxylin and eosin staining. Collagen content was determined using a Sircol Collagen assay kit. Immunofluorescence staining was performed to detect the expression of TGF-β1 and α-SMA. The expression changes of various factors were detected by reverse transcription-quantitative PCR, western blotting and ELISA. Compared with the BLM group, ATG treatment significantly alleviated skin fibrosis by reducing dermal thickness, collagen content and expression levels of extracellular matrix-related genes (collagen type I α1 chain, collagen type I α2 chain, connective tissue growth factor and plasminogen activator inhibitor-1) in BLM-induced fibrotic skin. ATG also inhibited the transformation of fibroblasts into myofibroblasts in vivo and decreased the expression of TGF-β1 in BLM-induced fibrotic skin. Furthermore, the contents of proinflammatory cytokines, including IL-1β, IL-4, IL-6, TNF-α and monocyte chemoattractant protein-1, were significantly decreased in the BLM+ATG group compared with the BLM group. Redox imbalance and oxidative stress were also reversed by ATG in BLM-induced fibrotic skin, as demonstrated by the upregulation of antioxidants (glutathione and superoxide dismutase) and downregulation of oxidants (malondialdehyde) in the BLM+ATG group compared with the BLM group. Moreover, the results indicated that the antioxidant effect of ATG may occur via activation of the nuclear factor erythroid-2-related factor 2/heme oxygenase-1 signaling pathway. Collectively, the present study indicated that ATG could ameliorate skin fibrosis in a murine model of HS, which was partly mediated by reducing inflammation and oxidative stress. Therefore, ATG may serve as a therapeutic agent for HSs.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Plastic Surgery, Chongqing University Central Hospital, Chongqing 400000, P.R. China
| | - Ying Deng
- Department of Plastic Surgery, Chongqing University Central Hospital, Chongqing 400000, P.R. China
| | - Wei Li
- Department of Plastic Surgery, Chongqing University Central Hospital, Chongqing 400000, P.R. China
| | - Yang Lu
- Department of Plastic Surgery, Chongqing University Central Hospital, Chongqing 400000, P.R. China
| |
Collapse
|
9
|
Lee CH. Reversal of Epithelial-Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids. Cancers (Basel) 2019; 11:E1841. [PMID: 31766574 PMCID: PMC6966475 DOI: 10.3390/cancers11121841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a key process in the progression of malignant cancer. Therefore, blocking the EMT can be a critical fast track for the development of anticancer drugs. In this paper, we update recent research output of EMT and we explore suppression of EMT by natural anti-inflammatory compounds and pro-resolving lipids.
Collapse
Affiliation(s)
- Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 100-715, Korea
| |
Collapse
|
10
|
Jin G, Su Y, Dong Q, Zhao X, Zhang L, Yan X. Arctigenin alleviates TGF-β1-induced epithelial-mesenchymal transition and PAI-1 expression via AMPK/NF-κB pathway in peritoneal mesothelial cells. Biochem Biophys Res Commun 2019; 520:413-419. [PMID: 31607474 DOI: 10.1016/j.bbrc.2019.09.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022]
Abstract
Peritoneal fibrosis (PF) caused by long-term peritoneal dialysis is closely associated with the epithelial-mesenchymal transition (EMT) of human peritoneal mesothelial cells (HPMCs). Moreover, the anti-fibrotic role of Arctigenin (Arc) has been reported in several fibrosis disorders. Therefore, the preventive effect of Arc on transforming growth factor-β1 (TGF-β1)-induced EMT and the underlying mechanisms in HPMCs was investigated in this study. Firstly, the PD model was established by TGF-β1 stimulation in cultured HPMCs in vitro, we found that TGF-β1 significantly increased the EMT markers (α-SMA, vimentin, and fibronectin) and plasminogen activator inhibitor type 1 (PAI-1) expressions, but decreased epithelial marker (E-cadherin). Co-treatment with Arc (10, 20, 40 μM) ameliorated TGF-β1-induced EMT in a dose-dependent manner, and the expression of PAI-1 was also inhibited by Arc, which was abrogated by restoration of PAI-1. Moreover, Arc enhanced the phosphorylated AMP-activated protein kinase (AMPK), but inhibited the phosphorylated IκBα level and nuclear translocation of nuclear factor κB (NF-κB) p65 in TGF-β1-induced HPMCs. ChIP and Luciferase reporter assays verified that the increased binding capacity of NF-κB to the promoter of PAI-1 induced by TGF-β1 was reversely attenuated by Arc in HPMCs. However, the effect of Arc on TGF-β1-induced NF-κB activation, PAI-1 expression and EMT in HPMCs was attenuated by AMPK agonist Compound C. In conclusion, these data demonstrated that Arc suppressed TGF-β1-induced EMT by activating the AMPK/NF-κB pathway to inhibit PAI-1 expression in HPMCs. Therefore, Arc might act as a potential therapeutic agent for PD treatment.
Collapse
Affiliation(s)
- Gang Jin
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yanjin Su
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Qianlan Dong
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xiaohong Zhao
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Linping Zhang
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| | - Xiaohui Yan
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
11
|
Liang D, Song Z, Liang W, Li Y, Liu S. Metformin inhibits TGF-beta 1-induced MCP-1 expression through BAMBI-mediated suppression of MEK/ERK1/2 signalling. Nephrology (Carlton) 2019; 24:481-488. [PMID: 29934960 DOI: 10.1111/nep.13430] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
AIMS Metformin is a biguanide derivative widely used for the treatment of type 2 diabetes mellitus. Recent evidence demonstrates that this anti-hyperglycaemic drug exerts renal protective effects, yet the mechanisms remain poorly understood. monocyte chemoattractant protein 1 (MCP-1) has been recognized as a key mediator of renal fibrosis in chronic kidney diseases, including diabetic nephropathy. This study aimed to investigate the effects of metformin on transforming growth factor beta 1 (TGF-β1)-induced MCP-1 expression and the underlying mechanisms in rat renal tubular epithelial cells. METHODS Rat renal tubular epithelial cell line NRK-52E cells were stimulated with TGF-β1 and/or metformin. The messenger RNA (mRNA) of MCP-1 and bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) was evaluated by real-time quantitative polymerase chain reaction. MCP-1 protein was measured by enzyme linked immunosorbent assay (ELISA). Total and phosphorylated extracellular signal-regulated kinases 1/2 (ERK1/2) was evaluated by western blot. Down- and upregulation of BAMBI were achieved by RNA interference targeting BAMBI and lentiviral vector-mediated overexpression of the BAMBI gene, respectively. Cell viability was analysed using Cell Counting Kit 8 (CCK-8) reagents. RESULTS Stimulation with TGF-β1 resulted in the increased expression of MCP-1 and decreased expression of BAMBI in NRK-52E cells. Metformin inhibited the expression of MCP-1 in NRK-52E cells. Pretreatment with metformin suppressed upregulation of MCP-1 and downregulation of BAMBI, as well as phosphorylation of ERK1/2 induced by TGF-β1. U0126, a specific inhibitor for mitogen-activated and extracellular signal-regulated kinase kinases 1/2 (MEK-1/2), completely blocked TGF-β1-induced MCP-1 expression. Knockdown of the BAMBI gene promoted phosphorylation of ERK1/2 and TGF-β1-induced expression of MCP-1. Overexpression of BAMBI inhibited phosphorylation of ERK1/2 and TGF-β1-induced upregulation of MCP-1. CONCLUSION In rat renal tubular epithelial cells, metformin prevents TGF-β1-induced MCP-1 expression, in which BAMBI-mediated inhibition of MEK/ERK1/2 might be involved.
Collapse
Affiliation(s)
- Diefei Liang
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zijiao Song
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiwen Liang
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Li
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shanying Liu
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
HHQ-4, a quinoline derivate, preferentially inhibits proliferation of glucose-deprived breast cancer cells as a GRP78 down-regulator. Toxicol Appl Pharmacol 2019; 373:10-25. [DOI: 10.1016/j.taap.2019.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 01/13/2023]
|
13
|
Zhang J, Cao P, Gui J, Wang X, Han J, Wang Y, Wang G. Arctigenin ameliorates renal impairment and inhibits endoplasmic reticulum stress in diabetic db/db mice. Life Sci 2019; 223:194-201. [PMID: 30898648 DOI: 10.1016/j.lfs.2019.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 12/11/2022]
Abstract
AIMS Diabetic nephropathy (DN) is the most common complication of diabetes mellitus. Endoplasmic reticulum (ER) plays an important role in the development and progression of DN. Arctigenin (ATG), a lignan extract from Fructus Arctii, exhibits anti-inflammatory, anticarcinogenic, anti-oxidative stress and immunomodulatory properties. The present research aimed to investigate whether ATG could protect against diabetes-related renal injury and inhibit ER stress in db/db mice. MAIN METHODS Male db/db mice were randomly divided into two groups: DN group and ATG treatment group (DN + ATG). db/m mice were defined as the normal control group (NC). ATG was dissolved in 0.5% carboxymethyl cellulose sodium salt solution and administered orally at a dose of 80 mg/kg to mice in the DN + ATG group once daily for 8 consecutive weeks. HK2 cells were used to determine the effects of ATG on ER stress and cell apoptosis in vitro. KEY FINDINGS ATG administration significantly reduced blood glucose, urine albumin excretion, and urine albumin to creatinine ratio, and attenuated renal pathological injury when compared with untreated db/db mice. These changes were accompanied by decreased expression of both ER stress-related markers and caspase 12 level in the kidneys of db/db mice. In vitro, high glucose activated ER stress signal transduction pathway and induced cell apoptosis in HK2 cells, which were blocked by ATG. SIGNIFICANCE Our results suggest that ATG exerts renoprotective effects on diabetes-related renal injury in db/db mice and cytoprotective effects on high glucose induced cell apoptosis and inhibits ER stress.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Peng Cao
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Jingjing Gui
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Xin Wang
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Jun Han
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Yuwei Wang
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China.
| | - Guodong Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| |
Collapse
|
14
|
Lin CY, Hsieh PL, Liao YW, Peng CY, Yu CC, Lu MY. Arctigenin Reduces Myofibroblast Activities in Oral Submucous Fibrosis by LINC00974 Inhibition. Int J Mol Sci 2019; 20:ijms20061328. [PMID: 30884781 PMCID: PMC6470833 DOI: 10.3390/ijms20061328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Oral submucous fibrosis (OSF) is an oral precancerous condition associated with the habit of areca nut chewing and the TGF-β pathway. Currently, there is no curative treatment to completely heal OSF, and it is imperative to alleviate patients’ symptoms and prevent it from undergoing malignant transformation. Arctigenin, a lignan extracted from Arctium lappa, has been reported to have a variety of pharmacological activities, including anti-fibrosis. In the present study, we examined the effect of arctigenin on the cell proliferation of buccal mucosal fibroblasts (BMFs) and fibrotic BMFs (fBMFs), followed by assessment of myofibroblast activities. We found that arctigenin was able to abolish the arecoline-induced collagen gel contractility, migration, invasion, and wound healing capacities of BMFs and downregulate the myofibroblast characteristics of fBMFs in a dose-dependent manner. Most importantly, the production of TGF-β in fBMFs was reduced after exposure to arctigenin, along with the suppression of p-Smad2, α-smooth muscle actin, and type I collagen A1. In addition, arctigenin was shown to diminish the expression of LINC00974, which has been proven to activate TGF-β/Smad signaling for oral fibrogenesis. Taken together, we demonstrated that arctigenin may act as a suitable adjunct therapy for OSF.
Collapse
Affiliation(s)
- Ching-Yeh Lin
- Division of Hematology/Oncology, Department of Internal Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan.
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
15
|
Sun H, Shao X, He J, Golos M, Shi B. Role of the mTOR‑FOXO1 pathway in obesity‑associated renal tubulointerstitial inflammation. Mol Med Rep 2018; 19:1284-1293. [PMID: 30535458 DOI: 10.3892/mmr.2018.9727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/13/2018] [Indexed: 11/06/2022] Open
Abstract
Since obesity is largely responsible for the growing incidence of renal tubulointerstitial inflammation, exploration into the mechanisms of obesity‑associated tubulointerstitial inflammation is essential. Studies have demonstrated that mammalian target of rapamycin (mTOR) is a crucial molecule in the pathogenesis of renal inflammation, including regulating the expression of inflammatory factors. The purpose of the present study was to further elucidate the role of mTOR in obesity‑associated tubulointerstitial inflammation. In the clinical study, obese and healthy subjects were recruited for physical examination, as well as the collection of blood and urine samples. Further study was performed on a high fat diet (HFD)‑induced obese rat model and a cultured human renal tubular epithelial cell line (HK‑2). The clinical study demonstrated that the participants with obesity had increased serum lipids, creatinine (Cr), urinary albumin to creatinine ratio (UACR) and urinary neutrophil gelatinase‑associated lipocalin (u‑NGAL). Moreover, the level of urinary monocyte chemoattractant protein‑1 (u‑MCP‑1) was increased in the participants with obesity, and it was positively correlated with free fatty acid (FFA), UACR and u‑NGAL. In the in vivo study, the results indicated that the levels of serum lipids, Cr and blood urea nitrogen (BUN), as well as 24 h urine protein and u‑NGAL, were significantly increased in the HFD‑fed obese rats. In addition, the infiltration of CD68+ cells into the renal interstitial area and the release of interleukin‑1β (IL‑1β) was observed in the kidneys of obese rats. Meanwhile, the supernatant from HK‑2 cells treated with palmitic acid stimulated THP‑1 monocyte migration. The upregulation of MCP‑1, phosphorylated forkhead boxO1 (p‑FOXO1), and phosphorylated mTOR (p‑mTOR) was observed in vivo and in vitro. However, inhibition of mTOR was able to alleviate the above effects. Overall, these results demonstrated that activated mTOR induced FOXO1 phosphorylation, which mediates renal MCP‑1 release, causes tubulointerstitial inflammation and ultimately leads to pathological renal changes and dysfunction. However, inhibition of mTOR may play a renoprotective role during the progression of obesity‑associated tubulointerstitial inflammation.
Collapse
Affiliation(s)
- Hong Sun
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xinyu Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiajia He
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Michal Golos
- Centre for Amyloidosis and Acute Phase Protein, Division of Medicine, University College London (UCL), London NW3 2PF, UK
| | - Bimin Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
16
|
Gao Q, Yang M, Zuo Z. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacol Sin 2018; 39:787-801. [PMID: 29698388 DOI: 10.1038/aps.2018.32] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/07/2018] [Indexed: 12/11/2022] Open
Abstract
Arctigenin (AR) and its glycoside, arctiin, are two major active ingredients of Arctium lappa L (A lappa), a popular medicinal herb and health supplement frequently used in Asia. In the past several decades, bioactive components from A lappa have attracted the attention of researchers due to their promising therapeutic effects. In the current article, we aimed to provide an overview of the pharmacology of AR and arctiin, focusing on their anti-inflammatory effects, pharmacokinetics properties and clinical efficacies. Compared to acrtiin, AR was reported as the most potent bioactive component of A lappa in the majority of studies. AR exhibits potent anti-inflammatory activities by inhibiting inducible nitric oxide synthase (iNOS) via modulation of several cytokines. Due to its potent anti-inflammatory effects, AR may serve as a potential therapeutic compound against both acute inflammation and various chronic diseases. However, pharmacokinetic studies demonstrated the extensive glucuronidation and hydrolysis of AR in liver, intestine and plasma, which might hinder its in vivo and clinical efficacy after oral administration. Based on the reviewed pharmacological and pharmacokinetic characteristics of AR, further pharmacokinetic and pharmacodynamic studies of AR via alternative administration routes are suggested to promote its ability to serve as a therapeutic agent as well as an ideal bioactive marker for A lappa.
Collapse
|
17
|
Zhang S, Tan X, Chen Y, Zhang X. Postconditioning protects renal fibrosis by attenuating oxidative stress-induced mitochondrial injury. Nephrol Dial Transplant 2018; 32:1628-1636. [PMID: 28339958 DOI: 10.1093/ndt/gfw469] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/20/2016] [Indexed: 01/10/2023] Open
Abstract
Background Epithelial-mesenchymal transition (EMT) plays a critical role in renal fibrosis. We hypothesize that mitochondrial DNA damage and DNA deletions caused by reactive oxygen species (ROS) during renal ischemia-reperfusion injury (IRI) might lead to EMT in renal fibrosis. Methods Rats were classified into seven groups: sham-operation, IRI, postconditioning (POC), I/R + apocynin, POC + apocynin, I/R + Mito-Tempol (Mito-T) and POC + Mito-T. These groups were monitored for up to 3 months. Serum creatinine, renal histopathology changes and mitochondrial oxidative stress were examined. We also treated NRK52E cells with 200 μM hydrogen peroxide to evaluate the effect of ROS on EMT development, and with 400 ng/mL ethidium bromide to assess the extent of mitochondrial DNA depletion during EMT. Results Three months after IRI injury, the IRI group showed significant renal fibrosis, increased generation of ROS and higher mitochondrial DNA damage and DNA deletions. However, the severity of renal fibrosis and mitochondrial oxidative stress were markedly attenuated in the POC group. Studies on NRK52E cells showed that mitochondrial DNA damage triggered the development of EMT. Conclusions Mitochondrial DNA damage induced by elevated ROS production likely leads to EMT, and might further result in renal fibrosis. POC treatment might attenuate the degree of renal fibrosis by protecting mitochondria from oxidative stress-induced mitochondrial DNA damage.
Collapse
Affiliation(s)
- Shuxian Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohua Tan
- Department of Molecular Pharmacology, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yan Chen
- Department of Pathology, Jilin Hospital, Affiliated Hospital of Jilin University, Jilin, China
| | - Xiuying Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Zhang Y, Yang Y. Arctigenin exerts protective effects against myocardial infarction via regulation of iNOS, COX‑2, ERK1/2 and HO‑1 in rats. Mol Med Rep 2018; 17:4839-4845. [PMID: 29328478 DOI: 10.3892/mmr.2018.8420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 09/05/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine the protective effects of arctigenin against myocardial infarction (MI), and its effects on oxidative stress and inflammation in rats. Left anterior coronary arteries of Sprague‑Dawley rats were ligated, in order to generate an acute MI (AMI) model. Arctigenin was administered to AMI rats at 0, 50, 100 or 200 µmol/kg. Western blotting and ELISAs were performed to analyze protein expression and enzyme activity. Arctigenin was demonstrated to effectively inhibit the levels of alanine transaminase, creatine kinase‑MB and lactate dehydrogenase, and to reduce infarct size in AMI rats. In addition, the activity levels of malondialdehyde, interleukin (IL)‑1β and IL‑6 were significantly suppressed, and the levels of glutathione peroxidase, catalase and superoxide dismutase were significantly increased by arctigenin treatment. Arctigenin treatment also suppressed the protein expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX‑2) and heme oxygenase 1 (HO‑1), and increased the protein expression levels of phosphorylated‑extracellular signal‑regulated kinase 1/2 (p‑ERK1/2) in AMI rats. Overall, the results of the present study suggest that arctigenin may inhibit MI, and exhibits antioxidative and anti‑inflammatory effects through regulation of the iNOS, COX‑2, ERK1/2 and HO‑1 pathways in a rat model of AMI.
Collapse
Affiliation(s)
- Yanmin Zhang
- Department of Emergency, Liaocheng People's Hospital of Shandong, Liaocheng, Shandong 252000, P.R. China
| | - Yong Yang
- Department of Cardiology, Liaocheng People's Hospital of Shandong, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
19
|
Zheng Y, Miu Y, Yang X, Yang X, Zhu M. CCR7 Mediates TGF-β1-Induced Human Malignant Glioma Invasion, Migration, and Epithelial–Mesenchymal Transition by Activating MMP2/9 Through the Nuclear Factor KappaB Signaling Pathway. DNA Cell Biol 2017; 36:853-861. [PMID: 28817313 DOI: 10.1089/dna.2017.3818] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Yanyan Zheng
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Ji'nan, Shandong Province, China
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Yiting Miu
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Xiaokai Yang
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Xiaoguo Yang
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Meijia Zhu
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Ji'nan, Shandong Province, China
| |
Collapse
|
20
|
Han YH, Kee JY, Kim DS, Mun JG, Park SH, Kim YJ, Um JY, Hong SH. Arctii Fructus Inhibits Colorectal Cancer Cell Proliferation and MMPs Mediated Invasion via AMPK. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1309-1325. [PMID: 28830210 DOI: 10.1142/s0192415x17500720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although Arctii Fructus (AF) has been shown to have various pharmacological effects, there have been no studies concerning the inhibitory effects of AF on the metastatic properties of colorectal cancer (CRC). The aim of this study was to investigate whether AF could suppress CRC progression by inhibiting cell growth, epithelial-mesenchymal transition (EMT), migration, and the invasion ability of CRC cells. AF decreased proliferation of CRC cells by inducing cell cycle arrest and apoptosis via extrinsic and intrinsic apoptotic pathways. Regarding metastatic properties, AF inhibited EMT by increasing the expression of the epithelial marker, E-cadherin, and decreasing the expression of the mesenchymal marker, N-cadherin, in CT26 cells. Moreover, AF decreased the migration and invasion of CT26 cells by inhibiting matrix metalloproteinase-2 (MMP-2) and MMP-9 activity. We confirmed that the decreased invasion ability and MMP-9 activity by AF treatment involved AMP-activated protein kinase (AMPK) activation. Collectively, this study demonstrates that AF inhibits the proliferation and metastatic properties of CRC cells.
Collapse
Affiliation(s)
- Yo-Han Han
- * Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ji-Ye Kee
- * Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dae-Seung Kim
- * Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jeong-Geon Mun
- * Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seong-Hwan Park
- * Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Yong Ju Kim
- † Department of Herbal Medicine Resources, College of Environmental and Bioresources Sciences, Chonbuk National University, 54596 Iksan, Republic of Korea
| | - Jae-Young Um
- ‡ Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seung-Heon Hong
- * Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
21
|
Angiotensin II induces connective tissue growth factor expression in human hepatic stellate cells by a transforming growth factor β-independent mechanism. Sci Rep 2017; 7:7841. [PMID: 28798388 PMCID: PMC5552744 DOI: 10.1038/s41598-017-08334-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
Abstract
Angiotensin II (Ang II) promotes hepatic fibrosis by increasing extracellular matrix (ECM) synthesis. Connective tissue growth factor (CTGF) plays a crucial role in the pathogenesis of hepatic fibrosis and emerges as downstream of the profibrogenic cytokine transforming growth factor-β (TGF-β). We aimed to investigate the molecular events that lead from the Ang II receptor to CTGF upregulation in human hepatic stellate cells, a principal fibrogenic cell type. Ang II produced an early, AT1 receptor-dependent stimulation of CTGF expression and induced a rapid activation of PKC and its downstream p38 MAPK, thereby activating a nuclear factor-κB (NF-κB) and Smad2/3 cross-talk pathway. Chemical blockade of NF-κB and Smad2/3 signaling synergistically diminished Ang II-mediated CTGF induction and exhibited an additive effect in abrogating the ECM accumulation caused by Ang II. Furthermore, we demonstrated that CTGF expression was essential for Ang II-mediated ECM synthesis. Interestingly, the ability of dephosphorylated, but not phosphorylated JNK to activate Smad2/3 signaling revealed a novel role of JNK in Ang II-mediated CTGF overexpression. These results suggest that Ang II induces CTGF expression and ECM accumulation through a special TGF-β-independent interaction between the NF-κB and Smad2/3 signals elicited by the AT1/PKCα/p38 MAPK pathway.
Collapse
|
22
|
Xue X, Zhang J, Lan H, Xu Y, Wang H. Kaiso protects human umbilical vein endothelial cells against apoptosis by differentially regulating the expression of B-cell CLL/lymphoma 2 family members. Sci Rep 2017; 7:7116. [PMID: 28769046 PMCID: PMC5540925 DOI: 10.1038/s41598-017-07559-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
Endothelial cell injury can promote the development of various cardiovascular diseases, thus, fully understanding the mechanisms underlying the maintenance of vascular endothelial cell homoeostasis may help prevent and treat cardiovascular disease. Kaiso, a zinc finger and BTB domain containing transcription factor, is key to embryonic development and cancer, but how Kaiso interacts with vascular endothelium is not fully understood. We report that Kaiso has an anti-apoptotic function in human umbilical vein endothelial cells (HUVECs) and human microvascular endothelial cells (HMEC-1s). Overexpression of Kaiso significantly increased cell viability and inhibited hydrogen peroxide-induced apoptosis. Furthermore, Kaiso increased expression of B-cell CLL/lymphoma 2 (BCL2) and reduced expression of BCL2-associated X protein (BAX) and BCL2-interacting killer (BIK) by differentially regulating gene promoter activity. Methylated DNA and specific Kaiso binding site (KBS) contributed to gene regulatory activity of Kaiso. In addition, p120ctn functioned cooperatively in Kaiso-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Xiaodong Xue
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, No.83, Wenhua Road, Shenhe District, Shenyang City, Liaoning, 110016, China
| | - Jian Zhang
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, No.83, Wenhua Road, Shenhe District, Shenyang City, Liaoning, 110016, China
| | - Huai Lan
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, No.83, Wenhua Road, Shenhe District, Shenyang City, Liaoning, 110016, China
| | - Yinli Xu
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, No.83, Wenhua Road, Shenhe District, Shenyang City, Liaoning, 110016, China
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, No.83, Wenhua Road, Shenhe District, Shenyang City, Liaoning, 110016, China.
| |
Collapse
|
23
|
Li A, Zhang X, Shu M, Wu M, Wang J, Zhang J, Wang R, Li P, Wang Y. Arctigenin suppresses renal interstitial fibrosis in a rat model of obstructive nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 30:28-41. [PMID: 28545667 DOI: 10.1016/j.phymed.2017.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 12/28/2016] [Accepted: 03/09/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Renal tubulointerstitial fibrosis (TIF) is commonly the final result of a variety of progressive injuries and leads to end-stage renal disease. There are few therapeutic agents currently available for retarding the development of renal TIF. PURPOSE The aim of the present study is to evaluate the role of arctigenin (ATG), a lignan component derived from dried burdock (Arctium lappa L.) fruits, in protecting the kidney against injury by unilateral ureteral obstruction (UUO) in rats. METHODS Rats were subjected to UUO and then administered with vehicle, ATG (1 and 3mg/kg/d), or losartan (20mg/kg/d) for 11 consecutive days. The renoprotective effects of ATG were evaluated by histological examination and multiple biochemical assays. RESULTS Our results suggest that ATG significantly protected the kidney from injury by reducing tubular dilatation, epithelial atrophy, collagen deposition, and tubulointerstitial compartment expansion. ATG administration dramatically decreased macrophage (CD68-positive cell) infiltration. Meanwhile, ATG down-regulated the mRNA levels of pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1) and cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interferon-γ (IFN-γ), in the obstructed kidneys. This was associated with decreased activation of nuclear factor κB (NF-κB). ATG attenuated UUO-induced oxidative stress by increasing the activity of renal manganese superoxide dismutase (SOD2), leading to reduced levels of lipid peroxidation. Furthermore, ATG inhibited the epithelial-mesenchymal transition (EMT) of renal tubules by reducing the abundance of transforming growth factor-β1 (TGF-β1) and its type I receptor, suppressing Smad2/3 phosphorylation and nuclear translocation, and up-regulating Smad7 expression. Notably, the efficacy of ATG in renal protection was comparable or even superior to losartan. CONCLUSION ATG could protect the kidney from UUO-induced injury and fibrogenesis by suppressing inflammation, oxidative stress, and tubular EMT, thus supporting the potential role of ATG in renal fibrosis treatment.
Collapse
Affiliation(s)
- Ao Li
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Xiaoxun Zhang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Mao Shu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jun Wang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jingyao Zhang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Rui Wang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| |
Collapse
|