1
|
Milara J, Ribera P, Marín S, Montero P, Roger I, Tenor H, Cortijo J. Phosphodiesterase 4 is overexpressed in human keloids and its inhibition reduces fibroblast activation and skin fibrosis. Chem Biol Interact 2024; 402:111211. [PMID: 39197814 DOI: 10.1016/j.cbi.2024.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
There is a pressing medical need for improved treatments in skin fibrosis including keloids and hypertrophic scars (HTS). This study aimed to characterize the role of phosphodiesterase 4 (PDE4), specifically PDE4B in fibrotic skin remodeling in vitro and in vivo. In vitro, effects of PDE4A-D (Roflumilast) or PDE4B (siRNA) inhibition on TGFβ1-induced myofibroblast differentiation and dedifferentiation were studied in normal (NHDF) and keloid (KF) human dermal fibroblasts. In vivo, the role of PDE4 on HOCl-induced skin fibrosis in mice was addressed in preventive and therapeutic protocols. PDE4B (mRNA, protein) was increased in Keloid > HTS compared to healthy skin and in TGFβ-stimulated NHDF and KF. In Keloid > HTS, collagen Iα1, αSMA, TGFβ1 and NOX4 mRNA were all elevated compared to healthy skin confirming skin fibrosis. In vitro, inhibition of PDE4A-D and PDE4B similarly prevented TGFβ1-induced Smad3 and ERK1/2 phosphorylation and myofibroblast differentiation, elevated NOX4 protein and proliferation in NHDF. PDE4A-D inhibition enabled myofibroblast dedifferentiation and curbed TGFβ1-induced reactive oxygen species and fibroblast senescence. In KF PDE4A-D inhibition restrained TGFβ1-induced Smad3 and ERK1/2 phosphorylation, myofibroblast differentiation and senescence. Mechanistically, PDE4A-D inhibition rescued from TGFβ1-induced loss in PPM1A, a Smad3 phosphatase. In vivo, PDE4 inhibition mitigated HOCl-induced skin fibrosis in mice in preventive and therapeutic protocols. The current study provides novel evidence evolving rationale for PDE4 inhibitors in skin fibrosis (including keloids and HTS) and delivered evidence for a functional role of PDE4B in this fibrotic condition.
Collapse
Affiliation(s)
- Javier Milara
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Pharmacy Unit, University General Hospital Consortium of Valencia, Spain.
| | - Pilar Ribera
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain
| | - Severiano Marín
- Plastic Surgery Unit, University General Hospital Consortium, 46014, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | - Inés Roger
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | | | - Julio Cortijo
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain
| |
Collapse
|
2
|
Milara J, Ribera P, Marín S, Montero P, Roger I, Cortijo J. Phosphodiesterase 4 is overexpressed in keloid epidermal scars and its inhibition reduces keratinocyte fibrotic alterations. Mol Med 2024; 30:134. [PMID: 39223490 PMCID: PMC11370283 DOI: 10.1186/s10020-024-00906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Epidermal remodeling and hypertrophy are hallmarks of skin fibrotic disorders, and keratinocyte to mesenchymal (EMT)-like transformations drive epidermis alteration in skin fibrosis such as keloids and hypertrophic scars (HTS). While phosphodiesterase 4 (PDE4) inhibitors have shown effectiveness in various fibrotic disorders, their role in skin fibrosis is not fully understood. This study aimed to explore the specific role of PDE4B in epidermal remodeling and hypertrophy seen in skin fibrosis. METHODS In vitro experiments examined the effects of inhibiting PDE4A-D (with Roflumilast) or PDE4B (with siRNA) on TGFβ1-induced EMT differentiation and dedifferentiation in human 3D epidermis. In vivo studies investigated the impact of PDE4 inhibition on HOCl-induced skin fibrosis and epidermal hypertrophy in mice, employing both preventive and therapeutic approaches. RESULTS The study found increased levels of PDE4B (mRNA, protein) in keloids > HTS compared to healthy epidermis, as well as in TGFβ-stimulated 3D epidermis. Keloids and HTS epidermis exhibited elevated levels of collagen Iα1, fibronectin, αSMA, N-cadherin, and NOX4 mRNA, along with decreased levels of E-cadherin and ZO-1, confirming an EMT process. Inhibition of both PDE4A-D and PDE4B prevented TGFβ1-induced Smad3 and ERK1/2 phosphorylation and mesenchymal differentiation in vitro. PDE4A-D inhibition also promoted mesenchymal dedifferentiation and reduced TGFβ1-induced ROS and keratinocyte senescence by rescuing PPM1A, a Smad3 phosphatase. In vivo, PDE4 inhibition mitigated HOCl-induced epidermal hypertrophy in mice in both preventive and therapeutic settings. CONCLUSIONS Overall, the study supports the potential of PDE4 inhibitors, particularly PDE4B, in treating skin fibrosis, including keloids and HTS, shedding light on their functional role in this condition.
Collapse
Affiliation(s)
- Javier Milara
- CIBER de enfermedades respiratorias, Health Institute Carlos III, Valencia, Spain.
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez, 15, Valencia, 46010, Spain.
- Pharmacy unit, University General Hospital Consortium of Valencia, Valencia, Spain.
| | - Pilar Ribera
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez, 15, Valencia, 46010, Spain
| | - Severiano Marín
- Plastic Surgery Unit, University General Hospital Consortium, Valencia, 46014, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez, 15, Valencia, 46010, Spain
- Faculty of health sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | - Inés Roger
- CIBER de enfermedades respiratorias, Health Institute Carlos III, Valencia, Spain
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez, 15, Valencia, 46010, Spain
- Faculty of health sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | - Julio Cortijo
- CIBER de enfermedades respiratorias, Health Institute Carlos III, Valencia, Spain
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez, 15, Valencia, 46010, Spain
| |
Collapse
|
3
|
Increased Expression of Galectin-3 in Skin Fibrosis: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2022; 23:ijms232315319. [PMID: 36499646 PMCID: PMC9737805 DOI: 10.3390/ijms232315319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Skin fibrosis is a hallmark of a wide array of dermatological diseases which can greatly impact the patients' quality of life. Galectin-3 (GAL-3) has emerged as a central regulator of tissue fibrosis, playing an important pro-fibrotic role in numerous organs. Various studies are highlighting its importance as a skin fibrotic diseases biomarker; however, there is a need for further studies that clarify its role. This paper aims to ascertain whether the expression of GAL-3 is increased in relevant in vitro and in vivo models of skin fibrosis. We studied the role of GAL-3 in vitro using normal human dermal fibroblasts (NHDF) and fibrocytes. In addition, we used a skin fibrosis murine model (BALB/c mice) and human biopsies of healthy or keloid tissue. GAL-3 expression was analyzed using real time PCR, Western blot and immunostaining techniques. We report a significantly increased expression of GAL-3 in NHDF and fibrocytes cell cultures following stimulation with transforming growth factor β1 (TGFβ1). In vivo, GAL-3 expression was increased in a murine model of systemic sclerosis and in human keloid biopsies. In sum, this study underlines the involvement of GAL-3 in skin fibrosis using several models of the disease and highlights its role as a relevant target.
Collapse
|
4
|
Gogulska Z, Smolenska Z, Turyn J, Mika A, Zdrojewski Z. Lipid Alterations in Systemic Sclerosis. Front Mol Biosci 2022; 8:761721. [PMID: 34993231 PMCID: PMC8724564 DOI: 10.3389/fmolb.2021.761721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Systemic sclerosis (SSc) is an autoimmune disease with an elusive etiology and poor prognosis. Due to its diverse clinical presentation, a personalized approach is obligatory and needs to be based on a comprehensive biomarker panel. Therefore, particular metabolomic studies are necessary. Lipidomics addressed these issues and found disturbances in several crucial metabolic pathways. Aim of Review: The review aims to briefly summarize current knowledge related to lipid alterations in systemic sclerosis, highlight its importance, and encourage further research in this field. Key Scientific Concepts of Review: In this review, we summarized the studies on the lipidomic pattern, fatty acids, lipoproteins, cholesterol, eicosanoids, prostaglandins, leukotrienes, lysophospholipids, and sphingolipids in systemic sclerosis. Researchers demonstrated several alternate aspects of lipid metabolism. As we aimed to present our findings in a comprehensive view, we decided to divide our findings into three major groups: “serum lipoproteins,” “fatty acids and derivatives,” and “cellular membrane components,” as we do believe they play a prominent role in SSc pathology.
Collapse
Affiliation(s)
- Zuzanna Gogulska
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| | - Zaneta Smolenska
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Turyn
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Zbigniew Zdrojewski
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
5
|
Asano Y. Insights Into the Preclinical Models of SSc. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021. [DOI: 10.1007/s40674-021-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Kotyla PJ. Short course of simvastatin has no effect on markers of endothelial activation in normolipidemic patients with systemic sclerosis. J Int Med Res 2018; 46:1893-1901. [PMID: 29557229 PMCID: PMC5991246 DOI: 10.1177/0300060518762681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective Statins, a class of 3-hydroxy-3 methyl-glutaryl-coenzyme A reductase inhibitors, are widely used for the treatment of atherosclerosis. Less is known about the role of statins in the treatment of vascular complication in systemic sclerosis (SSc). We therefore performed a short-term interventional study with simvastatin in patients with the diffuse variant of SSc and normal lipid profiles. Methods Twenty-five patients with diffuse SSc were enrolled and received simvastatin at a daily dose of 20 mg for 28 days. Soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble intercellular adhesion molecule-1 (sICAM-1) and soluble P-, E- and L-selectins were assessed by ELISA prior to treatment and at day 28. Results No statistically significant changes in the levels of adhesion molecules were observed: sICAM-1 1011 vs. 1032 ng/mL, sVCAM-1 1225 vs. 1570 ng/mL, sP-selectin 66.7 vs. 66.0 ng/mL, sE-selectin 276 vs. 253 ng/mL and sL-selectin 887 vs. 927 ng/mL prior to treatment and at day 28, respectively. Conclusions Markers characterizing vascular activation were not affected by short treatment with low-dose simvastatin in SSc patients, indicating that the endothelial-protective effect of statins may be related to treatment duration and dose.
Collapse
Affiliation(s)
- Przemyslaw J Kotyla
- Department of Internal Medicine and Rheumatology Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|