1
|
Fu S, Zhang Q, Zhang C. Research update for ferroptosis and cholangiocarcinoma. Crit Rev Oncol Hematol 2024; 198:104356. [PMID: 38641134 DOI: 10.1016/j.critrevonc.2024.104356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common hepatobiliary malignancy after hepatocellular carcinoma. Due to the poor treatment effect and high mortality rate of CCA, it is of great significance to explore new therapeutic targets. Ferroptosis is a type of cell death caused by iron-dependent cell oxidative injury, which is closely related to the occurrence and development of numerous diseases. Novel ideas for the prevention and treatment of related diseases have been provided by ferroptosis, which has become a focus of research in recent years. This review introduces the underlying mechanisms related to ferroptosis, as well as a research update for ferroptosis in the occurrence and development of CCA. The clinical value of ferroptosis-related regulatory mechanisms in CCA will be elucidated.
Collapse
Affiliation(s)
- Shengfeng Fu
- Department of General Surgery, Taizhou people's Hospital, Nanjing Medical University, Taizhou, China; Postgraduate School, Dalian Medical University, Dalian, China
| | - Qinyang Zhang
- Department of Orthopedics, Taizhou people's Hospital, Nanjing Medical University, Taizhou, Taizhou, China; Postgraduate School, Dalian Medical University, Dalian, China.
| | - Changhe Zhang
- Department of General Surgery, Taizhou people's Hospital, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
2
|
Primavesi F, Senoner T, Schindler S, Nikolajevic A, Di Fazio P, Csukovich G, Eller S, Neumayer B, Anliker M, Braunwarth E, Oberhuber R, Resch T, Maglione M, Cardini B, Niederwieser T, Gasteiger S, Klieser E, Tilg H, Schneeberger S, Neureiter D, Öfner D, Troppmair J, Stättner S. The Interplay between Perioperative Oxidative Stress and Hepatic Dysfunction after Human Liver Resection: A Prospective Observational Pilot Study. Antioxidants (Basel) 2024; 13:590. [PMID: 38790695 PMCID: PMC11118143 DOI: 10.3390/antiox13050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Post-hepatectomy liver failure (PHLF) remains the major contributor to death after liver resection. Oxidative stress is associated with postoperative complications, but its impact on liver function is unclear. This first in-human, prospective, single-center, observational pilot study evaluated perioperative oxidative stress and PHLF according to the ISGLS (International Study Group for Liver Surgery). Serum 8-isoprostane, 4-hydroxynonenal (4-HNE), total antioxidative capacity, vitamins A and E, and intraoperative, sequential hepatic tissue 4-HNE and UCP2 (uncoupling protein 2) immunohistochemistry (IHC) were assessed. The interaction with known risk factors for PHLF and the predictive potential of oxidative stress markers were analyzed. Overall, 52 patients were included (69.2% major liver resection). Thirteen patients (25%) experienced PHLF, a major factor for 90-day mortality (23% vs. 0%; p = 0.013). Post-resection, pro-oxidative 8-isoprostane significantly increased (p = 0.038), while 4-HNE declined immediately (p < 0.001). Antioxidative markers showed patterns of consumption starting post-resection (p < 0.001). Liver tissue oxidative stress increased stepwise from biopsies taken after laparotomy to post-resection in situ liver and resection specimens (all p < 0.001). Cholangiocarcinoma patients demonstrated significantly higher serum and tissue oxidative stress levels at various timepoints, with consistently higher preoperative values in advanced tumor stages. Combining intraoperative, post-resection 4-HNE serum levels and in situ IHC early predicted PHLF with an AUC of 0.855 (63.6% vs. 0%; p < 0.001). This was also associated with grade B/C PHLF (36.4% vs. 0%; p = 0.021) and 90-day mortality (18.2% vs. 0%; p = 0.036). In conclusion, distinct patterns of perioperative oxidative stress levels occur in patients with liver dysfunction. Combining intraoperative serum and liver tissue markers predicts subsequent PHLF. Cholangiocarcinoma patients demonstrated pronounced systemic and hepatic oxidative stress, with increasing levels in advanced tumor stages, thus representing a worthwhile target for future exploratory and therapeutic studies.
Collapse
Affiliation(s)
- Florian Primavesi
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.B.); (R.O.); (T.R.); (M.M.); (B.C.); (S.G.); (S.S.); (D.Ö.)
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.N.); (S.E.); (J.T.)
- Department of General, Visceral and Vascular Surgery, Salzkammergutklinikum, 4840 Vöcklabruck, Austria;
| | - Thomas Senoner
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Sophie Schindler
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.B.); (R.O.); (T.R.); (M.M.); (B.C.); (S.G.); (S.S.); (D.Ö.)
| | - Aleksandar Nikolajevic
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.N.); (S.E.); (J.T.)
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-Universität Marburg, 35043 Marburg, Germany;
| | - Georg Csukovich
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.N.); (S.E.); (J.T.)
- Small Animal Internal Medicine, Vetmeduni, 1210 Vienna, Austria
| | - Silvia Eller
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.N.); (S.E.); (J.T.)
| | - Bettina Neumayer
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria; (B.N.); (E.K.); (D.N.)
| | - Markus Anliker
- Central Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Eva Braunwarth
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.B.); (R.O.); (T.R.); (M.M.); (B.C.); (S.G.); (S.S.); (D.Ö.)
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.B.); (R.O.); (T.R.); (M.M.); (B.C.); (S.G.); (S.S.); (D.Ö.)
| | - Thomas Resch
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.B.); (R.O.); (T.R.); (M.M.); (B.C.); (S.G.); (S.S.); (D.Ö.)
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.B.); (R.O.); (T.R.); (M.M.); (B.C.); (S.G.); (S.S.); (D.Ö.)
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.N.); (S.E.); (J.T.)
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.B.); (R.O.); (T.R.); (M.M.); (B.C.); (S.G.); (S.S.); (D.Ö.)
| | - Thomas Niederwieser
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.B.); (R.O.); (T.R.); (M.M.); (B.C.); (S.G.); (S.S.); (D.Ö.)
| | - Silvia Gasteiger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.B.); (R.O.); (T.R.); (M.M.); (B.C.); (S.G.); (S.S.); (D.Ö.)
| | - Eckhard Klieser
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria; (B.N.); (E.K.); (D.N.)
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.B.); (R.O.); (T.R.); (M.M.); (B.C.); (S.G.); (S.S.); (D.Ö.)
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria; (B.N.); (E.K.); (D.N.)
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.B.); (R.O.); (T.R.); (M.M.); (B.C.); (S.G.); (S.S.); (D.Ö.)
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.N.); (S.E.); (J.T.)
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.N.); (S.E.); (J.T.)
| | - Stefan Stättner
- Department of General, Visceral and Vascular Surgery, Salzkammergutklinikum, 4840 Vöcklabruck, Austria;
| |
Collapse
|
3
|
Caligiuri A, Becatti M, Porro N, Borghi S, Marra F, Pastore M, Taddei N, Fiorillo C, Gentilini A. Oxidative Stress and Redox-Dependent Pathways in Cholangiocarcinoma. Antioxidants (Basel) 2023; 13:28. [PMID: 38247453 PMCID: PMC10812651 DOI: 10.3390/antiox13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a primary liver tumor that accounts for 2% of all cancer-related deaths worldwide yearly. It can arise from cholangiocytes of biliary tracts, peribiliary glands, and possibly from progenitor cells or even hepatocytes. CCA is characterized by high chemoresistance, aggressiveness, and poor prognosis. Potentially curative surgical therapy is restricted to a small number of patients with early-stage disease (up to 35%). Accumulating evidence indicates that CCA is an oxidative stress-driven carcinoma resulting from chronic inflammation. Oxidative stress, due to enhanced reactive oxygen species (ROS) production and/or decreased antioxidants, has been recently suggested as a key factor in cholangiocyte oncogenesis through gene expression alterations and molecular damage. However, due to different experimental models and conditions, contradictory results regarding oxidative stress in cholangiocarcinoma have been reported. The role of ROS and antioxidants in cancer is controversial due to their context-dependent ability to stimulate tumorigenesis and support cancer cell proliferation or promote cell death. On these bases, the present narrative review is focused on illustrating the role of oxidative stress in cholangiocarcinoma and the main ROS-driven intracellular pathways. Heterogeneous data about antioxidant effects on cancer development are also discussed.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Nunzia Porro
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| |
Collapse
|
4
|
Development of Prognostic Features of Hepatocellular Carcinoma Based on Metabolic Gene Classification and Immune and Oxidative Stress Characteristic Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1847700. [PMID: 36860731 PMCID: PMC9969974 DOI: 10.1155/2023/1847700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 02/20/2023]
Abstract
Background The molecular classification of HCC premised on metabolic genes might give assistance for diagnosis, therapy, prognosis prediction, immune infiltration, and oxidative stress in addition to supplementing the limitations of the clinical staging system. This would help to better represent the deeper features of HCC. Methods TCGA datasets combined with GSE14520 and HCCDB18 datasets were used to determine the metabolic subtype (MC) using ConsensusClusterPlus. ssGSEA method was used to calculate the IFNγ score, the oxidative stress pathway scores, and the score distribution of 22 distinct immune cells, and their differential expressions were assessed with the use of CIBERSORT. To generate a subtype classification feature index, LDA was utilized. Screening of the metabolic gene coexpression modules was done with the help of WGCNA. Results Three MCs (MC1, MC2, and MC3) were identified and showed different prognoses (MC2-poor and MC1-better). Although MC2 had a high immune microenvironment infiltration, T cell exhaustion markers were expressed at a high level in MC2 in contrast with MC1. Most oxidative stress-related pathways are inhibited in the MC2 subtype and activated in the MC1 subtype. The immunophenotyping of pan-cancer showed that the C1 and C2 subtypes with poor prognosis accounted for significantly higher proportions of MC2 and MC3 subtypes than MC1, while the better prognostic C3 subtype accounted for significantly lower proportions of MC2 than MC1. As per the findings of the TIDE analysis, MC1 had a greater likelihood of benefiting from immunotherapeutic regimens. MC2 was found to have a greater sensitivity to traditional chemotherapy drugs. Finally, 7 potential gene markers indicate HCC prognosis. Conclusion The difference (variation) in tumor microenvironment and oxidative stress among metabolic subtypes of HCC was compared from multiple angles and levels. A complete and thorough clarification of the molecular pathological properties of HCC, the exploration of reliable markers for diagnosis, the improvement of the cancer staging system, and the guiding of individualized treatment of HCC all gain benefit greatly from molecular classification associated with metabolism.
Collapse
|
5
|
Liu J, Wu J, Qiao C, He Y, Xia S, Zheng Y, Lv H. Impact of chronic cold exposure on lung inflammation, pyroptosis and oxidative stress in mice. Int Immunopharmacol 2023; 115:109590. [PMID: 36577159 DOI: 10.1016/j.intimp.2022.109590] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022]
Abstract
Chronic cold exposure, which is the main inducer of lung diseases in high latitudes, affects production efficiency and restricts the development of aquaculture. Although the relationship between cold exposure and susceptibility to the lungs is widely accepted, but the influence between them has not been fully explored. The aim of this study is to understand the underlying mechanism. In the present study, the mice, which are used to establish cold stress (CS)-induced lung injury model, are exposed to cold temperature (4 °C) for 3 h each day for 4 weeks. The results indicate that the expression of heat shock protein 70 (HSP70) is augmented by cold exposure. In addition, chronic cold exposure aggravate the formation of malondialdehyde (MDA) and lead to a significant decrease in the contents of micrococcus catalase (CAT) and glutathione (GSH). Moreover, chronic cold exposure significantly exacerbates the expression of inflammation- and apoptosis-related proteins. The activation of Bax and caspase-3 are significantly augmented. However, that of Bcl-2 is decreased. These results are different from those in room team. The results show that chronic cold exposure plays an important roles in the activation of multiple signaling pathways, such as pyroptosis-related, inflammation-related and oxidative stress-regulated signaling pathways. In summary, these investigations support that chronic cold exposure increase the risk of lung injury by activating inflammation, oxidative stress and pyroptosis.
Collapse
Affiliation(s)
- Jiahe Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jingjing Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chunyu Qiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuxi He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shijie Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuwei Zheng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
6
|
Feng C, Li A, Yin C, Wang S, Jin W, Liu Y, Huo T, Jiang H. Realgar Alleviated Neuroinflammation Induced by High Protein and High Calorie Diet in Rats via the Microbiota-Gut-Brain Axis. Nutrients 2022; 14:nu14193958. [PMID: 36235611 PMCID: PMC9572528 DOI: 10.3390/nu14193958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: Gastrointestinal heat retention syndrome (GHRS) often occurs in adolescents, resulting into nervous system injury. Realgar, an arsenic mineral with neuroprotective effect, has been widely used to treat GHRS. However, its mechanism of action remains unknown. Methods: A GHRS rat model was established using a high protein and high calorie diet. We performed macroscopic characterization by assessing bowel sounds, hot/cold preference, anal temperature, and fecal features. Atomic fluorescence spectroscopy was employed to evaluate brain arsenic level while hippocampal ultrastructural changes were analyzed using transmission electron microscopy. In addition, inflammatory cytokines and BBB breakdown were analyzed by western blotting, immunofluorescence assays, and immunohistochemistry staining. We also evaluated hippocampal metabolites by LC-MS while fecal microorganisms were assessed by 16S rDNA sequencing. Results: Our data showed that the high protein and high calorie diet induced GHRS. The rat model depicted decreased bowel sounds, increased fecal characteristics score, preference for low temperature zone, and increased anal temperature. In addition, there was increase in inflammatory factors IL-6, Iba-1, and NF-κB p65 as well as reduced BBB structural protein Claudin-5 and Occludin. The data also showed appearance of hippocampus metabolites disorder and fecal microbial imbalance. Realgar treatment conferred a neuroprotective effect by inhibiting GHRS-specific characteristics, neuroinflammatory response, BBB impairment, metabolites disorder, and microbial imbalance in the GHRS rat model. Conclusion: Taken together, our analysis demonstrated that realgar confers a neuroprotective effect in GHRS rats through modulation of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Cong Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Aihong Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Chenhui Yin
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Siying Wang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Weiyuan Jin
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Yi Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Correspondence:
| |
Collapse
|
7
|
Cavalloni G, Peraldo-Neia C, Massa A, Bergamini C, Trentini A, De Rosa G, Daniele L, Ciccosanti F, Cervellati C, Leone F, Aglietta M. Proteomic analysis identifies deregulated metabolic and oxidative-associated proteins in Italian intrahepatic cholangiocarcinoma patients. BMC Cancer 2021; 21:865. [PMID: 34320944 PMCID: PMC8317365 DOI: 10.1186/s12885-021-08576-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is an aggressive disease with poor prognosis. A molecular classification based on mutational, methylation and transcriptomic features could allow identifying tailored therapies to improve CCA patient outcome. Proteomic remains partially unexplored; here, we analyzed the proteomic profile of five intrahepatic cholangiocarcinoma (ICC) derived from Italian patients undergone surgery and one normal bile duct cell line. Methods Proteome profile was investigated by using 2D electrophoresis followed by Mass Spectrometry (MS). To validate proteomic data, the expression of four overexpressed proteins (CAT, SOD, PRDX6, DBI/ACBP) was evaluated by immunohistochemistry in an independent cohort of formalin fixed, paraffin-embedded (FFPE) ICC tissues. We also compared proteomic data with those obtained by transcriptomic profile evaluated by microarray analysis of the same tissues. Results We identified 19 differentially expressed protein spots, which were further characterized by MS; 13 of them were up- and 6 were down-regulated in ICC. These proteins are mainly involved in redox processes (CAT, SODM, PRDX2, PRDX6), in metabolism (ACBP, ACY1, UCRI, FTCD, HCMS2), and cell structure and organization (TUB2, ACTB). CAT is overexpressed in 86% of patients, PRDX6 in 73%, SODM in 100%, and DBI/ACBP in 81% compared to normal adjacent tissues. A concordance of 50% between proteomic and transcriptomic data was observed. Conclusions This study pointed out that the impairment of the metabolic and antioxidant systems, with a subsequent accumulation of free radicals, might be a key step in CCA development and progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08576-z.
Collapse
Affiliation(s)
- Giuliana Cavalloni
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.
| | | | - Annamaria Massa
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Carlo Bergamini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandro Trentini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases, IRCCS 'Lazzaro Spallanzani', Rome, Italy
| | - Carlo Cervellati
- Department of Morphology, Surgery & Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Francesco Leone
- Department of Oncology, ASL BI, Ospedale degli Infermi di Biella, Ponderano, BI, Italy
| | - Massimo Aglietta
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Turin, Torino, Italy
| |
Collapse
|
8
|
Gonzalez de Mejia E, Rebollo-Hernanz M, Aguilera Y, Martín-Cabrejas MA. Role of anthocyanins in oxidative stress and the prevention of cancer in the digestive system. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Wang P, Gao J, Ke W, Wang J, Li D, Liu R, Jia Y, Wang X, Chen X, Chen F, Hu X. Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota. Free Radic Biol Med 2020; 156:83-98. [PMID: 32305646 DOI: 10.1016/j.freeradbiomed.2020.04.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
Resveratrol (RSV) is a natural polyphenol with anti-obesity effects. However, the mechanisms of anti-obesity remain unclear due to its low bioavailability. Recent evidence demonstrates that gut microbiota plays a key role in obesity. This spurred us to investigate whether the anti-obesity effects of RSV are related to modulations in the gut microbiota and metabolic functions. Here, RSV significantly improved metabolic phenotype and intestinal oxidative stress in the high-fat diet (HFD)-fed mice. A multi-omics approach was used to systematically profile the microbial signatures at both the phylogenetic and functional levels using 16S rRNA gene sequencing and metagenome. At the phylogenetic level, RSV treatment significantly modulated the gut microbiota composition in HFD-fed mice, characterized with increased Blautia abundance and decreased Desulfovibrio and Lachnospiraceae_NK4A136_group abundance. At the functional level, RSV significantly decreased the enrichment of pathways linked to host metabolic disease and increased the enrichment of pathways involved in the generation of small metabolites. Besides, the fecal microbiota transplantation experiment showed anti-obesity and microbiota-modulating effects similar to those observed in the oral RSV-feeding experiment. Furthermore, metabolomic analysis and antibiotic treatment verified that 4-hydroxyphenylacetic acid (4-HPA) and 3-hydroxyphenylpropionic acid (3-HPP) were the two gut metabolites of RSV, which contribute to improving lipid metabolism in vitro. Moreover, the content of 4-HPA and 3-HPP exhibited strong correlation with the intestinal oxidative state. We concluded that the RSV-mediated alteration of gut microbiota, related gut metabolites and redox state of the intestinal environment contributed to prevention of metabolic syndrome in HFD-fed mice.
Collapse
Affiliation(s)
- Pan Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, 100083, China; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Jianpeng Gao
- Novogene Bioinformatics Institute, Beijing, 100000, China
| | - Weixin Ke
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, 100083, China; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Jing Wang
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, 100083, China; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Ruolin Liu
- Novogene Bioinformatics Institute, Beijing, 100000, China
| | - Yan Jia
- Novogene Bioinformatics Institute, Beijing, 100000, China
| | - Xuehua Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, 100083, China; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, and Liver Center, University of California, San Francisco, CA, 94143, USA
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, 100083, China; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, 100083, China; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
10
|
Li T, Tuo B. Pathophysiology of hepatic Na +/H + exchange (Review). Exp Ther Med 2020; 20:1220-1229. [PMID: 32742358 PMCID: PMC7388279 DOI: 10.3892/etm.2020.8888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are a family of membrane proteins that contribute to exchanging one intracellular proton for one extracellular sodium. The family of NHEs consists of nine known members, NHE1-9. Each isoform represents a different gene product that has unique tissue expression, membrane localization, physiological effects, pathological regulation and sensitivity to drug inhibitors. NHE1 was the first to be discovered and is often referred to as the 'housekeeping' isoform of the NHE family. NHEs are not only involved in a variety of physiological processes, including the control of transepithelial Na+ absorption, intracellular pH, cell volume, cell proliferation, migration and apoptosis, but also modulate complex pathological events. Currently, the vast majority of review articles have focused on the role of members of the NHE family in inflammatory bowel disease, intestinal infectious diarrhea and digestive system tumorigenesis, but only a few reviews have discussed the role of NHEs in liver disease. Therefore, the present review described the basic biology of NHEs and highlighted their physiological and pathological effects in the liver.
Collapse
Affiliation(s)
- Tingting Li
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
11
|
Uchida D, Takaki A, Oyama A, Adachi T, Wada N, Onishi H, Okada H. Oxidative Stress Management in Chronic Liver Diseases and Hepatocellular Carcinoma. Nutrients 2020; 12:nu12061576. [PMID: 32481552 PMCID: PMC7352310 DOI: 10.3390/nu12061576] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic viral hepatitis B and C and non-alcoholic fatty liver disease (NAFLD) have been widely acknowledged to be the leading causes of liver cirrhosis and hepatocellular carcinoma. As anti-viral treatment progresses, the impact of NAFLD is increasing. NAFLD can coexist with chronic viral hepatitis and exacerbate its progression. Oxidative stress has been recognized as a chronic liver disease progression-related and cancer-initiating stress response. However, there are still many unresolved issues concerning oxidative stress, such as the correlation between the natural history of the disease and promising treatment protocols. Recent findings indicate that oxidative stress is also an anti-cancer response that is necessary to kill cancer cells. Oxidative stress might therefore be a cancer-initiating response that should be down regulated in the pre-cancerous stage in patients with risk factors for cancer, while it is an anti-cancer cell response that should not be down regulated in the post-cancerous stage, especially in patients using anti-cancer agents. Antioxidant nutrients should be administered carefully according to the patients’ disease status. In this review, we will highlight these paradoxical effects of oxidative stress in chronic liver diseases, pre- and post-carcinogenesis.
Collapse
|
12
|
Sato K, Glaser S, Alvaro D, Meng F, Francis H, Alpini G. Cholangiocarcinoma: novel therapeutic targets. Expert Opin Ther Targets 2020; 24:345-357. [PMID: 32077341 PMCID: PMC7129482 DOI: 10.1080/14728222.2020.1733528] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a liver cancer derived from the biliary tree with a less than 30% five-year survival rate. Early diagnosis of CCA is challenging and treatment options are limited. Some CCA patients have genetic mutations and several therapeutic drugs or antibodies have been introduced to target abnormally expressed proteins. However, CCA is heterogeneous and patients often present with drug resistance which is attributed to multiple mutations or other factors. Novel approaches and methodologies for CCA treatments are in demand.Area covered: This review summarizes current approaches for CCA treatments leading to the development of novel therapeutic drugs or tools for human CCA patients. A literature search was conducted in PubMed utilizing the combination of the searched term 'cholangiocarcinoma' with other keywords such as 'miRNA', 'FGFR', 'immunotherapy' or 'microenvironment'. Papers published within 2015-2019 were obtained for reading.Expert opinion: Preclinical studies have demonstrated promising therapeutic approaches that target various cells or pathways. Recent studies have revealed that hepatic cells coordinate to promote CCA tumor progression in the tumor microenvironment, which may be a new therapeutic target. Although further studies are required, novel therapeutic tools such as extracellular vesicles could be utilized to manage CCA and its microenvironment.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Bryan, Texas
| | - Domenico Alvaro
- Gastroenterology, Medicine, Università Sapienza, Rome, Italy
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
13
|
Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4128152. [PMID: 31885788 PMCID: PMC6899293 DOI: 10.1155/2019/4128152] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Oxidative stress (OS) is the imbalance between oxidant and antioxidant molecules, in favor of oxidants, that causes aging and disease. Many studies have been published that demonstrate the relationship between OS and human health and disease; however, the following questions arise: (i) how are we sure that the OS is present in a biological process? (ii) Is the OS reported in the different investigations equivalent? (iii) What are the best oxidant and antioxidant markers for OS diagnosis? (iv) Can we establish the types and the intensity of the OS? (v) Does OS index could be useful for research and/or application in clinical medicine? In this regard, several indexes have been proposed to measure OS in humans relative to the state of health and disease, among which the following can be highlighted: Oxidative Stress Index (OSI), Tiol Ratios (-SH/TT, -SS/-SH, and-SS/TT), Glutathione Ratio (GSSG/GSH), Oxidative Stress Score (OSS), and OXY-index. Therefore, the aim of this review is to present the state of the art of knowledge about OS indexes for diagnosis of health or disease in humans. We searched for articles in English or Spanish in the PubMed/MEDLINE and Scopus electronic databases published up until May 2019. The keywords used were “oxidative stress,” “index,” and “oxidative stress index.” It was identified 11479 records in both databases, and 490 articles were analyzed. Our review suggests that all indexes analyzed allow diagnose and differentiate the OS related to human health and disease. Also, the studies on OSI, Oxy-score, and OSS indexes have proven to be reliable, practical, and with clinical utility. However, it is necessary to continue with longitudinal studies, especially assess the usefulness of the indexes in the clinical prognosis, and make comparative studies between the different indexes.
Collapse
|
14
|
Takaki A, Kawano S, Uchida D, Takahara M, Hiraoka S, Okada H. Paradoxical Roles of Oxidative Stress Response in the Digestive System before and after Carcinogenesis. Cancers (Basel) 2019; 11:cancers11020213. [PMID: 30781816 PMCID: PMC6406746 DOI: 10.3390/cancers11020213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/03/2019] [Accepted: 02/11/2019] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress is recognized as a cancer-initiating stress response in the digestive system. It is produced through mitochondrial respiration and induces DNA damage, resulting in cancer cell transformation. However, recent findings indicate that oxidative stress is also a necessary anticancer response for destroying cancer cells. The oxidative stress response has also been reported to be an important step in increasing the anticancer response of newly developed molecular targeted agents. Oxidative stress might therefore be a cancer-initiating response that should be downregulated in the precancerous stage in patients at risk of cancer but an anticancer cell response that should not be downregulated in the postcancerous stage when cancer cells are still present. Many commercial antioxidant agents are marketed as “cancer-eliminating agents” or as products to improve one’s health, so cancer patients often take these antioxidant agents. However, care should be taken to avoid harming the anticancerous oxidative stress response. In this review, we will highlight the paradoxical effects of oxidative stress and antioxidant agents in the digestive system before and after carcinogenesis.
Collapse
Affiliation(s)
- Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Seiji Kawano
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Masahiro Takahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Sakiko Hiraoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| |
Collapse
|
15
|
Uchida D, Takaki A, Adachi T, Okada H. Beneficial and Paradoxical Roles of Anti-Oxidative Nutritional Support for Non-Alcoholic Fatty Liver Disease. Nutrients 2018; 10:E977. [PMID: 30060482 PMCID: PMC6116036 DOI: 10.3390/nu10080977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is being recognized as a key factor in the progression of chronic liver disease (CLD), especially non-alcoholic fatty liver disease (NAFLD). Many NAFLD treatment guidelines recommend the use of antioxidants, especially vitamin E. Many prospective studies have described the beneficial effects of such agents for the clinical course of NAFLD. However, as these studies are usually short-term evaluations, lasting only a few years, whether or not antioxidants continue to exert favorable long-term effects, including in cases of concomitant hepatocellular carcinoma, remains unclear. Antioxidants are generally believed to be beneficial for human health and are often commercially available as health-food products. Patients with lifestyle-related diseases often use such products to try to be healthier without practicing lifestyle intervention. However, under some experimental NAFLD conditions, antioxidants have been shown to encourage the progression of hepatocellular carcinoma, as oxidative stress is toxic for cancer cells, just as for normal cells. In this review, we will highlight the paradoxical effects of antioxidants against NAFLD and related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Takuya Adachi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
16
|
Wang WT, Ye H, Wei PP, Han BW, He B, Chen ZH, Chen YQ. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol 2016; 9:117. [PMID: 27809873 PMCID: PMC5093965 DOI: 10.1186/s13045-016-0348-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/18/2016] [Indexed: 02/08/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are known to play important roles in different cell contexts, including cancers. However, little is known about lncRNAs in cholangiocarcinoma (CCA), a cholangiocyte malignancy with poor prognosis, associated with chronic inflammation and damage to the biliary epithelium. The aim of the study is to identify if any lncRNA might associate with inflammation or oxidative stress in CCA and regulate the disease progression. Methods In this study, RNA-seqs datasets were used to identify aberrantly expressed lncRNAs. Small interfering RNA and overexpressed plasmids were used to modulate the expression of lncRNAs, and luciferase target assay RNA immunoprecipitation (RIP) was performed to explore the mechanism of miRNA-lncRNA sponging. Results We firstly analyzed five available RNA-seqs datasets to investigate aberrantly expressed lncRNAs which might associate with inflammation or oxidative stress. We identified that two lncRNAs, H19 and HULC, were differentially expressed among all the samples under the treatment of hypoxic or inflammatory factors, and they were shown to be stimulated by short-term oxidative stress responses to H2O2 and glucose oxidase in CCA cell lines. Further studies revealed that these two lncRNAs promoted cholangiocyte migration and invasion via the inflammation pathway. H19 and HULC functioned as competing endogenous RNAs (ceRNAs) by sponging let-7a/let-7b and miR-372/miR-373, respectively, which activate pivotal inflammation cytokine IL-6 and chemokine receptor CXCR4. Conclusions Our study revealed that H19 and HULC, up-regulated by oxidative stress, regulate CCA cell migration and invasion by targeting IL-6 and CXCR4 via ceRNA patterns of sponging let-7a/let-7b and miR-372/miR-373, respectively. The results suggest that these lncRNAs might be the chief culprits of CCA pathogenesis and progression. The study provides new insight into the mechanism linking lncRNA function with CCA and may serve as novel targets for the development of new countermeasures of CCA. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0348-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Tao Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hua Ye
- Department of Hepatobiliary, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Pan-Pan Wei
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Bo-Wei Han
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Bo He
- Department of Hepatobiliary, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Zhen- Hua Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yue-Qin Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|