1
|
Kim C, Lim YJ, Kim YE, Murthy ASN, Cho H, Lee H, Park MS, Lee SH. An Efficient Method for the Selective Syntheses of Sodium Telluride and Symmetrical Diorganyl Tellurides and the Investigation of Reaction Pathways. Molecules 2024; 29:5398. [PMID: 39598787 PMCID: PMC11597708 DOI: 10.3390/molecules29225398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Studies on organotellurium compounds have not been extensively conducted due to a lack of tolerable synthetic methods, difficult isolation processes, and their chemical instabilities. Overcoming these hurdles, we developed an efficient and mild method for the selective synthesis of symmetrical diorganyl tellurides 1, a representative class of organotellurium compounds, using a proper reducing reagent. The reaction condition was optimized for the selective formation of 1 by forming the telluride dianion (Te2-) using a reducing reagent, sodium borohydride (NaBH4), and then followed by the addition of organyl halides. The optimized reaction condition was as follows: (1) Te (1.0 eq), NaBH4 (2.5 eq) in DMF for 1 h at 80 °C; (2) organyl halides (2.0 eq) for 3-5 h at 25-153 °C. Using this condition, 18 various diorganyl tellurides 1 were selectively and efficiently synthesized in reasonable yields (37-93%). The reaction pathways for the formation of diorganyl tellurides 1 were also investigated. Consequently, we established a practical and efficient method for the selective synthesis of diorganyl tellurides 1 as a representative class of organotellurium compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sang Hyup Lee
- College of Pharmacy, Duksung Women’s University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Republic of Korea; (C.K.); (Y.J.L.); (Y.E.K.); (A.S.N.M.); (H.C.); (H.L.); (M.-S.P.)
| |
Collapse
|
2
|
Li S, Cao Y, Jiang L, Liu J. Synthesis of Diaryl Tellurides with Sodium Aryltellurites under Mild Conditions. Chem Asian J 2024; 19:e202300993. [PMID: 38438327 DOI: 10.1002/asia.202300993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
A highly efficient new protocol has been developed for the formation of C-Te bonds, leading to both symmetrical and unsymmetrical diaryl tellurides. This protocol utilizes sodium aryltellurites (4), which can be easily prepared from low-cost aryltelluride trichlorides and NaOH. The synthesis involves the use of 4 and arylazo sulfones as starting materials in the presence of (MeO)2P(O)H. A variety of diaryl tellurides are obtained in moderate to good yields using this method. Importantly, this innovative protocol eliminates the need for traditional, highly toxic aryltellurolating reagents such as diaryl ditellurides and elemental tellurium. This study will bring new vitality to the synthesis of tellurides.
Collapse
Affiliation(s)
- Shan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
- Shazhou Professional Institute of Technology, Zhangjiagang, Jiangsu, 215600, China
| | - Yuan Cao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Lvqi Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
| |
Collapse
|
3
|
Kim C, Lim YJ, Kim YE, Cho H, Lee SH. Studies on the Selective Syntheses of Sodium Ditelluride and Dialkyl Ditellurides. Molecules 2022; 27:molecules27248991. [PMID: 36558124 PMCID: PMC9782605 DOI: 10.3390/molecules27248991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Studies on the selective synthetic method for dialkyl ditellurides 1, a representative class of organyl tellurium compounds, were presented. Considering the difficulty in conducting previous harsh reactions and in suppressing the formation of dialkyl tellurides 2 as side products, we optimized reaction conditions for selective syntheses of sodium ditelluride and the corresponding dialkyl ditellurides 1. We reduced tellurium to sodium ditelluride by using NaBH4 and subsequently, treated the obtained sodium ditelluride with alkyl halides (RX) to give the target compounds 1. Consequently, by applying various alkyl halides (RX) we achieved the selective syntheses of dialkyl ditellurides 1 (13 examples with 4 new compounds) in modest to good yields. We also suggested the mechanistic pathways to dialkyl ditellurides 1.
Collapse
|
4
|
Sahoo BM, Banik BK, Tiwari A, Tiwari V, Jain A, Borah P. Synthesis and application of organotellurium compounds. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Organotellurium compounds define the compounds containing carbon (organic group) and tellurium bond (C–Te). The first organic compound containing tellurium was prepared by Wohler in 1840 after the discovery of the metal by the Austrian chemist F. J. Muller von Reichenstein in the year 1782. The term tellurium was derived from Latin tellus. Tellurium was observed first time in ores mined in the gold districts of Transylvania. Naturally occurring tellurium compounds are present in various forms based on their oxidation states such as TeO2 (+4) and TeO3 (+6). These oxidation states of tellurium compounds are more stable as compared to the other oxidation states. Tellurium is a rare element and is considered a non-essential, toxic element. Tellurium possesses only one crystalline form which consists of a network of spiral chains similar to that of hexagonal selenium. Tellurium is used for the treatment and prevention of microbial infections prior to the development of antibiotics. Hence, the utilization of organotellurium compounds plays a significant role as reagents and intermediates in various organic syntheses.
Collapse
Affiliation(s)
- Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences , Berhampur - 760010 , Odisha , India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies , Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| | - Abhishek Tiwari
- Faculty of Pharmacy , IFTM University , Moradabad , Uttar Pradesh - 244102 , India
| | - Varsha Tiwari
- Faculty of Pharmacy , IFTM University , Moradabad , Uttar Pradesh - 244102 , India
| | - Adya Jain
- Department of Chemistry , MRK Educational Institutions, IGU , Rewari , Haryana , India
| | - Preetismita Borah
- CSIR-Central Scientific Instruments Organization , Chandigarh , India
| |
Collapse
|
5
|
Banerjee B, Sharma A, Kaur G, Priya A, Kaur M, Singh A. Latest developments on the synthesis of bioactive organotellurium scaffolds. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This review deals with the latest developments on the synthesis of biologically promising organotellurim scaffolds reported during last two decades.
Collapse
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry , Akal University , TalwandiSabo , Bathinda , Punjab 151302 , India
| | - Aditi Sharma
- Department of Chemistry , Akal University , TalwandiSabo , Bathinda , Punjab 151302 , India
| | - Gurpreet Kaur
- Department of Chemistry , Akal University , TalwandiSabo , Bathinda , Punjab 151302 , India
| | - Anu Priya
- Department of Chemistry , Akal University , TalwandiSabo , Bathinda , Punjab 151302 , India
| | - Manmeet Kaur
- Department of Chemistry , Akal University , TalwandiSabo , Bathinda , Punjab 151302 , India
| | - Arvind Singh
- Department of Chemistry , Akal University , TalwandiSabo , Bathinda , Punjab 151302 , India
| |
Collapse
|
6
|
Souza JPA, Menezes LRA, Garcia FP, Scariot DB, Bandeira PT, Bespalhok MB, Giese SOK, Hughes DL, Nakamura CV, Barison A, Oliveira ARM, Campos RB, Piovan L. Synthesis, Mechanism Elucidation and Biological Insights of Tellurium(IV)-Containing Heterocycles. Chemistry 2021; 27:14427-14437. [PMID: 34406689 DOI: 10.1002/chem.202102287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 11/08/2022]
Abstract
Inspired by the synthetic and biological potential of organotellurium substances, a series of five- and six-membered ring organotelluranes containing a Te-O bond were synthesized and characterized. Theoretical calculations elucidated the mechanism for the oxidation-cyclization processes involved in the formation of the heterocycles, consistent with chlorine transfer to hydroxy telluride, followed by a cyclization step with simultaneous formation of the new Te-O bond and deprotonation of the OH group. Moreover, theoretical calculations also indicated anti-diastereoisomers to be major products for two chirality center-containing compounds. Antileishmanial assays against Leishmania amazonensis promastigotes disclosed 1,2λ4 -oxatellurane LQ50 (IC50 =4.1±1.0; SI=12), 1,2λ4 -oxatellurolane LQ04 (IC50 =7.0±1.3; SI=7) and 1,2λ4 -benzoxatellurole LQ56 (IC50 =5.7±0.3; SI=6) as more powerful and more selective compounds than the reference, being up to four times more active. A stability study supported by 125 Te NMR analyses showed that these heterocycles do not suffer structural modifications in aqueous-organic media or at temperatures up to 65 °C.
Collapse
Affiliation(s)
- João Pedro A Souza
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Leociley R A Menezes
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Francielle P Garcia
- Health Sciences Center, Universidade Estadual de Maringá, Maringá, PR, 87.020-900, Brazil
| | - Débora B Scariot
- Health Sciences Center, Universidade Estadual de Maringá, Maringá, PR, 87.020-900, Brazil
| | - Pamela T Bandeira
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Mateus B Bespalhok
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Siddhartha O K Giese
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Celso V Nakamura
- Health Sciences Center, Universidade Estadual de Maringá, Maringá, PR, 87.020-900, Brazil
| | - Andersson Barison
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Alfredo R M Oliveira
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Renan B Campos
- Academic Department of Chemistry and Biology, Universidade Tecnológica Federal do Paraná, Curitiba, PR, 81.280-340, Brazil
| | - Leandro Piovan
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| |
Collapse
|
7
|
Chand A, Biswal HS. Hydrogen Bonds with Chalcogens: Looking Beyond the Second Row of the Periodic Table. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00140-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Bueno D, Meinerz D, Waczuk E, de Souza D, Batista Rocha J. Toxicity of organochalcogens in human leukocytes is associated, but not directly related with reactive species production, apoptosis and changes in antioxidant gene expression. Free Radic Res 2018; 52:1158-1169. [DOI: 10.1080/10715762.2018.1536824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Diones Bueno
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daiane Meinerz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Emily Waczuk
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Diego de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - João Batista Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
9
|
Borges EL, Ignasiak MT, Velichenko Y, Perin G, Hutton CA, Davies MJ, Schiesser CH. Synthesis and antioxidant capacity of novel stable 5-tellurofuranose derivatives. Chem Commun (Camb) 2018; 54:2990-2993. [DOI: 10.1039/c8cc00565f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Novel stable tellurium-containing carbohydrates are prepared; these react very rapidly with two-electron oxidants and show promise as protective agents.
Collapse
Affiliation(s)
- Elton L. Borges
- Dept. of Biomedical Sciences
- University of Copenhagen
- Panum Institute
- Copenhagen
- Denmark
| | - Marta T. Ignasiak
- Dept. of Biomedical Sciences
- University of Copenhagen
- Panum Institute
- Copenhagen
- Denmark
| | - Yuliia Velichenko
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa-LASOL
- Universidade Federal de Pelotas
- Pelotas
- Brazil
| | - Craig A. Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
| | - Michael J. Davies
- Dept. of Biomedical Sciences
- University of Copenhagen
- Panum Institute
- Copenhagen
- Denmark
| | | |
Collapse
|
10
|
Lu X, Mestres G, Singh VP, Effati P, Poon JF, Engman L, Ott MK. Selenium- and Tellurium-Based Antioxidants for Modulating Inflammation and Effects on Osteoblastic Activity. Antioxidants (Basel) 2017; 6:antiox6010013. [PMID: 28216602 PMCID: PMC5384176 DOI: 10.3390/antiox6010013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/10/2017] [Indexed: 01/04/2023] Open
Abstract
Increased oxidative stress plays a significant role in the etiology of bone diseases. Heightened levels of H2O2 disrupt bone homeostasis, leading to greater bone resorption than bone formation. Organochalcogen compounds could act as free radical trapping agents or glutathione peroxidase mimetics, reducing oxidative stress in inflammatory diseases. In this report, we synthesized and screened a library of organoselenium and organotellurium compounds for hydrogen peroxide scavenging activity, using macrophagic cell lines RAW264.7 and THP-1, as well as human mono- and poly-nuclear cells. These cells were stimulated to release H2O2, using phorbol 12-myristate 13-acetate, with and without organochalogens. Released H2O2 was then measured using a chemiluminescent assay over a period of 2 h. The screening identified an organoselenium compound which scavenged H2O2 more effectively than the vitamin E analog, Trolox. We also found that this organoselenium compound protected MC3T3 cells against H2O2-induced toxicity, whereas Trolox did not. The organoselenium compound exhibited no cytotoxicity to the cells and had no deleterious effects on cell proliferation, viability, or alkaline phosphatase activity. The rapidity of H2O2 scavenging and protection suggests that the mechanism of protection is due to the direct scavenging of extracellular H2O2. This compound is a promising modulators of inflammation and could potentially treat diseases involving high levels of oxidative stress.
Collapse
Affiliation(s)
- Xi Lu
- Department of Engineering Science, Applied Materials Science, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| | - Gemma Mestres
- Department of Engineering, Microsystems Technology, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| | - Vijay Pal Singh
- Department of Chemistry, BMC, Uppsala University, Box 576, Uppsala 751 23, Sweden.
| | - Pedram Effati
- Department of Engineering Science, Applied Materials Science, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| | - Jia-Fei Poon
- Department of Chemistry, BMC, Uppsala University, Box 576, Uppsala 751 23, Sweden.
| | - Lars Engman
- Department of Chemistry, BMC, Uppsala University, Box 576, Uppsala 751 23, Sweden.
| | - Marjam Karlsson Ott
- Department of Engineering Science, Applied Materials Science, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| |
Collapse
|
11
|
Kut M, Onysko M, Lendel V. Heterocyclization of 5,6-disubstituted 3-alkenyl-2-thioxothieno[2,3-d]pyrimidin-4-one with p-alkoxyphenyltellurium trichloride. HETEROCYCL COMMUN 2016. [DOI: 10.1515/hc-2016-0169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractElectrophilic heterocyclization of 5,6-disubstituted 3-alkenyl-2-thioxothieno[2,3-
Collapse
|
12
|
Stangherlin EC, Nogueira CW. Diphenyl ditelluride induces anxiogenic-like behavior in rats by reducing glutamate uptake. Biol Trace Elem Res 2014; 158:392-8. [PMID: 24715661 DOI: 10.1007/s12011-014-9960-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/26/2014] [Indexed: 01/22/2023]
Abstract
Anxiety-related disorders are a common public health issue. Several lines of evidence suggest that altered glutamatergic neurotransmission underlies anxiety. The present study evaluated the effect of diphenyl ditelluride [(PhTe)2] exposure on the behavioral performance of rats and examined whether the behavioral effects could be attributed to changes in the modulation of glutamatergic function. Rats were exposed to (PhTe)2 (subcutaneously) during 8 weeks-final dose one third LD50 (124 μg/kg). The testing schedule included elevated plus-maze, open-field, T-maze, rotorod, and Morris water maze tests. Synaptosomal basal [(3)H] glutamate release and uptake were also evaluated. The time spent in the open arm and the ratio of time spent in the open arm/total were decreased in the (PhTe)2 group. Furthermore, the [(3)H] glutamate uptake was decreased in this experimental group. The results suggest that exposure to (PhTe)2 did not change motor abilities whereas it may result in anxiogenic-like behavior, induced by changes in the glutamatergic system at the pre-synaptic level.
Collapse
Affiliation(s)
- Eluza Curte Stangherlin
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | | |
Collapse
|
13
|
Meinerz DF, Allebrandt J, Mariano DOC, Waczuk EP, Soares FA, Hassan W, Rocha JBT. Differential genotoxicity of diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2. PeerJ 2014; 2:e290. [PMID: 24711962 PMCID: PMC3970806 DOI: 10.7717/peerj.290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 02/04/2014] [Indexed: 11/20/2022] Open
Abstract
Organoselenium compounds have been pointed out as therapeutic agents. In contrast, the potential therapeutic aspects of tellurides have not yet been demonstrated. The present study evaluated the comparative toxicological effects of diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 in mice after in vivo administration. Genotoxicity (as determined by comet assay) and mutagenicicity were used as end-points of toxicity. Subcutaneous administration of high doses of (PhSe)2 or (PhTe)2 (500 µmol/kg) caused distinct genotoxicity in mice. (PhSe)2 significantly decreased the DNA damage index after 48 and 96 h of its injection (p < 0.05). In contrast, (PhTe) caused a significant increase in DNA damage (p < 0.05) after 48 and 96 h of intoxication. (PhSe)2 did not cause mutagenicity but (PhTe)2 increased the micronuclei frequency, indicating its mutagenic potential. The present study demonstrated that acute in vivo exposure to ditelluride caused genotoxicity in mice, which may be associated with pro-oxidant effects of diphenyl ditelluride. In addition, the use of this compound and possibly other related tellurides must be carefully controlled.
Collapse
Affiliation(s)
- Daiane Francine Meinerz
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Josiane Allebrandt
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Douglas O C Mariano
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Emily P Waczuk
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Felix Antunes Soares
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Waseem Hassan
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - João Batista T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| |
Collapse
|
14
|
Cytotoxicity and genotoxicity evaluation of organochalcogens in human leucocytes: a comparative study between ebselen, diphenyl diselenide, and diphenyl ditelluride. BIOMED RESEARCH INTERNATIONAL 2013; 2013:537279. [PMID: 24350274 PMCID: PMC3856129 DOI: 10.1155/2013/537279] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 11/06/2013] [Indexed: 11/20/2022]
Abstract
Organochalcogens, particularly ebselen, have been used in experimental and clinical trials with borderline efficacy. (PhSe)2 and (PhTe)2 are the simplest of the diaryl dichalcogenides and share with ebselen pharmacological properties. In view of the concerns with the use of mammals in studies and the great number of new organochalcogens with potential pharmacological properties that have been synthesized, it becomes important to develop screening protocols to select compounds that are worth to be tested in vivo. This study investigated the possible use of isolated human white cells as a preliminary model to test organochalcogen toxicity. Human leucocytes were exposed to 5–50 μM of ebselen, (PhSe)2, or (PhTe)2. All compounds were cytotoxic (Trypan's Blue exclusion) at the highest concentration tested, and Ebselen was the most toxic. Ebselen and (PhSe)2 were genotoxic (Comet Assay) only at 50 μM, and (PhTe)2 at 5–50 μM. Here, the acute cytotoxicity did not correspond with in vivo toxicity of the compounds. But the genotoxicity was in the same order of the in vivo toxicity to mice. These results indicate that in vitro genotoxicity in white blood cells should be considered as an early step in the investigation of potential toxicity of organochalcogens.
Collapse
|
15
|
Ibrahim M, Hassan W, Meinerz DF, dos Santos M, V. Klimaczewski C, M. Deobald A, Costa MS, Nogueira CW, Barbosa NBV, Rocha JBT. Antioxidant properties of diorganoyl diselenides and ditellurides: modulation by organic aryl or naphthyl moiety. Mol Cell Biochem 2012; 371:97-104. [DOI: 10.1007/s11010-012-1426-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/03/2012] [Indexed: 01/22/2023]
|
16
|
Avila DS, Palma AS, Colle D, Scolari R, Manarin F, da Silveira AF, Nogueira CW, Rocha JBT, Soares FAA. Hepatoprotective activity of a vinylic telluride against acute exposure to acetaminophen. Eur J Pharmacol 2011; 661:92-101. [PMID: 21549114 DOI: 10.1016/j.ejphar.2011.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 03/30/2011] [Accepted: 04/14/2011] [Indexed: 12/17/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity has been related with several cases of cirrhosis, hepatitis and suicides attempts. Notably, oxidative stress plays a central role in the hepatic damage caused by APAP and antioxidants have been tested as alternative treatment against APAP toxicity. In the present study, we observed the hepatoprotector activity of the diethyl-2-phenyl-2-tellurophenyl vinylphosphonate (DPTVP), an organotellurium compound with low toxicity and high antioxidant potential. When the dose of 200 mg/kg of APAP was used, we observed that all used doses of DPTVP were able to restore the -SH levels that were depleted by APAP. Furthermore, the increase in thiobarbituric acid reactive substances levels and in the seric alanine aminotransferase (ALT) activity and the histopathological alterations caused by APAP were restored to control levels by DPTVP (30, 50 and 100 μmol/kg). On the other hand, when the 300 mg/kg dose of APAP was used, DPTVP restored the non-proteic -SH levels and repaired the normal liver morphology of the intoxicated mice only at 50 μmol/kg. Our in vitro results point out to a scavenging activity of DPTVP against several reactive species, action that is attributed to its chemical structure. Taken together, our results demonstrate that the pharmacological action of DPTVP as a hepatoprotector is probably due to its scavenging activity related to its chemical structure.
Collapse
Affiliation(s)
- Daiana Silva Avila
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Meinerz DF, Sudati JH, dos Santos DB, Frediani A, Alberto EE, Allebrandt J, Franco JL, Barbosa NBV, Aschner M, da Rocha JBT. Evaluation of the biological effects of (S)-dimethyl 2-(3-(phenyltellanyl) propanamido) succinate, a new telluroamino acid derivative of aspartic acid. Arch Toxicol 2010; 85:43-9. [DOI: 10.1007/s00204-010-0555-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 05/04/2010] [Indexed: 12/31/2022]
|
18
|
Cunha RLOR, Gouvea IE, Juliano L. A glimpse on biological activities of tellurium compounds. AN ACAD BRAS CIENC 2010; 81:393-407. [PMID: 19722011 DOI: 10.1590/s0001-37652009000300006] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 09/18/2008] [Indexed: 12/29/2022] Open
Abstract
Tellurium is a rare element which has been regarded as a toxic, non-essential trace element and its biological role is not clearly established to date. Besides of that, the biological effects of elemental tellurium and some of its inorganic and organic derivatives have been studied, leading to a set of interesting and promising applications. As an example, it can be highlighted the uses of alkali-metal tellurites and tellurates in microbiology, the antioxidant effects of organotellurides and diorganoditellurides and the immunomodulatory effects of the non-toxic inorganic tellurane, named AS-101, and the plethora of its uses. Inasmuch, the nascent applications of organic telluranes (organotelluranes) as protease inhibitors and its applications in disease models are the most recent contribution to the scenario of the biological effects and applications of tellurium and its compounds discussed in this manuscript.
Collapse
|
19
|
Towards the mechanism and comparative effect of diphenyl diselenide, diphenyl ditelluride and ebselen under various pathophysiological conditions in rat's kidney preparation. Chem Biol Interact 2009; 182:52-8. [DOI: 10.1016/j.cbi.2009.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/23/2009] [Accepted: 06/29/2009] [Indexed: 11/22/2022]
|
20
|
Hassan W, Ibrahim M, Rocha JB. Low pH does not modulate antioxidant status of diphenyl ditelluride but exacerbates Fe (II)-induced lipid peroxidation in liver preparation. Drug Chem Toxicol 2009; 32:438-42. [DOI: 10.1080/01480540903127332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Santos D, Schiar V, Paixão M, Meinerz D, Nogueira C, Aschner M, Rocha J, Barbosa N. Hemolytic and genotoxic evaluation of organochalcogens in human blood cells in vitro. Toxicol In Vitro 2009; 23:1195-204. [DOI: 10.1016/j.tiv.2009.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/24/2009] [Accepted: 05/20/2009] [Indexed: 12/21/2022]
|
22
|
Hassan W, Ibrahim M, Nogueira CW, Braga AL, Deobald AM, MohammadZai IU, Rocha JBT. Influence of pH on the reactivity of diphenyl ditelluride with thiols and anti-oxidant potential in rat brain. Chem Biol Interact 2009; 180:47-53. [DOI: 10.1016/j.cbi.2008.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
|
23
|
Martins DM, Torres BG, Spohr PR, Machado P, Bonacorso HG, Zanatta N, Martins MAP, Emanuelli T. Antioxidant Potential of New Pyrazoline Derivatives to Prevent Oxidative Damage. Basic Clin Pharmacol Toxicol 2009; 104:107-12. [DOI: 10.1111/j.1742-7843.2008.00346.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Kade IJ, Paixão MW, Rodrigues OED, Barbosa NBV, Braga AL, Avila DS, Nogueira CW, Rocha JBT. Comparative Studies on Dicholesteroyl Diselenide and Diphenyl Diselenide as Antioxidant Agents and their Effect on the Activities of Na+/K+ ATPase and δ-Aminolevulinic acid Dehydratase in the Rat Brain. Neurochem Res 2007; 33:167-78. [PMID: 17710541 DOI: 10.1007/s11064-007-9432-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 06/29/2007] [Indexed: 10/22/2022]
Abstract
The present study sought to evaluate the effect of a newly synthesized selenium compound, dicholesteroyl diselenide (DCDS) and diphenyl diselenide (DPDS) on the activities of delta-aminolevulinate dehydratase and Na+/K+-ATPase in the rat brain. The glutathione peroxidase mimetic activity of the two compounds as well as their ability to oxidize mono- and di- thiols were also evaluated. The antioxidant effects were tested by measuring the ability of the compounds to inhibit the formation of thiobarbituric acid reactive species and also their ability to inhibit the formation of protein carbonyls. The results show that DPDS exhibited a higher glutathione peroxidase mimetic activity as well as increased ability to oxidize di-thiols than DCDS. In addition, while DPDS inhibited the formation of thiobarbituric acid reactive species and protein carbonyls, DCDS exhibited a prooxidant effect in all the concentration range (20-167 microM) tested. Also the activities of cerebral delta-aminolevulinate dehydratase and Na+/K+ ATPase were significantly inhibited by DPDS but not by DCDS. In addition, the present results suggested that the inhibition of Na+/K+ ATPase by organodiselenides, possibly involves the modification of the thiol group at the ATP binding site of the enzyme. In conclusion, the results of the present investigation indicated that the non-selenium moiety of the organochalcogens can have a profound effect on their antioxidant activity and also in their reactivity towards SH groups from low-molecular weight molecules and from brain proteins.
Collapse
Affiliation(s)
- Ige J Kade
- Departamento de Química, Centro Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Schiar VPP, Dos Santos DB, Lüdtke DS, Vargas F, Paixão MW, Nogueira CW, Zeni G, Rocha JBT. Screening of potentially toxic chalcogens in erythrocytes. Toxicol In Vitro 2007; 21:139-45. [PMID: 17084588 DOI: 10.1016/j.tiv.2006.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 08/25/2006] [Accepted: 08/29/2006] [Indexed: 11/23/2022]
Abstract
Previous literature reports have demonstrated that a number of human diseases, including inflammation and cancer, can be caused by environmental and occupational exposure to toxic compounds, via DNA damage, protein modifications, or lipid peroxidation. The present study was undertaken to screen the toxicity of a variety of chalcogens using erythrocytes as a model of cell injury. The toxicity of these compounds was evaluated via quantification of hemolysis and lipid peroxidation. The present investigation shows that diphenyl ditelluride and phenyl tellurides are toxic to erythrocytes. The organoselenium compounds were not toxic to erythrocytes even when tested at high concentrations and with a hematocrit of 45%. The hemolytic effect of tellurides was not positively correlated with thiobarbituric acid-reactive substance (TBARS) production suggesting that lipid peroxidation is not involved in the hemolysis provoked by organotellurium compounds. The results suggest that chalcogen compounds may be toxic to human erythrocytes, depending on their structure.
Collapse
Affiliation(s)
- Viviane Patrícia P Schiar
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Machado MS, Rosa RM, Dantas AS, Reolon GK, Appelt HR, Braga AL, Henriques JAP, Roesler R. An organic selenium compound attenuates apomorphine-induced stereotypy in mice. Neurosci Lett 2006; 410:198-202. [PMID: 17052842 DOI: 10.1016/j.neulet.2006.09.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/20/2006] [Accepted: 09/29/2006] [Indexed: 10/24/2022]
Abstract
Selenium compounds display neuroprotective activities mediated at least in part by their antioxidant actions. Oxidative damage has been implicated in psychiatric disorders including schizophrenia and bipolar disorder, and an alteration in expression of selenium-binding protein-1 (SELENBP-1) has been recently reported in both the blood and brain of schizophrenic patients. In the present study we examined the effects of the organic selenium compound 3'3-ditrifluoromethyldiphenyl diselenide [(F3CPhSe)2] on apomorphine-induced stereotypy in mice, an animal model of psychosis. Systemic administration of (F3CPhSe)2 at the highest dose used (25.0 micromol/kg in a 10.0 ml/kg injection volume) significantly reduced apomorphine-induced stereotyped behaviors. A series of control experiments showed that the same dose of (F3CPhSe)2 did not affect open-field behavior, habituation, or aversively motivated memory. The results indicate that organic selenium compounds should be further investigated as agents with possible antipsychotic properties.
Collapse
Affiliation(s)
- Miriana S Machado
- Graduate Program in Cellular and Molecular Biology and Center for Biotechnology, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Puntel RL, Roos DH, Paixão MW, Braga AL, Zeni G, Nogueira CW, Rocha JBT. Oxalate modulates thiobarbituric acid reactive species (TBARS) production in supernatants of homogenates from rat brain, liver and kidney: effect of diphenyl diselenide and diphenyl ditelluride. Chem Biol Interact 2006; 165:87-98. [PMID: 17188671 DOI: 10.1016/j.cbi.2006.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/03/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
The aim of this paper was to investigate the mechanism(s) involved in the sodium oxalate pro-oxidative activity in vitro and the potential protection by diphenyl diselenide ((PhSe)(2)) and diphenyl ditelluride ((PhTe)(2)) using supernatants of homogenates from brain, liver and kidney. Oxalate causes a significant increase in the TBARS (thiobarbituric acid reactive species) production up to 4mmol/l and it had antioxidant activity from 8 to 16mmol/l in the brain and liver. Oxalate had no effect in kidney homogenates. The difference among tissues may be related to the formation of insoluble crystal of oxalate in kidney, but not in liver and brain homogenates. (PhSe)(2) and (PhTe)(2) reduced both basal and oxalate-induced TBARS in rat brain homogenates, whereas in liver homogenates they were antioxidant only on oxalate-induced TBARS production. (PhSe)(2) showed a modest effect on renal TBARS production, whereas (PhTe)(2) did not modulate TBARS in kidney preparations. Oxalate at 2mmol/l did not change deoxyribose degradation induced by Fe(2+) plus H(2)O(2), whereas at 20mmol/l it significantly prevents its degradation. Oxalate (up to 4mmol/l) did not alter iron (10micromol/l)-induced TBARS production in the brain preparations, whereas at 8mmol/l onwards it prevents iron effect. In liver preparations, oxalate amplifies iron pro-oxidant activity up to 4mmol/l, preventing iron-induced TBARS production at 16mmol/l onwards. These results support the antioxidant effect of organochalcogens against oxalate-induced TBARS production. In addition, our results suggest that oxalate pro- and antioxidant activity in vitro could be related to its interactions with iron ions.
Collapse
Affiliation(s)
- Robson Luiz Puntel
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus UFSM, Santa Maria, RS 97105-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Savegnago L, Borges VC, Alves D, Jesse CR, Rocha JBT, Nogueira CW. Evaluation of antioxidant activity and potential toxicity of 1-buthyltelurenyl-2-methylthioheptene. Life Sci 2006; 79:1546-52. [PMID: 16716363 DOI: 10.1016/j.lfs.2006.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 04/14/2006] [Accepted: 04/26/2006] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to evaluate pharmacological and toxicological properties of 1-buthyltelurenyl-2-methylthioheptene (compound 1). In vitro, compound 1 at 1 microM was effective in reducing lipid peroxidation induced by Fe/EDTA. Compound 1 presented neither thiol peroxidase nor thiol oxidase activity and did not change delta-ALA-D (delta-aminolevulinate dehydratase) activity (10-400 microM). Calculated LD(50) of compound 1, administered by oral route, was 65.1 micromol/kg. Rats treated with compound 1 did not reveal any motor impairment in the open field. Hepatic, renal and cerebral lipid peroxidation in treated rats did not differ from those in control rats. Conversely, 0.5 micromol/kg of compound 1 decreased lipid peroxidation in spleen. Delta-ALA-D activity in liver and spleen was inhibited in rats treated with the higher dose of compound 1 but no significant differences were detected in renal delta-ALA-D activity. AST (aspartate aminotransferase) and ALT (alanine aminotransferase) activities as well as urea and creatinine levels were increased by high doses of compound 1 (50-75 micromol/kg). Compound 1 induced a significant decrease in plasma triglyceride levels but none of the doses tested changed the cholesterol level. This is a promising compound for more detailed pharmacological studies involving organotellurium compounds.
Collapse
Affiliation(s)
- Lucielli Savegnago
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
de Avila DS, Beque MC, Folmer V, Braga AL, Zeni G, Nogueira CW, Soares FAA, Rocha JBT. Diethyl 2-phenyl-2 tellurophenyl vinylphosphonate: An organotellurium compound with low toxicity. Toxicology 2006; 224:100-7. [PMID: 16723180 DOI: 10.1016/j.tox.2006.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/23/2006] [Accepted: 04/18/2006] [Indexed: 11/30/2022]
Abstract
It is well-known that organotellurium compounds can have antioxidant activity in vitro, but in vivo these compounds can be potentially toxic to rodents. Here we investigated the potential in vitro and ex vivo toxicity of a new beta-organochalcogenyl vinylphosphonate, the diethyl 2-phenyl-2 tellurophenyl vinylphosphonate. The in vitro antioxidant activity of this organotellurium compound was also investigated. In vitro, the rate of dithiotreitol (DTT) oxidation was increased and the activity of cerebral, renal and hepatic delta-aminolevulinate dehydratase (delta-ALA-D) was decreased by diethyl 2-phenyl-2-tellurophenyl vinylphosphonate (120-1200 microM), indicating that this compound oxidize-SH groups. The antioxidant activity was also observed in brain, liver and kidney, in very low concentrations (0.4, 1.0, 4.0, 10.0 and 40.0 microM), and this capacity was comparable to the antioxidant standard organotellurium compound, diphenyl ditelluride. In vivo, delta-ALA-D activity in liver, kidney and brain of mice treated for 12 days with dimethylsulfoxide (DMSO) as vehicle, 25, 75 or 250 micromol/kg of diethyl 2-phenyl-2-tellurophenyl vinylphosphonate was not affected. Furthermore, only one animal treated with the highest dose died, whereas all animals treated with diphenyl ditteluride died in the fourth day. These results suggest that this novel organotellurium compound interacts with the sulfhydryl groups, however only at higher doses when compared with diphenyl ditelluride. Since diethyl 2-phenyl-2 tellurophenyl vinylphosphonate had low toxicity to mice after sub-chronic exposure, it becomes important to investigate its possible pharmacological properties.
Collapse
Affiliation(s)
- Daiana Silva de Avila
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Stangherlin EC, Favero AM, Zeni G, Rocha JBT, Nogueira CW. Exposure of mothers to diphenyl ditelluride during the suckling period changes behavioral tendencies in their offspring. Brain Res Bull 2006; 69:311-7. [PMID: 16564427 DOI: 10.1016/j.brainresbull.2006.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 12/22/2005] [Accepted: 01/05/2006] [Indexed: 11/20/2022]
Abstract
The long-lasting possible influence of maternal exposure to 0.03 mg/kg of diphenyl ditelluride during the first 14 days of lactational period on later offspring behavior was examined in Wistar rats. Open-field locomotor activity, spontaneous alternation in the T-maze, behavior in the elevated plus-maze, motor coordination in the coat-hanger and rotorod tasks were evaluated in 30 day old pups. There were no significant specific overt signs of maternal intoxication. There were a small (less than 5%) but significant transitory differences in the body weight gain of pups between exposed and control groups, which were apparent from day 30 of suckling. Locomotor activity in the open-field task was similar between telluride and control groups. In the coat-hanger test, the latency before falling for the tellurium group was higher than that of the control group. However, the behavior of both groups was similar in the rotorod test and spontaneous alternation in the T-maze. Tellurium-treated pups presented a higher number of entries and spent more time in the open arms of the elevated plus-maze than control pups. The behavioral alterations observed here after tellurium exposure can be cautiously interpreted as an indication of behavioral disinhibition. In conclusion, this study demonstrated that dam exposure to diphenyl ditelluride can cause subtle behavioral changes in the offspring, which can be related to neurotoxic effects of diphenyl ditelluride.
Collapse
Affiliation(s)
- Eluza C Stangherlin
- Departamento de Química, Universidade Federal de Santa Maria, Camobi, CCNE, 97105900 Santa Maria, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
31
|
Borges LP, Borges VC, Moro AV, Nogueira CW, Rocha JBT, Zeni G. Protective effect of diphenyl diselenide on acute liver damage induced by 2-nitropropane in rats. Toxicology 2005; 210:1-8. [PMID: 15804453 DOI: 10.1016/j.tox.2005.01.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Revised: 12/30/2004] [Accepted: 01/05/2005] [Indexed: 01/20/2023]
Abstract
The effect of diphenyl diselenide, (PhSe)2, administration on 2-nitropropane (2-NP)-induced hepatic damage was examined in male rats. Rats were pre-treated with a single dose of diphenyl diselenide (10, 50 or 100 micromol/kg). Afterward, they received only one dose of 2-NP (100 mg/kg body weight dissolved in olive oil). The parameters that indicate tissue damage such as plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alpha-fetoprotein (AFP), creatinine and urea were determined. Since toxicity induced by 2-NP is related to oxidative stress, lipid peroxidation was also evaluated. Diphenyl diselenide (100 micromol/kg) significantly reduced plasma ALT, gamma-GGT, AFP levels when compared to 2-NP group. Treatment with diphenyl diselenide, at all doses, effectively protects the increase of lipid peroxidation when compared to 2-NP group. Histological examination revealed that 2-NP treatment causes a moderate swelling and degenerative alterations on hepatocytes and diphenyl diselenide (100 micromol/kg) protects against these alterations. Diphenyl diselenide (50 and 100 micromol/kg) significantly decreased the urea level. This study evidences the protective effect of diphenyl diselenide by 2-NP-induced acute hepatic damage.
Collapse
Affiliation(s)
- Lysandro P Borges
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Centurião FB, Corte CLD, Paixão MW, Braga AL, Zeni G, Emanuelli T, Rocha JBT. Effect of ebselen and organochalcogenides on excitotoxicity induced by glutamate in isolated chick retina. Brain Res 2005; 1039:146-52. [PMID: 15781056 DOI: 10.1016/j.brainres.2005.01.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 01/17/2005] [Accepted: 01/19/2005] [Indexed: 10/25/2022]
Abstract
In this study, we evaluated the effects of three simple organochalcogenides (diphenyl diselenide, diphenyl ditelluride and diphenyl telluride) and ebselen on the glutamate-driven 45Ca2+ influx into chick embryonic retinal cells, as well as their effects on the excitotoxic injury in retina cells. None of the compounds tested interfered with basal 45Ca2+ uptake. Diphenyl diselenide and diphenyl ditelluride had no effects on glutamate-driven 45Ca2+ influx. Diphenyl telluride (100-400 microM) decreased and ebselen (100-400 microM) completely blocked the glutamate-driven 45Ca2+ influx (P < 0.01) into chick retinal explants. The assessment of neural injury was made spectrophotometrically by quantification of cellularly reduced MTT (3(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide) 24 h after the beginning of glutamate exposure (8 h). Ebselen had no effects on retinal MTT reduction when co-incubated with glutamate for 8 h. However, when ebselen (100 and 400 microM) was co-incubated for 8 h with glutamate and remained in the incubation media until MTT evaluation (24 h after the beginning of incubation), it protected retinal cells against the decrease in MTT reduction induced by glutamate. These data indicate that besides its capacity of interacting with Ca2+ channels, other mechanisms are involved in the neuroprotection afforded by ebselen in this work, possibly its antioxidant properties.
Collapse
Affiliation(s)
- Fernanda Bossemeyer Centurião
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brasil
| | | | | | | | | | | | | |
Collapse
|
33
|
Stangherlin EC, Favero AM, Zeni G, Rocha JBT, Nogueira CW. Teratogenic vulnerability of Wistar rats to diphenyl ditelluride. Toxicology 2005; 207:231-9. [PMID: 15596254 DOI: 10.1016/j.tox.2004.09.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 09/09/2004] [Accepted: 09/14/2004] [Indexed: 11/16/2022]
Abstract
The effect of single maternal subcutaneous (s.c.) injection of 0.12 mg/kg diphenyl ditelluride, (PhTe)2, diluted in canola oil at days 6, 10 or 17 of gestation were evaluated in Wistar rats. The reduction of body weight gain was statistically significant at GD9, for the dams that received (PhTe)2, at GD6; at GD13, for the dams that received (PhTe)2, at GD10, and at GD20, for the dams that received (PhTe)2, at GD17, when compared to respective control groups. External and internal fetal soft tissues examination was performed on day 20 of gestation. Single maternal injection at day 10 of gestation resulted in appearance of malformation in fore- and hind-limbs, absent or short tail, subcutaneous blood clots, exophthalmia, hydrocephalus and absence of the cranial bone and cutaneous tissue in fetuses on day 20 of gestation. Besides, (PhTe)2 reduced fetal body and cerebral weight, kidney length, measurements of body dimension and provoked 73% of fetal mortality. Subcutaneous administration of (PhTe)2 on day 17 of gestation was associated with 94% mortality, hydrocephalus and edema. Histological evaluations of fetal brain demonstrated displaced brain tissue with absence of the cranial bone and cutaneous tissue when diphenyl ditelluride was administered in GD10. Histological evaluation of fetal head exposed at GD17 revealed a decrease of the brain volume with consequent dilation of the lateral ventricles and the adjacent tissues were thinner than that of control group tissues. No fetal changes were observed after administration of (PhTe)2 at day 6 of gestation. Thus, (PhTe)2 can be teratogenic to rat fetuses and toxic for dams. The late fetal stages of rat prenatal development appeared uniquely sensitive to organic tellurium exposure.
Collapse
Affiliation(s)
- E C Stangherlin
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, SM, RS, CEP 97105-900 Santa Maria, Brazil
| | | | | | | | | |
Collapse
|
34
|
Nogueira CW, Zeni G, Rocha JBT. Organoselenium and Organotellurium Compounds: Toxicology and Pharmacology. Chem Rev 2004; 104:6255-85. [PMID: 15584701 DOI: 10.1021/cr0406559] [Citation(s) in RCA: 1429] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliacão Farmacológica e Toxicológica de Organocalcogênios, CCNE, UFSM, Santa Maria, CEP 97105-900 Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
35
|
Detty MR, Logan ME. One- and two-electron oxidations and reductions of organoselenium and organotellurium compounds. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2004. [DOI: 10.1016/s0065-3160(04)39003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Musaev DG, Hirao K. Reactivity of [1,2-Benzisotellurazol-3(2H)-one] with Peroxynitrous Acid: Comparison with Ebselen Analogues. J Phys Chem A 2003. [DOI: 10.1021/jp035969z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322
| | - Kimihiko Hirao
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
37
|
Sakimoto Y, Hirao K, Musaev DG. Reactivity of Ebtellur Derivatives with the Peroxynitrite Anion: Comparison with Their Ebselen Analogues. J Phys Chem A 2003. [DOI: 10.1021/jp035191h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yukiko Sakimoto
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kimihiko Hirao
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
38
|
Nogueira CW, Meotti FC, Curte E, Pilissão C, Zeni G, Rocha JBT. Investigations into the potential neurotoxicity induced by diselenides in mice and rats. Toxicology 2003; 183:29-37. [PMID: 12504340 DOI: 10.1016/s0300-483x(02)00423-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is well known that selenium is highly toxic to several species of mammals. Here we report the potential neurotoxicity of diselenides, as measured by the manifestation of seizures. The modulation of various neurotransmitter systems potentially involved in seizure episodes and death was also evaluated. The results of the present investigation suggest that toxicity of diselenides depends on the route of administration as well the species (rats or mice). These data show that modulation of more than one neuronal system can account for diselenide-induced seizures in mice. Additionally, changes in structure of diselenides, such as to introduce a functional group, influence the appearance of seizure episode. Conversely, all allosteric modulators tested did not protect dipropyl diselenide-induced seizures, indicating that aliphatic is more toxic than aromatic diselenides. Acute treatment with dipropyl diselenide inhibited [3H]-glutamate uptake to the crude synaptosomes. In contrast animals injected with diphenyl diselenide did not inhibit [3H]-glutamate uptake.
Collapse
Affiliation(s)
- C W Nogueira
- Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria 97105-900, Santa Maria, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
39
|
Shanks D, Al-Maharik N, Malmström J, Engman L, Eriksson P, Stenberg B, Reitberger T. Improved antioxidant formulations for polymeric materials—synergistic protective effects in combinations of organotellurium compounds with conventional phenolic antioxidants or thiols. Polym Degrad Stab 2003. [DOI: 10.1016/s0141-3910(03)00096-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Rossato JI, Ketzer LA, Centurião FB, Silva SJN, Lüdtke DS, Zeni G, Braga AL, Rubin MA, Rocha JBT. Antioxidant properties of new chalcogenides against lipid peroxidation in rat brain. Neurochem Res 2002; 27:297-303. [PMID: 11958531 DOI: 10.1023/a:1014907228580] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ebselen (2-phenyl- 1,2-benzisoselenazole-3 (2H)-one) is a seleno-organic compound with antioxidant properties, and anti-inflammatory actions. Recently, ebselen improved the outcome of acute ischemic stroke in humans. In the present study, the potential antioxidant capacity of organochalcogenide compounds diphenyl diselenide (PhSe)2, diphenyl ditelluride (PhTe)2, diphenyl disulfide (PhS)2, p-Cl-diphenyl diselenide (pCl-PhSe)2, bis-[S-4-isopropyl 2-phenyl oxazoline] diselenide (AA-Se)2, bis-[S-4-isopropyl 2-phenyl oxazoline] ditelluride (AA-Te)2 and bis-[S-4-isopropyl 2-phenyl oxazoline] disulfide (AA-S)2 was compared with that of ebselen (a classical antioxidant). Spontaneous and quinolinic acid (QA)- (2 mM) and sodium nitroprusside (SNP)- (5 microM)-induced thiobarbituric reactive species (TBARS) production by rat brain homogenates was determined colorimetrically. TBARS formation was reduced by ebselen, (PhSe)2, (PhTe)2, (AA-Se)2, (AA-S)2 and (pCl- PhSe)2 to basal rates. The concentrations of these compounds needed to inhibit TBARS formation by 50% (IC50) are 1.71 microM, 3.73 microM, 1.63 microM, 9.85 microM, >33.3 microM, 23.2 microM and 4.83 microM, respectively for QA. For TBARS production induced by SNP the IC50 was 2.02 microM, 12.5 microM, 2.80 microM, >33.3 microM, 24.5 microM and 7.55 microM, respectively. The compounds (AA-Te)2 and (PhS)2 have no antioxidant activity and pro-oxidant activity, respectively. These results suggest that (AA-Se)2 and (AA-S)2 can be considered as potential pharmaceutical antioxidant agents.
Collapse
Affiliation(s)
- J I Rossato
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mugesh G, Panda A, Kumar S, Apte SD, Singh HB, Butcher RJ. Intramolecularly Coordinated Diorganyl Ditellurides: Thiol Peroxidase-like Antioxidants. Organometallics 2002. [DOI: 10.1021/om010759z] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Govindasamy Mugesh
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, 400 076 Mumbai, India, and Department of Chemistry, Howard University, Washington D.C. 20059
| | - Arunashree Panda
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, 400 076 Mumbai, India, and Department of Chemistry, Howard University, Washington D.C. 20059
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, 400 076 Mumbai, India, and Department of Chemistry, Howard University, Washington D.C. 20059
| | - Sandeep D. Apte
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, 400 076 Mumbai, India, and Department of Chemistry, Howard University, Washington D.C. 20059
| | - Harkesh B. Singh
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, 400 076 Mumbai, India, and Department of Chemistry, Howard University, Washington D.C. 20059
| | - Ray J. Butcher
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, 400 076 Mumbai, India, and Department of Chemistry, Howard University, Washington D.C. 20059
| |
Collapse
|
42
|
Kanski J, Drake J, Aksenova M, Engman L, Butterfield DA. Antioxidant activity of the organotellurium compound 3-[4-(N,N-dimethylamino)benzenetellurenyl]propanesulfonic acid against oxidative stress in synaptosomal membrane systems and neuronal cultures. Brain Res 2001; 911:12-21. [PMID: 11489439 DOI: 10.1016/s0006-8993(01)02541-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antioxidant activities of 3-[4-(N,N-dimethylamino) benzenetellurenyl]propanesulfonic acid sodium salt (NDBT) were evaluated in solution, red blood cells, synaptosomal membranes, and cultured hippocampal neuronal cells after exposure to peroxynitrite (ONOO(-)) and hydroxyl radicals. The organotellurium compound NDBT possesses significant activity towards hydrogen peroxide and/or the hydroxyl radical in solution, demonstrated by inhibition of hydroxylation of terephthalic acid. In addition, the compound displayed great antioxidant abilities as shown by: reduction of ONOO(-)-induced 2,7-dichlorofluorescein (DCF) fluorescence in synaptosomes; complete prevention of lipid peroxidation in synaptosomes caused by OH radicals (TBARS), and significant prevention of protein oxidation caused by ONOO(-) and OH, indexed by the levels of protein carbonyls in synaptosomes and neuronal cells. The presence of the compound abolished neuronal cell death caused by ONOO(-). Further, the compound was effective in preventing the oxidative changes in synaptosomal membrane protein conformation and crosslinking (EPR spin labeling). Finally, the organotellurium molecule attenuated peroxynitrite-induced, luminol-dependent chemiluminescence in red blood cells--an index of cellular oxidation. These findings demonstrate the great potential of the antioxidant and are consistent with the notion that NDBT may have a role to play in modulating oxidative stress in neurodegenerative disorders, including Alzheimer's disease.
Collapse
Affiliation(s)
- J Kanski
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | |
Collapse
|
43
|
Hansch C, Kurup A, Garg R, Gao H. Chem-bioinformatics and QSAR: a review of QSAR lacking positive hydrophobic terms. Chem Rev 2001; 101:619-72. [PMID: 11712499 DOI: 10.1021/cr0000067] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C Hansch
- Department of Chemistry, Pomona College, Claremont, California 91711, USA
| | | | | | | |
Collapse
|
44
|
Tiano L, Fedeli D, Santroni AM, Villarini M, Engman L, Falcioni G. Effect of three diaryl tellurides, and an organoselenium compound in trout erythrocytes exposed to oxidative stress in vitro. Mutat Res 2000; 464:269-77. [PMID: 10648914 DOI: 10.1016/s1383-5718(99)00204-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous literature reports have demonstrated that nucleated trout erythrocytes in conditions of oxidative stress are subjected to DNA and membrane damage, and inactivation of glutathione peroxidase. The present study was undertaken to evaluate the ability of three diaryl tellurides and the organoselenium compound ebselen to protect trout (Salmo irideus) erythrocytes against oxidative stress, induced thermally and by a variation of pH. The antioxidant ability of these molecules was evaluated through chemiluminescence. Impairment of DNA was assessed using the comet assay, a rapid and sensitive single cell gel electrophoresis technique, used to detect primary DNA damage in individual cells. At low concentrations (<10 microM), all the compounds used presented a protective effect on DNA damage without altering the hemolysis rate. In higher concentrations, they accelerated the hemolysis rate and two of the diaryl tellurides were strongly genotoxic.
Collapse
Affiliation(s)
- L Tiano
- Dipartimento di Biologia Molecolare, Cellulare e Animale, Università degli Studi di Camerino, Via Camerini 2, I-62032, Camerino, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Briviba K, Tamler R, Klotz LO, Engman L, Cotgreave IA, Sies H. Protection by organotellurium compounds against peroxynitrite-mediated oxidation and nitration reactions. Biochem Pharmacol 1998; 55:817-23. [PMID: 9586954 DOI: 10.1016/s0006-2952(97)00542-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diaryl tellurides effectively protect against peroxynitrite-mediated oxidation of dihydrorhodamine 123 (DHR), hydroxylation of benzoate, and nitration of 4-hydroxyphenylacetate (HPA). Bis(4-aminophenyl) telluride offered the most efficient protection against oxidation of DHR induced by peroxynitrite. Protection by this compound was approximately 3 times more effective than that afforded by its selenium analog, bis(4-aminophenyl) selenide, and 11 times more effective than selenomethionine. When peroxynitrite was infused to maintain a steady-state concentration, bis(4-aminophenyl) telluride in the presence of GSH, but neither bis(4-aminophenyl) telluride nor GSH alone, effectively inhibited the peroxynitrite-mediated hydroxylation of benzoate. The inhibition of nitration was most pronounced using bis(4-hydroxyphenyl) telluride, and this compound was ca. 3 times more effective than selenomethionine. Bis(4-aminophenyl) telluride also protected proteins in lysates from human skin fibroblasts from peroxynitrite-mediated nitration of tyrosine residues more effectively than selenomethionine. These data establish a potential biological or pharmacological role of organotellurium compounds in the defense against peroxynitrite.
Collapse
Affiliation(s)
- K Briviba
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Wieslander E, Engman L, Svensjö E, Erlansson M, Johansson U, Linden M, Andersson CM, Brattsand R. Antioxidative properties of organotellurium compounds in cell systems. Biochem Pharmacol 1998; 55:573-84. [PMID: 9515568 DOI: 10.1016/s0006-2952(97)00517-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The protective/antioxidative properties of diaryl tellurides were demonstrated in cellular systems of increasing complexity. In the presence of glutathione, bis(4-hydroxyphenyl) telluride (1a), bis(4-aminophenyl) telluride (1d) and bis(2-carboxyphenyl) telluride (1h) reduced by more than 50% t-butyl hydroperoxide-induced cell death in lung fibroblast cultures at concentrations below 2 microM. Bis(2,6-dimethyl-4-hydroxyphenyl) telluride (2b) reduced by more than 50% leukocyte-mediated and phorbol-12-myristate-13-acetate-stimulated damage to Caco-2 cells at 0.1 microM concentration. As judged by their abilities to reduce formation of thiobarbituric acid reactive substances at concentrations close to 1 microM, diaryl tellurides 1a, 1d and 2b protected rat kidney tissue against oxidative damage caused by anoxia and reoxygenation. The organotellurium compounds also offered protection after systemic administration. In the presence of diaryl telluride 2b (0.1-1 microM), the ischemia/reperfusion-induced vascular permeability increase in the hamster cheek pouch was significantly reduced as compared with the control. Some of the most active organotellurium cell protectants were evaluated for their ability to inhibit formation of the inflammatory mediators leukotriene B4 and interleukin-1beta. An inhibitory effect on the secretion of these species was seen for compounds 1a and 2b at or above 10 microM concentrations. The protective effects of diaryl tellurides against t-butyl hydroperoxide-induced cell injury can be ascribed mainly to the peroxide-decomposing, glutathione peroxidase-like capacity of the compounds. The chain-breaking, electron- or hydrogen atom-donating ability of diaryl tellurides seems to be the main reason for their protection against leukocyte-mediated cell damage in Caco-2 cells and in the oxidatively challenged rat kidney and hamster cheek pouch.
Collapse
|
47
|
Hansch C, Gao H. Comparative QSAR: Radical Reactions of Benzene Derivatives in Chemistry and Biology. Chem Rev 1997; 97:2995-3060. [PMID: 11851484 DOI: 10.1021/cr9601021] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Corwin Hansch
- Department of Chemistry, Pomona College, Claremont, California 91711
| | | |
Collapse
|
48
|
Andersson CM, Hallberg A, Högberg T. Advances in the development of pharmaceutical antioxidants. ADVANCES IN DRUG RESEARCH 1996. [DOI: 10.1016/s0065-2490(96)80004-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
49
|
Engman L, Persson J, Vessman K, Ekström M, Berglund M, Andersson CM. Organotellurium compounds as efficient retarders of lipid peroxidation in methanol. Free Radic Biol Med 1995; 19:441-52. [PMID: 7590393 DOI: 10.1016/0891-5849(95)00035-v] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diaryl tellurides were found efficiently to retard azo-initiated lipid peroxidation of linoleic acid in methanol. The most efficient compounds, 31 and 39, contained one and two hydroxyl groups, respectively, in the para positions and methyl groups in all four positions ortho to tellurium. As determined by the values of n.kinh, these materials were as effective retarders of lipid peroxidation as vitamin E. Contrary to the conventional antioxidants examined, diaryl tellurides were found to inhibit peroxidation for long times, seemingly with an autocatalytic mechanism. Diaryl tellurides were found to be partially oxidized during the peroxidation. The reduction of tellurium (IV) compounds to the divalent state during the conditions of the experiment is discussed. The reactivity of some diaryl chalcogenides toward 2,2-diphenyl-1-picrylhydrazyl (DPPH) in methanol was studied. All compounds investigated were less reactive than vitamin E. One of the most active organotellurium compounds, bis(4-aminophenyl) telluride, reacted considerably faster with DPPH than the corresponding selenide or sulfide. It was concluded that mechanisms involving both hydrogen atom transfer and electron transfer were operative in the reaction of organotellurides with DPPH.
Collapse
Affiliation(s)
- L Engman
- Uppsala University, Department of Organic Chemistry, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Engman L, Stern D, Frisell H, Vessman K, Berglund M, Ek B, Andersson CM. Synthesis, antioxidant properties, biological activity and molecular modelling of a series of chalcogen analogues of the 5-lipoxygenase inhibitor DuP 654. Bioorg Med Chem 1995; 3:1255-62. [PMID: 8564418 DOI: 10.1016/0968-0896(95)00111-s] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
2-Phenylsulfenyl- (1b), 2-phenylselenenyl- (1c) and 2-phenyltellurenyl-1-naphthol (1d) were prepared and their antioxidative properties evaluated in comparison with 2-benzyl-1-naphthol (1a; DuP 654). 2-Phenyltellurenyl-1-naphthol had a significantly lower (1.00 V versus SCE) oxidation potential than the other three compounds (1.24, 1.27 and 1.25 V, respectively, versus SCE for compounds 1a, 1b and 1c) as determined by cyclic voltammetry. In contrast to the other materials, compound 1d was able to catalyze the reduction of hydrogen peroxide in the presence of thiols as stoichiometric reducing agents. The organotellurium compound was also the most efficient inhibitor of azo-initiated peroxidation of linoleic acid in a two-phase model system. Ab initio geometry optimization at the 3-21G(*) level revealed infinitesimal changes in the molecular conformations of the carbon, sulfur, selenium and tellurium analogues. As judged by their ability to inhibit stimulated LTB4 biosynthesis in human neutrophils, compounds 1a-1d all turned out to be highly potent 5-lipoxygenase inhibitors with IC50-values ranging from 0.40 microM for 2-benzyl-1-naphthol (1a) to 0.063 microM for 2-phenyltellurenyl-1-naphthol (1d).
Collapse
Affiliation(s)
- L Engman
- Uppsala University, Department of Organic Chemistry, Sweden
| | | | | | | | | | | | | |
Collapse
|