1
|
Azehaf H, Benzine Y, Tagzirt M, Skiba M, Karrout Y. Microbiota-sensitive drug delivery systems based on natural polysaccharides for colon targeting. Drug Discov Today 2023; 28:103606. [PMID: 37146964 DOI: 10.1016/j.drudis.2023.103606] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Colon targeting is an ongoing challenge, particularly for the oral administration of biological drugs or local treatment of inflammatory bowel disease (IBD). In both cases, drugs are known to be sensitive to the harsh conditions of the upper gastrointestinal tract (GIT) and, thus, must be protected. Here, we provide an overview of recently developed colonic site-specific drug delivery systems based on microbiota sensitivity of natural polysaccharides. Polysaccharides act as a substrate for enzymes secreted by the microbiota located in the distal part of GIT. The dosage form is adapted to the pathophysiology of the patient and, thus, a combination of bacteria-sensitive and time-controlled release or pH-dependent systems can be used for delivery.
Collapse
Affiliation(s)
- Hajar Azehaf
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - Youcef Benzine
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - M Tagzirt
- University of Lille, Inserm, CHU Lille, U1011, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - M Skiba
- University of Rouen, Galenic Pharmaceutical Team, INSERM U1239, UFR of Health, 22 Boulevard Gambetta, 76000 Rouen, France
| | - Youness Karrout
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
2
|
Nikam A, Sahoo PR, Musale S, Pagar RR, Paiva-Santos AC, Giram PS. A Systematic Overview of Eudragit ® Based Copolymer for Smart Healthcare. Pharmaceutics 2023; 15:587. [PMID: 36839910 PMCID: PMC9962897 DOI: 10.3390/pharmaceutics15020587] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Eudragit, synthesized by radical polymerization, is used for enteric coating, precise temporal release, and targeting the entire gastrointestinal system. Evonik Healthcare Germany offers different grades of Eudragit. The ratio of methacrylic acid to its methacrylate-based monomers used in the polymerization reaction defines the final product's characteristics and consequently its potential range of applications. Since 1953, these polymers have been made to use in a wide range of healthcare applications around the world. In this review, we reviewed the "known of knowns and known of unknowns" about Eudragit, from molecule to material design, its characterization, and its applications in healthcare.
Collapse
Affiliation(s)
- Aniket Nikam
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India
| | - Priya Ranjan Sahoo
- Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, NY 14260, USA
| | - Shubham Musale
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India
| | - Roshani R. Pagar
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, 3004-531 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, 3004-531 Coimbra, Portugal
| | - Prabhanjan Shridhar Giram
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| |
Collapse
|
3
|
Additive Manufacturing of Oral Tablets: Technologies, Materials and Printed Tablets. Pharmaceutics 2021; 13:pharmaceutics13020156. [PMID: 33504009 PMCID: PMC7912000 DOI: 10.3390/pharmaceutics13020156] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Additive manufacturing (AM), also known as three-dimensional (3D) printing, enables fabrication of custom-designed and personalized 3D constructs with high complexity in shape and composition. AM has a strong potential to fabricate oral tablets with enhanced customization and complexity as compared to tablets manufactured using conventional approaches. Despite these advantages, AM has not yet become the mainstream manufacturing approach for fabrication of oral solid dosage forms mainly due to limitations of AM technologies and lack of diverse printable drug formulations. In this review, AM of oral tablets are summarized with respect to AM technology. A detailed review of AM methods and materials used for the AM of oral tablets is presented. This article also reviews the challenges in AM of pharmaceutical formulations and potential strategies to overcome these challenges.
Collapse
|
4
|
Tavares Junior AG, de Araújo JTC, Meneguin AB, Chorilli M. Characteristics, Properties and Analytical/Bioanalytical Methods of 5-Aminosalicylic Acid: A Review. Crit Rev Anal Chem 2020; 52:1000-1014. [PMID: 33258695 DOI: 10.1080/10408347.2020.1848516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Five-aminosalicylic acid (5-ASA) is an anti-inflammatory drug indicated in the treatment of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Among the analytical methods of quantification of 5-ASA described in the literature, the High Efficiency Liquid Chromatography stands out, a sensitive technique but with a high cost. In recent years, alternative methods have been developed, presenting efficiency and reduced cost, such as UV/visible spectrophotometric, spectrofluorescent, and electrochemical methods, techniques recommended for the application in quality control and quantification of 5-ASA in pharmaceutical forms and biological fluids. This article aims to review the physicochemical characteristics, pharmacokinetics, mechanisms of action, controlled release systems, and the different analytical and bioanalytical methods for the quantification of 5-ASA.
Collapse
Affiliation(s)
| | | | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
5
|
Bukhovets AV, Fotaki N, Khutoryanskiy VV, Moustafine RI. Interpolymer Complexes of Eudragit ® Copolymers as Novel Carriers for Colon-Specific Drug Delivery. Polymers (Basel) 2020; 12:polym12071459. [PMID: 32629765 PMCID: PMC7407155 DOI: 10.3390/polym12071459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022] Open
Abstract
Interpolymer complexes (IPC) based on Eudragit® EPO and Eudragit® S100 were investigated as potential carriers for oral controlled drug delivery to the colon. IPC samples were prepared by mixing copolymer solutions in organic solvents (ethanol, isopropanol:acetone mixture (60:40, % v/v) and tetrahydrofuran). According to the data of elemental analysis, FTIR-spectroscopy, X-ray photoelectron spectroscopy and thermal analysis these IPCs have excess of anionic copolymer (Eudragit® S100) in their structure; they are stabilized by hydrogen and ionic intermacromolecular bonds and do not include free copolymer domains. IPC have pH-independent swelling properties in the media mimicking gastrointestinal tract (GIT) conditions and provide colon-specific delivery of indomethacin in buffer solutions (pH 1.2; 5.8; 6.8; 7.4) and in biorelevant media (fasted state simulated gastric fluid, fasted state simulated intestinal fluid—version 2 and fasted stated simulated colonic fluid).
Collapse
Affiliation(s)
- Aleksandra V. Bukhovets
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420012 Kazan, Russia; (A.V.B.); (V.V.K.)
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | - Vitaliy V. Khutoryanskiy
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420012 Kazan, Russia; (A.V.B.); (V.V.K.)
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Rouslan I. Moustafine
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420012 Kazan, Russia; (A.V.B.); (V.V.K.)
- Correspondence: ; Tel.: +7-843-252-1642
| |
Collapse
|
6
|
Shahdadi Sardo H, Saremnejad F, Bagheri S, Akhgari A, Afrasiabi Garekani H, Sadeghi F. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int J Pharm 2019; 558:367-379. [PMID: 30664993 DOI: 10.1016/j.ijpharm.2019.01.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
Abstract
Site-specific colon drug delivery is a practical approach for the treatment of local diseases of the colon with several advantages such as rapid onset of action and reduction of the dosage of the drug as well as minimization of harmful side effects. 5-aminosalicylic acid (5-ASA) is a drug of choice in the treatment of inflammatory bowel disease and colitis. For the efficient delivery of this drug, it is vital to prevent 5-ASA release in the upper part of the gastrointestinal tract and to promote its release in the proximal colon. Different approaches including chemical manipulation of drug molecule for production of prodrugs or modification of drug delivery systems using pH-dependent, time-dependent and/or bacterially biodegradable materials have been tried to optimize 5-ASA delivery to the colon. In the current review, the different strategies utilized in the design and development of an oral colonic delivery dosage form of 5-ASA are presented and discussed.
Collapse
Affiliation(s)
- Hossein Shahdadi Sardo
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farinaz Saremnejad
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Bagheri
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hadi Afrasiabi Garekani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Moustafine RI, Viktorova AS, Khutoryanskiy VV. Interpolymer complexes of carbopol® 971 and poly(2-ethyl-2-oxazoline): Physicochemical studies of complexation and formulations for oral drug delivery. Int J Pharm 2019; 558:53-62. [PMID: 30634031 DOI: 10.1016/j.ijpharm.2019.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/25/2022]
Abstract
Carbopol® 971 and poly(2-ethyl-2-oxazoline) form hydrogen-bonded interpolymer complexes in aqueous solutions and their complexation is strongly dependent on solution pH. This work investigated the complexation between these polymers in aqueous solutions. The compositions of interpolymer complexes as well as the critical pH values of complexation were determined. The structure of these complexes was studied in solutions using transmission electron microscopy and in solid state using elemental analysis, FTIR spectroscopy and differential scanning calorimetry. Solid compacts were prepared based on interpolymer complexes and physical blends of these polymers and their swelling behaviour was studied in aqueous solutions mimicking the fluids present in the gastrointestinal tract. These materials were used to prepare oral formulations of mesalazine and its release from solid matrices was studied in vitro. It was demonstrated that the complexation between Carbopol® 971 and poly(2-ethyl-2-oxazoline) has a profound effect on the drug release from matrix tablets.
Collapse
Affiliation(s)
- Rouslan I Moustafine
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126 Kazan, Russian Federation.
| | - Anastasiya S Viktorova
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126 Kazan, Russian Federation
| | - Vitaliy V Khutoryanskiy
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126 Kazan, Russian Federation; Reading School of Pharmacy, University of Reading, Whiteknights, PO box 224, Reading RG66AD, United Kingdom.
| |
Collapse
|
8
|
Indomethacin-containing interpolyelectrolyte complexes based on Eudragit ® E PO/S 100 copolymers as a novel drug delivery system. Int J Pharm 2017; 524:121-133. [DOI: 10.1016/j.ijpharm.2017.03.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022]
|
9
|
Palena MC, García MC, Manzo RH, Jimenez-Kairuz AF. Self-organized drug-interpolyelectrolyte nanocomplexes loaded with anionic drugs. Characterization and in vitro release evaluation. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Zhang H, Shahbazi MA, Mäkilä EM, da Silva TH, Reis RL, Salonen JJ, Hirvonen JT, Santos HA. Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine. Biomaterials 2013; 34:9210-9. [DOI: 10.1016/j.biomaterials.2013.08.035] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/10/2013] [Indexed: 02/07/2023]
|
11
|
Design, development, and optimization of polymeric based-colonic drug delivery system of naproxen. ScientificWorldJournal 2013; 2013:654829. [PMID: 24198725 PMCID: PMC3808103 DOI: 10.1155/2013/654829] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/28/2013] [Indexed: 11/17/2022] Open
Abstract
The aim of present investigation deals with the development of time-dependent
and pH sensitive press-coated tablets for colon specific drug delivery of naproxen.
The core tablets were prepared by wet granulation method then press coated with
hydroxypropyl cellulose (HPC) or Eudragit RSPO : RLPO mixture
and further coated with Eudragit S-100 by dip immerse method. The in vitro drug
release study was conducted in different dissolution media such as pH 1.2, 6.8, and 7.4
with or without rat caecal content to simulate GIT conditions. Surface morphology and
cross-sectional view of the tablets were visualized by scanning electron microscopy
(SEM). All prepared batches were in compliance with the pharmacopoeial standards.
The tablets which are compression coated with HPC followed by Eudragit S-100 coated
showed highest in vitro drug release of 98.10% in presence of rat
caecal content. The SEM of tablets suggested that the number of pores got increased
in pH 7.4 medium followed by dissolution of coating layer. The tablets coat erosion study
suggested that the lag time depends upon the coating concentrations of polymers.
A time-dependent hydrophilic polymer and pH sensitive polymer based press-coated
tablets of naproxen were promising delivery for colon targeting.
Collapse
|
12
|
Moustafine RI, Bukhovets AV, Sitenkov AY, Kemenova VA, Rombaut P, Van den Mooter G. Eudragit E PO as a Complementary Material for Designing Oral Drug Delivery Systems with Controlled Release Properties: Comparative Evaluation of New Interpolyelectrolyte Complexes with Countercharged Eudragit L100 Copolymers. Mol Pharm 2013; 10:2630-41. [DOI: 10.1021/mp4000635] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- R. I. Moustafine
- Department
of Pharmaceutical,
Toxicological and Analytical Chemistry, Kazan State Medical University, 420012 Kazan, Russian Federation
| | - A. V. Bukhovets
- Department
of Pharmaceutical,
Toxicological and Analytical Chemistry, Kazan State Medical University, 420012 Kazan, Russian Federation
| | - A. Y. Sitenkov
- Department
of Pharmaceutical,
Toxicological and Analytical Chemistry, Kazan State Medical University, 420012 Kazan, Russian Federation
| | - V. A. Kemenova
- Scientific Center for Biomedical
Technology, State Research Institute of Medicinal and Aromatic Plants (VILAR), 123056 Moscow, Russian Federation
| | - P. Rombaut
- Drug Delivery and Disposition, University of Leuven (KULeuven), 3000 Leuven, Belgium
| | - G. Van den Mooter
- Drug Delivery and Disposition, University of Leuven (KULeuven), 3000 Leuven, Belgium
| |
Collapse
|
13
|
Exploiting the synergistic effect of chitosan–EDTA conjugate with MSA for the early recovery from colitis. Int J Biol Macromol 2013; 54:186-96. [DOI: 10.1016/j.ijbiomac.2012.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/05/2012] [Accepted: 12/14/2012] [Indexed: 02/07/2023]
|
14
|
Gulbake A, Jain SK. Chitosan: a potential polymer for colon-specific drug delivery system. Expert Opin Drug Deliv 2012; 9:713-29. [DOI: 10.1517/17425247.2012.682148] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Mustafin RI, Bukhovets AV, Sitenkov AY, Garipova VR, Kemenova VA, Rombaut P, Van den Mooter G. Synthesis and characterization of a new carrier based on Eudragit® EPO/S100 interpolyelectrolyte complex for controlled colon-specific drug delivery. Pharm Chem J 2011. [DOI: 10.1007/s11094-011-0681-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|