1
|
Md S, Kotta S. Advanced drug delivery technologies for postmenopausal effects. J Control Release 2024; 373:426-446. [PMID: 39038543 DOI: 10.1016/j.jconrel.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Postmenopause is the 12-month absence of menstrual periods, characterized by decreased estrogen and progesterone levels, leading to physical and psychological alterations such as hot flashes, mood swings, sleep disruptions, and skin changes. Present postmenopausal treatments include hormone replacement therapy, non-hormonal drugs, lifestyle modifications, vaginal estrogen therapy, bone health treatments, and alternative therapies. Advanced drug delivery systems (ADDSs) are essential in managing postmenopausal effects (PMEs), offering targeted and controlled delivery to alleviate symptoms and improve overall health. This review emphasizes such ADDSs for addressing PMEs. Emerging trends such as artificial ovaries are also reviewed. Additionally, the prospects of technologies such as additive manufacturing (3D and 4D printing) and artificial intelligence in further tailoring therapeutic strategies against PMEs are provided.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
2
|
Sultana N, Ali A, Waheed A, Jabi B, Yaqub Khan M, Mujeeb M, Sultana Y, Aqil M. Dissolving microneedle transdermal patch loaded with Risedronate sodium and Ursolic acid bipartite nanotransfersomes to combat osteoporosis: Optimization, characterization, in vitro and ex vivo assessment. Int J Pharm 2023; 644:123335. [PMID: 37597597 DOI: 10.1016/j.ijpharm.2023.123335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Osteoporosis is a fatal bone-wearing malady and a substantial reason behind the impermanence of human life and economic burden. Risedronate Sodium along with Ursolic acid has been studied to ameliorate osteoporosis. To bypass problems associated with bioavailability, we have developed a microneedle transdermal patch loaded with optimized formulation nanotransfersomes. It was optimized using three factor, three-level Central composite design with independent variables namely, the concentration of phospholipid, surfactant, and sonication time on dependent variables (vesicle size, entrapment efficiency and Polydispersity index). Vesicles of size 271.9 ± 8.45 nm with PDI 0.184 ± 0.01, having entrapment efficiency of 86.12 ± 5.20% and 85.65 ± 4.88% for RIS and UA respectively were observed. In vitro release study showed the sustained release pattern with 78.16 ± 1.12% and 75.72 ± 1.01% release of RIS and UA respectively. Dissolving MN patch prepared from gelatin was found to have good strength and folding endurance with uniform drug content (98.68 ± 0.004%). Ex vivo permeation study revealed that up to 80% of the drug can be permeated within 24 h. CLSM analysis was also performed to show penetration of RU-NTRs. From the results obtained, we can conclude that dissolving MN patch loaded with RU-NTRs has great potential than its conventional counterpart.
Collapse
Affiliation(s)
- Niha Sultana
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Asad Ali
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Ayesha Waheed
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Bushra Jabi
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Yaqub Khan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Mohd Mujeeb
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Yasmin Sultana
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aqil
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
3
|
Ma M, Zeng H, Yang P, Xu J, Zhang X, He W. Drug Delivery and Therapy Strategies for Osteoporosis Intervention. Molecules 2023; 28:6652. [PMID: 37764428 PMCID: PMC10534890 DOI: 10.3390/molecules28186652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the advent of the aging society, osteoporosis (OP) risk increases yearly. Currently, the clinical usage of anti-OP drugs is challenged by recurrent side effects and poor patient compliance, regardless of oral, intravenous, or subcutaneous administration. Properly using a drug delivery system or formulation strategy can achieve targeted drug delivery to the bone, diminish side effects, improve bioavailability, and prolong the in vivo residence time, thus effectively curing osteoporosis. This review expounds on the pathogenesis of OP and the clinical medicaments used for OP intervention, proposes the design approach for anti-OP drug delivery, emphatically discusses emerging novel anti-OP drug delivery systems, and enumerates anti-OP preparations under clinical investigation. Our findings may contribute to engineering anti-OP drug delivery and OP-targeting therapy.
Collapse
Affiliation(s)
- Mingyang Ma
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Huiling Zeng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, China;
| | - Jiabing Xu
- Taizhou Institute for Drug Control, Taizhou 225316, China;
| | - Xingwang Zhang
- Department of Pharmaceutics, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
4
|
Stoilov B, Truong VK, Gronthos S, Vasilev K. Noninvasive and Microinvasive Nanoscale Drug Delivery Platforms for Hard Tissue Engineering. ACS APPLIED BIO MATERIALS 2023; 6:2925-2943. [PMID: 37565698 DOI: 10.1021/acsabm.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Bone tissue plays a crucial role in protecting internal organs and providing structural support and locomotion of the body. Treatment of hard tissue defects and medical conditions due to physical injuries, genetic disorders, aging, metabolic syndromes, and infections is more often a complex and drawn out process. Presently, dealing with hard-tissue-based clinical problems is still mostly conducted via surgical interventions. However, advances in nanotechnology over the last decades have led to shifting trends in clinical practice toward noninvasive and microinvasive methods. In this review article, recent advances in the development of nanoscale platforms for bone tissue engineering have been reviewed and critically discussed to provide a comprehensive understanding of the advantages and disadvantages of noninvasive and microinvasive methods for treating medical conditions related to hard tissue regeneration and repair.
Collapse
Affiliation(s)
- Borislav Stoilov
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide/SAHMRI, North Terrace, Adelaide, South Australia 5001, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
5
|
Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022; 51:5365-5451. [PMID: 35642539 PMCID: PMC9252171 DOI: 10.1039/d1cs00659b] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be described here. The development of smart nanocarriers that are able to release a high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be reviewed here, together with their ability to deliver the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be collated here, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since it aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area.
Collapse
Affiliation(s)
- María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Lozano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Montserrat Colilla
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
6
|
Wang L, Wei L, Long W, Zhang Q, Zou Y. Sustained transdermal delivery of human growth hormone from niosomal gel: in vitro and in vivo studies. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1198-1212. [PMID: 35192434 DOI: 10.1080/09205063.2022.2045667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Human growth hormone (hGH) is widely used to treat several diseases for decades. However, the current treatment regime requires frequent injections via subcutaneous route due to short in vivo half-life, which leads to pain and poor patient compliance. In this study, a novel transdermal (non-invasive) hGH loaded niosomes gel was prepared to reduce the frequency of subcutaneous injections and to improve the patient compliance. Niosomes were prepared by film hydration technique at three levels of cholesterol. The particle size and entrapment efficiency increases with an increase in the level of cholesterol. Transmission electron microscopy images confirmed the spherical shape of niosomes without aggregation. Texture profiles analysis indicates that the niosomal gel has the required mechanical properties for transdermal application. The ex vivo permeation profile showed sustain hGH release for 4 days from the niosomal gel compared to 24 h from the control gel without niosomes. A rabbit skin irritation study showed no sign of irritation after application of niosomal gel. The pharmacokinetic parameters in the rat model showed 7.22-fold higher bioavailability with niosomal gel compared to control gel. In conclusion, the study demonstrated the potential of niosomal gel as an effective long-term sustained release strategy for hGH delivery to replace traditional subcutaneous injections.
Collapse
Affiliation(s)
- Liming Wang
- Department of Laboratory Medicine the First Affiliated Hospital, Jiamusi University, Jiamusi City, China
| | - Lulu Wei
- Department of Child Health, The First Affiliated Hospital of Jiamusi University, Jiamusi City, China
| | - Wenbin Long
- Department of Laboratory Medicine the First Affiliated Hospital, Jiamusi University, Jiamusi City, China
| | - Quan Zhang
- Department of Gastroenterology, Jiamusi Central Hospital, Jiamusi City, China
| | - Yanhong Zou
- Department of Child Health, The First Affiliated Hospital of Jiamusi University, Jiamusi City, China
| |
Collapse
|
7
|
Barik D, Dash P, Uma PI, Kumari S, Dash M. A Review on Re-Packaging of Bisphosphonates Using Biomaterials. J Pharm Sci 2021; 110:3757-3772. [PMID: 34474062 DOI: 10.1016/j.xphs.2021.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
The need for bone repair and insight into new regeneration therapies as well as improvement of existing regeneration routes is constantly increasing as a direct consequence of the rise in the number of trauma victims, musculoskeletal disorders, and increased life expectancy. Bisphosphonates (BPs) have emerged as a class of drugs with proven efficacy against many bone disorders. The most recent ability of this class of drugs is being explored in its anti-cancer ability. However, despite the pharmacological success, there are certain shortcomings that have circumvented this class of the drug. The mediation of biomaterials in delivering bisphosphonates has greatly helped in overcoming some of these shortcomings. This article is focused on reviewing the benefits the bisphosphonates have provided upon getting delivered via the use of biomaterials. Furthermore, the role of bisphosphonates as a potent anticancer agent is also accounted. It is witnessed that employing engineering tools in combination with therapeutics has the potential to provide solutions to bone loss from degenerative, surgical, or traumatic processes, and also aid in accelerating the healing of large bone fractures and problematic non-union fractures. The role of nanotechnology in enhancing the efficacy of the bisphosphonates is also reviewed and innovative approaches are identified.
Collapse
Affiliation(s)
- Debyashreeta Barik
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, 751024, Bhubaneswar, Odisha, India
| | - Pratigyan Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, 751024, Bhubaneswar, Odisha, India
| | - P I Uma
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India
| | - Sneha Kumari
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India
| | - Mamoni Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
8
|
Thurner GC, Haybaeck J, Debbage P. Targeting Drug Delivery in the Elderly: Are Nanoparticles an Option for Treating Osteoporosis? Int J Mol Sci 2021; 22:8932. [PMID: 34445639 PMCID: PMC8396227 DOI: 10.3390/ijms22168932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles bearing specific targeting groups can, in principle, accumulate exclusively at lesion sites bearing target molecules, and release therapeutic agents there. However, practical application of targeted nanoparticles in the living organism presents challenges. In particular, intravasally applied nanoparticles encounter physical and physiological barriers located in blood vessel walls, blocking passage from the blood into tissue compartments. Whereas small molecules can pass out of the blood, nanoparticles are too large and need to utilize physiological carriers enabling passage across endothelial walls. The issues associated with crossing blood-tissue barriers have limited the usefulness of nanoparticles in clinical applications. However, nanoparticles do not encounter blood-tissue barriers if their targets are directly accessible from the blood. This review focuses on osteoporosis, a disabling and common disease for which therapeutic strategies are limited. The target sites for therapeutic agents in osteoporosis are located in bone resorption pits, and these are in immediate contact with the blood. There are specific targetable biomarkers within bone resorption pits. These present nanomedicine with the opportunity to treat a major disease by use of simple nanoparticles loaded with any of several available effective therapeutics that, at present, cannot be used due to their associated side effects.
Collapse
Affiliation(s)
- Gudrun C. Thurner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria;
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria;
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Paul Debbage
- Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstraße 59, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Ray SS, Katata-Seru L, Mufamadi S, Mufhandu H. Osteoporosis and Its Nanotechnology-Based Advanced Treatment-An Overview. J Biomed Nanotechnol 2021; 17:809-821. [PMID: 34082868 DOI: 10.1166/jbn.2021.3092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human Immunodeficiency Virus (HIV) is a global pandemic that has contributed to the burden of disease, and the synergistic interaction between Herpes Simplex Virus (HSV) and HIV has assisted further in the spread of the HIV disease. Moreover, several chemotherapeutic treatment options from antiviral monotherapy to highly active antiretroviral therapy (HAART) have been adopted to manage the infection; however, HIV has developed new mechanisms against these active pharmaceutical agents (APAs), limiting the effect of the drugs. In this article, we reviewed different nanoparticles and their antiviral potency against HSV and HIV infection as well as the effect of drug encapsulated nanoparticles using different drug delivery systems as they palliate to some flaws or deficiencies that the stand-alone drugs present. Drug encapsulated nanoparticles show better treatment outcomes of HSV and HIV infection. The nanoparticles can transverse the anatomic privilege sites to exert their therapeutic effect, and a prolonged and higher dose of the encapsulated therapeutic agent can ease the dosage frequency, thus palliating low drug compliance which the stand-alone drugs fail to perform. Therefore, it is clear that nanoparticles prevent antiviral drug resistance by maintaining sustained drug release over an extended period, improving the therapeutic effect of the entrapped drug.
Collapse
Affiliation(s)
| | | | | | - Hazel Mufhandu
- Department of Microbiology, North-West University, Mafikeng, 2735, South Africa
| |
Collapse
|
10
|
Salamanna F, Gambardella A, Contartese D, Visani A, Fini M. Nano-Based Biomaterials as Drug Delivery Systems Against Osteoporosis: A Systematic Review of Preclinical and Clinical Evidence. NANOMATERIALS 2021; 11:nano11020530. [PMID: 33669621 PMCID: PMC7922277 DOI: 10.3390/nano11020530] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
Osteoporosis (OP) is one of the most significant causes of morbidity, particularly in post-menopausal women and older men. Despite its remarkable occurrence, the search for an effective treatment is still an open challenge. Here, we systematically reviewed the preclinical and clinical progress in the development of nano-based materials as drug delivery systems against OP, considering the effects on bone healing and regeneration, the more promising composition and manufacturing methods, and the more hopeful drugs and delivery methods. The results showed that almost all the innovative nano-based delivery systems developed in the last ten years have been assessed by preclinical investigations and are still in the preliminary/early research stages. Our search strategy retrieved only one non-randomized controlled trial (RCT) on oligosaccharide nanomedicine of alginate sodium used for degenerative lumbar diseases in OP patients. Further investigations are mandatory for assessing the clinical translation and commercial purposes of these materials. To date, the main limits for the clinical translation of nano-based materials as drug delivery systems against OP are probably due to the low reproducibility of the manufacturing processes, whose specificity and complexity relies on an adequate chemical, structural, and biomechanical characterization, as the necessary prerequisite before assessing the efficacy of a given treatment or process. Finally, an unsatisfactory drug-loading capacity, an uncontrollable release kinetic, and a low delivery efficiency also limit the clinical application.
Collapse
|
11
|
Kaur M, Nagpal M, Singh M. Osteoblast-n-Osteoclast: Making Headway to Osteoporosis Treatment. Curr Drug Targets 2020; 21:1640-1651. [DOI: 10.2174/1389450121666200731173522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022]
Abstract
Background:
Bone is a dynamic tissue that continuously undergoes the modeling and remodeling
process to maintain its strength and firmness. Bone remodeling is determined by the functioning
of osteoblast and osteoclast cells. The imbalance between the functioning of osteoclast and osteoblast
cells leads to osteoporosis. Osteoporosis is divided into primary and secondary osteoporosis.
Generally, osteoporosis is diagnosed by measuring bone mineral density (BMD) and various osteoblast
and osteoclast cell markers.
Methods:
Relevant literature reports have been studied and data has been collected using various
search engines like google scholar, scihub, sciencedirect, pubmed, etc. A thorough understanding of
the mechanism of bone targeting strategies has been discussed and related literature has been studied
and compiled.
Results:
Bone remodeling process has been described in detail including various approaches for targeting
bone. Several bone targeting moieties have been stated in detail along with their mechanisms.
Targeting of osteoclasts and osteoblasts using various nanocarriers has been discussed in separate sections.
The toxicity issues or Biosafety related to the use of nanomaterials have been covered.
Conclusion:
The treatment of osteoporosis targets the inhibition of bone resorption and the use of
agents that promote bone mineralization to slow disease progression. Current osteoporosis therapy involves
the use of targeting moieties such as bisphosphonates and tetracyclines for targeting various
drugs. Nanotechnology has been used for targeting various drug molecules such as RANKLinhibitors,
parathyroid hormone analogues, estrogen agonists and antagonists, Wnt signaling enhancer
and calcitonin specifically to bone tissue (osteoclast and osteoblasts). So, a multicomponent treatment
strategy targeting both the bone cells will be more effective rather than targeting only osteoclasts and
it will be a potential area of research in bone targeting used to treat osteoporosis.
The first section of the review article covers various aspects of bone targeting. Another section comprises
details of various targeting moieties such as bisphosphonates, tetracyclines; and various
nanocarriers developed to target osteoclast and osteoblast cells and summarized data on in vivo models
has been used for assessment of bone targeting, drawbacks of current strategies and future perspectives.
Collapse
Affiliation(s)
- Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
12
|
Elkady OA, Tadros MI, El-Laithy HM. QbD Approach for Novel Crosslinker-Free Ionotropic Gelation of Risedronate Sodium-Chitosan Nebulizable Microspheres: Optimization and Characterization. AAPS PharmSciTech 2019; 21:14. [PMID: 31807950 DOI: 10.1208/s12249-019-1561-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/07/2019] [Indexed: 01/29/2023] Open
Abstract
Risedronate sodium (RS) is a potent inhibitor of bone resorption, having an extreme poor permeability and limited oral bioavailability (0.62%). RS should be orally administered under fasting conditions while keeping in an upright posture for at least 30 min to diminish common gastroesophageal injuries. To surmount such limitations, novel risedronate-chitosan (RS-CS) crosslinker-free nebulizable microspheres were developed adopting the quality by design (QbD) approach and risk assessment (RA) thinking. RS:CS ratio, surfactant (Pluronic® F127) concentration, homogenization duration, speed, and temperature were identified using Ishikawa diagrams as the highest formulation and process risk factors affecting the critical quality attributes (CQAs), average particle size (PS), and entrapment efficiency (EE%). The risk factors were screened using the Plackett-Burman design, and the levels of the most significant factors were optimized using a multilevel factorial design to explore the optimized system with the least PS, maximum EE%, and a prolonged drug release profile. The optimized system (B6) was developed at a RS:CS ratio of 1:7, a surfactant concentration of 2% (w/v), and a homogenization speed of 14,000 rpm. It revealed good correlation with QbD theoretical prediction, where positively charged (47.9 ± 3.39 mV) discrete, spherical microspheres (3.47 ± 0.16 μm) having a high EE% (94.58 ± 0.19%) and prolonged RS release over 12 h (Q12 h, 89.70 ± 0.64%) were achieved. In vivo lung deposition after intratracheal instillation of B6 confirmed the delivery of high RS percentage to rat lung tissues (87 ± 3.54%) and its persistence for 24 h. This investigation demonstrated the effectiveness of QbD philosophy in developing RS-CS crosslinker-free nebulizable microspheres.
Collapse
Affiliation(s)
- Omar A Elkady
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Mina Ibrahim Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Hanan M El-Laithy
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
13
|
Santhosh S, Mukherjee D, Anbu J, Murahari M, Teja BV. Improved treatment efficacy of risedronate functionalized chitosan nanoparticles in osteoporosis: formulation development, in vivo, and molecular modelling studies. J Microencapsul 2019; 36:338-355. [DOI: 10.1080/02652048.2019.1631401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shivalingappa Santhosh
- Department of Pharmacology, M. S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Jayaraman Anbu
- Department of Pharmacology, M. S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Manikanta Murahari
- Pharmacological Modelling and Simulation Centre, M. S. Ramaiah University of Applied Sciences, Bengaluru, India
| | | |
Collapse
|
14
|
Morsi NM, Nabil Shamma R, Osama Eladawy N, Abdelkhalek AA. Bioactive injectable triple acting thermosensitive hydrogel enriched with nano-hydroxyapatite for bone regeneration: in-vitro characterization, Saos-2 cell line cell viability and osteogenic markers evaluation. Drug Dev Ind Pharm 2019; 45:787-804. [PMID: 30672348 DOI: 10.1080/03639045.2019.1572184] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hydrogels forming in-situ have gained great attention in the area of bone tissue engineering recently, they were also showed to be a good and less invasive alternative to surgically applied ones. The primal focus of this study was to prepare chitosan-glycerol phosphate thermosensitive hydrogel formed in-situ and loaded with risedronate (bone resorption inhibitor) in an easy way with no requirement of complicated processes or large number of equipment. Then we investigated its effectiveness for bone regeneration. In-situ forming hydrogels were prepared using chitosan cross-linked with glycerol phosphate and loaded with risedronate and nano-hydroxyapatite as bone cement. The prepared hydrogels were characterized by analyzing their gelation time at 37 °C, % porosity, swelling index, in-vitro degradation, rheological properties, and in-vitro drug release. Results showed that the in-situ hydrogels prepared using 2.5% (w/v) chitosan cross-linked with 50% (w/v) glycerol phosphate in the ratio (9:1, v/v) reinforced with 20 mg/mL and nano-hydroxyapatite possessed the most sustained drug release profile. This optimized formulation was further evaluated using DSC and FTIR studies, in addition to their morphological properties using scanning electron microscopy. The effect on Saos-2 cell line viability was evaluated also using MTT assay on the optimized hydrogel formulation in addition to their action on cell proliferation using fluorescence microscope. Moreover, calcium deposition on the hydrogel and alkaline phosphatase activity were evaluated. Risedronate-nano-hydroxyapatite loaded hydrogels significantly enhanced the Saos-2 cell proliferation in addition to enhanced alkaline phosphatase activity and calcium deposition. Such results suggest that risedronate-nano-hydroxyapatite loaded hydrogels present great biocompatibility for bone regeneration. Proliferation of cells, as well as deposition of mineral on the hydrogel, was an evidence of the biocompatible nature of the hydrogel. This hydrogel formed in-situ present a good less invasive alternative for bone tissue engineering.
Collapse
Affiliation(s)
- Nadia M Morsi
- a Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy , Cairo University , Cairo , Egypt
| | - Rehab Nabil Shamma
- a Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy , Cairo University , Cairo , Egypt
| | - Nouran Osama Eladawy
- a Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy , Cairo University , Cairo , Egypt
| | - Abdelfattah A Abdelkhalek
- b Faculty of Oral and Dental Medicine, Department of Microbiology of Supplementary General Science , Future University in Egypt , Egypt
| |
Collapse
|
15
|
Soliman ME, Elmowafy E, Casettari L, Alexander C. Star-shaped poly(oligoethylene glycol) copolymer-based gels: Thermo-responsive behaviour and bioapplicability for risedronate intranasal delivery. Int J Pharm 2018; 543:224-233. [PMID: 29604369 DOI: 10.1016/j.ijpharm.2018.03.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/17/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
The aim of this work was to obtain an intranasal delivery system with improved mechanical and mucoadhesive properties that could provide prolonged retention time for the delivery of risedronate (RS). For this, novel in situ forming gels comprising thermo-responsive star-shaped polymers, utilizing either polyethylene glycol methyl ether (PEGMA-ME 188, Mn 188) or polyethylene glycol ethyl ether (PEGMA-EE 246, Mn 246), with polyethylene glycol methyl ether (PEGMA-ME 475, Mn 475), were synthesized and characterized. RS was trapped in the selected gel-forming solutions at a concentration of 0.2% w/v. The pH, rheological properties, in vitro drug release, ex vivo permeation as well as mucoadhesion were also examined. MTT assays were conducted to verify nasal tolerability of the developed formulations. Initial in vivo studies were carried out to evaluate anti-osteoporotic activity in a glucocorticoid induced osteoporosis model in rats. The results showed successful development of thermo-sensitive formulations with favorable mechanical properties at 37 °C, which formed non-irritant, mucoadhesive porous networks, facilitating nasal RS delivery. Moreover, sustained release of RS, augmented permeability and marked anti-osteoporotic efficacy as compared to intranasal (IN) and intravenous (IV) RS solutions were realized. The combined results show that the in situ gels should have promising application as nasal drug delivery systems.
Collapse
Affiliation(s)
- Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Luca Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy.
| | - Cameron Alexander
- School of Pharmacy, Boots Science Building, University of Nottingham, University Park, NG7 2RD Nottingham, UK
| |
Collapse
|
16
|
Wang W, Fang K, Li MC, Chang D, Shahzad KA, Xu T, Zhang L, Gu N, Shen CL. A biodegradable killer microparticle to selectively deplete antigen-specific T cells in vitro and in vivo. Oncotarget 2017; 7:12176-90. [PMID: 26910923 PMCID: PMC4914277 DOI: 10.18632/oncotarget.7519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/05/2016] [Indexed: 12/23/2022] Open
Abstract
The specific eradication of pathogenic T cells for the treatment of allograft rejections and autoimmune disorders without impairment of overall immune function is a fundamental goal. Here, cell-sized poly(lactic-co-glycolic acid) microparticles (PLGA MPs) were prepared as a scaffold to co-display the peptide/major histocompatibility complex (pMHC, target antigen) and anti-Fas monoclonal antibody (apoptosis-inducing molecule) for the generation of biodegradable killer MPs. Ovalbumin (OVA) antigen-targeted killer MPs significantly depleted OVA-specific CD8+ T cells in an antigen-specific manner, both in vitro and in OT-1 mice. After intravenous administration, the killer MPs predominantly accumulated in the liver, lungs, and gut of OT-1 mice with a retention time of up to 48 hours. The killing effects exerted by killer MPs persisted for 4 days after two injections. Moreover, the H-2Kb alloantigen-targeted killer MPs were able to eliminate low-frequency alloreactive T cells and prolong alloskin graft survival for 41.5 days in bm1 mice. Our data indicate that PLGA-based killer MPs are capable of specifically depleting pathogenic T cells, which highlights their therapeutic potential for treating allograft rejection and autoimmune disorders.
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, PR China
| | - Kun Fang
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, PR China
| | - Miao-Chen Li
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, PR China
| | - Di Chang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, PR China
| | - Khawar Ali Shahzad
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, PR China
| | - Tao Xu
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, PR China
| | - Lei Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, PR China
| | - Ning Gu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, PR China
| | - Chuan-Lai Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, PR China
| |
Collapse
|
17
|
Sezlev Bilecen D, Rodriguez-Cabello JC, Uludag H, Hasirci V. Construction of a PLGA based, targeted siRNA delivery system for treatment of osteoporosis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1859-1873. [DOI: 10.1080/09205063.2017.1354675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Deniz Sezlev Bilecen
- BIOMATEN, Middle East Technical University (METU), Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Department of Biotechnology, METU, Ankara, Turkey
| | | | - Hasan Uludag
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU), Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Department of Biological Sciences, METU, Ankara, Turkey
- Department of Biotechnology, METU, Ankara, Turkey
| |
Collapse
|