1
|
Mujtaba MA, Desai H, Ambekar A, Fule R, Pande S, Warsi MH, Elhassan GO, Taha M, Anwer K, Golghate TD. Development of chitosan/sodium carboxymethyl cellulose-based polyelectrolyte complex of dexamethasone for treatment of anterior uveitis. Biomed Mater 2024; 19:065016. [PMID: 39312950 DOI: 10.1088/1748-605x/ad7e6b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Anterior uveitis is one of the most prevalent forms of ocular inflammation caused by infections, trauma, and other idiopathic conditions if not treated properly, it can cause complete blindness. Therefore, this study aimed to formulate and evaluate dexamethasone sodium phosphate (DSP) loaded polyelectrolyte complex (PEC) nanoparticles (NPs) for the treatment of anterior uveitis. DSP-loaded PEC-NPs were formed through complex coacervation by mixing low molecular weight chitosan and the anionic polymer carboxy methyl cellulose (CMC). The formulations were optimized using Box-Behnken design and evaluated the effect of independent variables: Chitosan concentration, CMC concentration, and pH of chitosan solution on the dependent variables: particle size (PS), Polydispersity Index (PDI), pH of the formulation, and % entrapment efficacy (%EE). The PS, PDI, zeta potential, and pH of the optimized formulation were found 451 ± 82.0995 nm, 0.3807 ± 0.1862, +20.33 ± 1.04 mV and 6.8367 ± 0.0737 respectively. The %EE and drug loading of formulation were 61.66 ± 4.2914% and 21.442 ± 1.814% respectively.In vitrodrug release studies of optimized formulation showed the prolonged release up to 12 h whereas, the marketed formulation showed the burst release 85.625 ± 4.3062% in 1 h and 98.1462 ± 3.0921% at 6 h, respectively. Fourier transform infrared studies suggested the effective incorporation of the drug into the PEC-NPs formulation whereas differential scanning calorimetry and x-ray diffraction studies showed the amorphized nature of the drug in the formulation. Transmission electron microscopy study showed self-assembled, nearly spherical, core-shell nanostructures. The corneal permeation study showed higher permeation of the drug from PEC-NPs compared to the marketed formulation. Hen's Eggs test-Chorioallantoic Membrane test of the optimized formulation revealed non-irritant and safe for ocular administration. Therefore, DSP-loaded PEC-NPs are an effective substitute for conventional eye drops due to their ability to increase bioavailability through longer precorneal retention duration and sustained drug release.
Collapse
Affiliation(s)
- Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia
| | - Harita Desai
- Department of Pharmaceutics, Bombay College of Pharmacy, Santacruz East, Mumbai 400098, India
| | - Anju Ambekar
- Department of Pharmaceutics, Bombay College of Pharmacy, Santacruz East, Mumbai 400098, India
| | - Ritesh Fule
- Department of Pharmaceutical Quality Assurance, Dadasaheb Balpande College of Pharmacy, Besa Nagpur 440037, Maharashtra, India
| | - Shriya Pande
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Besa Nagpur 440037, Maharashtra, India
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Gamal Osman Elhassan
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Murtada Taha
- Department of Clinical Laboratory Science, Prince Sultan military college of health sciences, Dhahran, Saudi Arabia
| | - Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | | |
Collapse
|
2
|
Jiang L, Li J, Yang R, Chen S, Wu Y, Jin Y, Wang J, Weng Q, Wang J. Effect of hydrogel drug delivery system for treating ulcerative colitis: A preclinical meta-analysis. Int J Pharm 2024; 659:124281. [PMID: 38802026 DOI: 10.1016/j.ijpharm.2024.124281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Hydrogel drug delivery systems (DDSs) for treating ulcerative colitis (UC) have garnered attention. However, there is a lack of meta-analysis summarizing their effectiveness. Therefore, this study aimed to conduct a meta-analysis of pre-clinical evidence comparing hydrogel DDSs with free drug administration. Subgroup analyses were performed based on hydrogel materials (polysaccharide versus non-polysaccharide) and administration routes of the hydrogel DDSs (rectal versus oral). The outcome indicators included colon length, histological scores, tumor necrosis factor-α (TNF-α), zonula occludens protein 1(ZO-1), and area under the curve (AUC). The results confirmed the therapeutic enhancement of the hydrogel DDSs for UC compared with the free drug group. Notably, no significant differences were found between polysaccharide and non-polysaccharide materials, however, oral administration was found superior regarding TNF-α and AUC. In conclusion, oral hydrogel DDSs can serve as potential excellent dosage forms in oral colon -targeting DDSs, and in the design of colon hydrogel delivery systems, polysaccharides do not show advantages compared with other materials.
Collapse
Affiliation(s)
- Lan Jiang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China
| | - Jia Li
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Runkun Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Shunpeng Chen
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Yongjun Wu
- Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yuanyuan Jin
- Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Center (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang 312500, China.
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; Beijing Life Science Academy, Beijing 102200, China.
| |
Collapse
|
3
|
Khan A, Zaman M, Waqar MA, Mahmood A, Shaheer T, Sarfraz RM, Shahzadi K, Khan AA, Alanazi AM, Kundu MK, Islam MR, Alexiou A, Papadakis M. Sustained release delivery of favipiravir through statistically optimized, chemically cross-linked, pH-sensitive, swellable hydrogel. BMC Pharmacol Toxicol 2024; 25:31. [PMID: 38685129 PMCID: PMC11057099 DOI: 10.1186/s40360-024-00752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
In the current work, favipiravir (an antiviral drug) loaded pH-responsive polymeric hydrogels were developed by the free redical polymerization technique. Box-Behnken design method via Design Expert version 11 was employed to furnish the composition of all hydrogel formulations. Here, polyethylene glycol (PEG) has been utilized as a polymer, acrylic acid (AA) as a monomer, and potassium persulfate (KPS) and methylene-bisacrylamide (MBA) as initiator and cross-linker, respectively. All networks were evaluated for in-vitro drug release (%), sol-gel fraction (%), swelling studies (%), porosity (%), percentage entrapment efficiency, and chemical compatibilities. According to findings, the swelling was pH sensitive and was shown to be greatest at a pH of 6.8 (2500%). The optimum gel fraction offered was 97.8%. A sufficient porosity allows the hydrogel to load a substantial amount of favipiravir despite its hydrophobic behavior. Hydrogels exhibited maximum entrapment efficiency of favipiravir upto 98%. The in-vitro release studies of drug-formulated hydrogel revealed that the drug release from hydrogel was between 85 to 110% within 24 h. Drug-release kinetic results showed that the Korsmeyer Peppas model was followed by most of the developed formulations based on the R2 value. In conclusion, the hydrogel-based technology proved to be an excellent option for creating the sustained-release dosage form of the antiviral drug favipiravir.
Collapse
Affiliation(s)
- Arooj Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan.
| | - Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal, Pakistan
| | - Talal Shaheer
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Kanwal Shahzadi
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Md Rabiul Islam
- Department of Chemistry, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN, 37209, USA
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research and Development, Funogen, Athens, Greece
- Department of Research and Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| |
Collapse
|
4
|
Salawi A, Khan A, Zaman M, Riaz T, Ihsan H, Butt MH, Aman W, Khan R, Majeed I, Almoshari Y, Alshamrani M. Development of Statistically Optimized Chemically Cross-Linked Hydrogel for the Sustained-Release Delivery of Favipiravir. Polymers (Basel) 2022; 14:polym14122369. [PMID: 35745945 PMCID: PMC9227890 DOI: 10.3390/polym14122369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
Nowadays, the use of statistical approaches, i.e., Box–Bhenken designs, are becoming very effective for developing and optimizing pharmaceutical drug formulations. In the current work, a Box–Bhenken design was employed using Design Expert version 11 to develop, evaluate, and optimize a hydrogel-based formulation for sustained release of an antiviral drug, i.e., favipiravir. The hydrogels were prepared using the free radical polymerization technique. β-Cyclodextrin (β-CD), N,N′-methylenebisacrylamide (MBA), acrylic acid (AA), and potassium per sulfate (KPS) were used as oligomer, crosslinker, monomer, and initiator, respectively. Three variables, including β-CD (X1), MBA (X2), and AA (X3) were used at various concentrations for the preparation of hydrogels, followed by evaluation of a sol–gel fraction, swelling, porosity, chemical compatibilities, in vitro drug release, and entrapment efficiency. The results of the studies revealed that the degree of swelling was pH dependent, the best swelling being at pH 7.2 (1976%). On the other hand, for the low sol fraction of 0.2%, the reasonable porosity made the hydrogel capable of loading 99% favipiravir, despite its hydrophobic nature. The maximum entrapment efficiency (99%) was observed in optimized hydrogel formulation (F15). Similarly, in vitro drug release studies showed that the prepared hydrogels exhibited a good, sustained release effect till the 24th hour. The kinetic modelling of drug release data revealed that the Korsmeyer–Peppas model was best fit model, describing a diffusion type of drug release from the prepared hydrogels. Conclusively, the outcomes predict that the hydrogel-based system could be a good choice for developing a sustained-release, once-daily dosage form of favipiravir for improved patient compliance.
Collapse
Affiliation(s)
- Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (Y.A.); (M.A.)
| | - Arooj Khan
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (T.R.); (H.I.); (M.H.B.); (R.K.); (I.M.)
- Correspondence: (A.K.); (M.Z.)
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (T.R.); (H.I.); (M.H.B.); (R.K.); (I.M.)
- Correspondence: (A.K.); (M.Z.)
| | - Tehseen Riaz
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (T.R.); (H.I.); (M.H.B.); (R.K.); (I.M.)
| | - Hafsa Ihsan
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (T.R.); (H.I.); (M.H.B.); (R.K.); (I.M.)
| | - Muhammad Hammad Butt
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (T.R.); (H.I.); (M.H.B.); (R.K.); (I.M.)
| | - Waqar Aman
- Department of Pharmacy, Hazara University, Mansehra 21120, Pakistan;
| | - Rahima Khan
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (T.R.); (H.I.); (M.H.B.); (R.K.); (I.M.)
| | - Imtiaz Majeed
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan; (T.R.); (H.I.); (M.H.B.); (R.K.); (I.M.)
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (Y.A.); (M.A.)
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (Y.A.); (M.A.)
| |
Collapse
|
5
|
Chan MH, Huang WT, Chen KC, Su TY, Chan YC, Hsiao M, Liu RS. The optical research progress of nanophosphors composed of transition elements in the fourth period of near-infrared windows I and II for deep-tissue theranostics. NANOSCALE 2022; 14:7123-7136. [PMID: 35353112 DOI: 10.1039/d2nr00343k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Research in the field of nano-optics is advancing by leaps and bounds, among which near-infrared (NIR) light optics have attracted much attention. NIR light has a longer wavelength than visible light, such that it can avoid shielding caused by biological tissues. This advantage has driven its importance and practicality in human treatment applications and has attracted significant attention from researchers in academia and industry. In the broad spectrum of infrared light wavelengths, the most noticeable ones are the NIR biological window I of 700-900 nm and window II of 1000-1700 nm. Luminescent materials can effectively cover the NIR biological window with different doping strategies. These doped elements are mostly transition elements with multielectron orbitals. Several nanomaterials based on narrow-spectrum lanthanides have been developed to correspond to biological applications of different wavelengths. However, this review explicitly introduces the absorption and reflection/luminescence interactions between NIR light and biological tissues independently. Unlike the adjustment of the wavelength of the lanthanide series, this review analyzes the NIR optical properties of the fourth-period element ions in transition elements (such as Cr3+ and Ni2+). These elements have a broadband wavelength of NIR light emission and higher quantum efficiency, corresponding to the absorption and emission spectrum and photobiological absorption of different NIR windows for therapeutic diagnosis. Finally, this review lists and explores other broadband NIR phosphors and has tried to discover the possibility of non-invasive precision medicine in the future.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Kuan-Chun Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Yung-Chieh Chan
- Intelligent Minimally Invasive Device Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ru-Shi Liu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
6
|
Ajaz N, Khan IU, Irfan M, Khalid SH, Asghar S, Mehmood Y, Asif M, Usra, Hussain G, Shahzad Y, Shah SU, Munir MU. In Vitro and Biological Characterization of Dexamethasone Sodium Phosphate Laden pH-Sensitive and Mucoadhesive Hydroxy Propyl β-Cyclodextrin-g-poly(acrylic acid)/Gelatin Semi-Interpenetrating Networks. Gels 2022; 8:290. [PMID: 35621588 PMCID: PMC9140464 DOI: 10.3390/gels8050290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
The current study reports the fabrication and biological evaluation of hydroxy propyl β-cyclodextrin-g-poly(acrylic acid)/gelatin (HP-β-CD-g-poly(AA)/gelatin) semi-interpenetrating networks (semi-IPN) for colonic delivery of dexamethasone sodium phosphate (DSP). The prepared hydrogels showed pH-dependent swelling and mucoadhesive properties. The mucoadhesive strength of hydrogels increased with an increasing concentration of gelatin. Based on the swelling and mucoadhesive properties, AG-1 was chosen as the optimized formulation (0.33% w/w of gelatin and 16.66% w/w of AA) for further analysis. FTIR revealed the successful development of a polymeric network without any interaction with DSP. SEM images revealed a slightly rough surface after drug loading. Drug distribution at the molecular level was confirmed by XRD. In vitro drug release assay showed pH-dependent release, i.e., a minute amount of DSP was released at a pH of 1.2 while 90.58% was released over 72 h at pH 7.4. The optimized formulation did not show any toxic effects on a rabbit's vital organs and was also hemocompatible, thus confirming the biocompatible nature of the hydrogel. Conclusively, the prepared semi-IPN hydrogel possessed the necessary features, which can be exploited for the colonic delivery of DSP.
Collapse
Affiliation(s)
- Nyla Ajaz
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Usra
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.); (G.H.)
| | - Ghulam Hussain
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.); (G.H.)
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54700, Pakistan;
| | - Shefaat Ullah Shah
- Skin/Regenerative Medicine and Drug Delivery Research, GCPS, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
7
|
Khan ZM, Wilts E, Vlaisavljevich E, Long TE, Verbridge SS. Electroresponsive Hydrogels for Therapeutic Applications in the Brain. Macromol Biosci 2021; 22:e2100355. [PMID: 34800348 DOI: 10.1002/mabi.202100355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/29/2021] [Indexed: 12/22/2022]
Abstract
Electroresponsive hydrogels possess a conducting material component and respond to electric stimulation through reversible absorption and expulsion of water. The high level of hydration, soft elastomeric compliance, biocompatibility, and enhanced electrochemical properties render these hydrogels suitable for implantation in the brain to enhance the transmission of neural electric signals and ion transport. This review provides an overview of critical electroresponsive hydrogel properties for augmenting electric stimulation in the brain. A background on electric stimulation in the brain through electroresponsive hydrogels is provided. Common conducting materials and general techniques to integrate them into hydrogels are briefly discussed. This review focuses on and summarizes advances in electric stimulation of electroconductive hydrogels for therapeutic applications in the brain, such as for controlling delivery of drugs, directing neural stem cell differentiation and neurogenesis, improving neural biosensor capabilities, and enhancing neural electrode-tissue interfaces. The key challenges in each of these applications are discussed and recommendations for future research are also provided.
Collapse
Affiliation(s)
- Zerin M Khan
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Emily Wilts
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Eli Vlaisavljevich
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Timothy E Long
- Biodesign Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe, AZ, 85287, USA
| | - Scott S Verbridge
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
8
|
Ajaz N, Khan IU, Asghar S, Khalid SH, Irfan M, Asif M, Chatha SAS. Assessing the pH responsive and mucoadhesive behavior of dexamethasone sodium phosphate loaded itaconic acid-grafted-poly(acrylamide)/carbopol semi-interpenetrating networks. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02643-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Rehman F, Khan IU, Khalid SH, Asghar S, Irfan M, Khalid I, Rasul A, Mahmood H, Yousaf AM, Shahzad Y, Mudassar M, Mohsin NUA. Optimization, in vitro release and toxicity evaluation of novel pH sensitive itaconic acid-g-poly(acrylamide)/sterculia gum semi-interpenetrating networks. Daru 2021; 29:171-184. [PMID: 33899162 PMCID: PMC8149496 DOI: 10.1007/s40199-021-00395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/05/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND In recent era, pH sensitive polymeric carriers that combines the materials engineering and medicine is gaining researcher's attention as they maximizes drug concentration at site of absorption and reduces side effects for e.g. orally administered cetirizine HCl (CTZ HCl) upsets the stomach and furthermore shows high intestinal absorption. Thus, development of pH sensitive hydrogels with sufficient mechanical strength will be good candidate to address this issue. METHODS Here, we developed pH sensitive itaconic acid-g-poly(acrylamide)/sterculia gum (IA-g-poly(AM)/sterculia gum) semi-interpenetrating network (semi-IPN) by free radical polymerization technique for intestinal delivery of CTZ HCL. RESULTS Optimized formulation (I5) with 6% w/w IA showed negligible swelling at pH 1.2, and maximum swelling at pH 7.4. Solid state characterization of optimized formulation showed successful development of semi-IPN structure and incorporation of drug without any noticeable drug-carrier interaction. In vitro release study showed biphasic pH dependent release of CTZ HCl, where initial burst release was observed at acidic pH followed by sustained release at basic pH. Acute oral toxicity and histopathological studies confirmed the non-toxic nature of IA-g-poly(AM)/sterculia gum. CONCLUSION Conclusively, developed biocompatible semi-IPN hydrogels with sufficient pH sensitivity and mechanical strength could serve as a potential carrier for intestinal delivery of CTZ HCL to maximize its absorption and reduce side effects.
Collapse
Affiliation(s)
- Fauzia Rehman
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- School of Pharmacy, The University of Faisalabad, Faisalabad, Faisalabad, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Huma Mahmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Muhammad Mudassar
- Pathology Department, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Noor Ul Amin Mohsin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
10
|
Broesder A, Kosta AMMAC, Woerdenbag HJ, Nguyen DN, Frijlink HW, Hinrichs WLJ. pH-dependent ileocolonic drug delivery, part II: preclinical evaluation of novel drugs and novel excipients. Drug Discov Today 2020; 25:1374-1388. [PMID: 32562842 DOI: 10.1016/j.drudis.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023]
Abstract
Novel drugs and novel excipients in pH-dependent ileocolonic drug delivery systems have to be tested in animals. Which animal species are suitable and what in vivo methods are used to verify ileocolonic drug delivery?
Collapse
Affiliation(s)
- Annemarie Broesder
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anne-Marijke M A C Kosta
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Herman J Woerdenbag
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Duong N Nguyen
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henderik W Frijlink
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
11
|
pH-Sensitive Black Phosphorous–Incorporated Hydrogel as Novel Implant for Cancer Treatment. J Pharm Sci 2019; 108:2542-2551. [DOI: 10.1016/j.xphs.2019.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/15/2019] [Accepted: 03/05/2019] [Indexed: 01/05/2023]
|
12
|
Pavan Rudhrabatla V, Jalababu R, Krishna Rao K, Suresh Reddy K. Fabrication and characterisation of curcumin loaded pH dependent sodium alginate-g-poly(acryloyl phenylalanine)-cl-ethylene glycol vinyl ether-co- hydroxyethyl acrylate hydrogels and their in-vitro, in-vivo and toxicological evaluation studies. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Tomić I, Juretić M, Jug M, Pepić I, Cetina Čižmek B, Filipović-Grčić J. Preparation of in situ hydrogels loaded with azelaic acid nanocrystals and their dermal application performance study. Int J Pharm 2019; 563:249-258. [DOI: 10.1016/j.ijpharm.2019.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/31/2019] [Accepted: 04/06/2019] [Indexed: 12/23/2022]
|
14
|
Ilgin P, Ozay H, Ozay O. A new dual stimuli responsive hydrogel: Modeling approaches for the prediction of drug loading and release profile. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Bal‐Ozturk A, Karal‐Yilmaz O, Akguner ZP, Aksu S, Tas A, Olmez H. Sponge‐like chitosan‐based nanostructured antibacterial material as a topical hemostat. J Appl Polym Sci 2019. [DOI: 10.1002/app.47522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ayca Bal‐Ozturk
- Faculty of Pharmacy, Department of Analytical ChemistryIstinye University Zeytinburnu Istanbul 34010 Turkey
- Institute of Health Sciences, Department of Stem Cell and Tissue EngineeringIstinye University Zeytinburnu Istanbul 34010 Turkey
| | - Oksan Karal‐Yilmaz
- Genetic Engineering and Biotechnology InstituteTUBITAK Marmara Research Center Gebze Kocaeli 41470 Turkey
| | - Zeynep Puren Akguner
- Institute of Health Sciences, Department of Stem Cell and Tissue EngineeringIstinye University Zeytinburnu Istanbul 34010 Turkey
| | - Soner Aksu
- Genetic Engineering and Biotechnology InstituteTUBITAK Marmara Research Center Gebze Kocaeli 41470 Turkey
| | - Arzu Tas
- Genetic Engineering and Biotechnology InstituteTUBITAK Marmara Research Center Gebze Kocaeli 41470 Turkey
| | - Hulya Olmez
- Materials InstituteTUBITAK Marmara Research Center Gebze Kocaeli 41470 Turkey
| |
Collapse
|
16
|
Larrañeta E, Domínguez-Robles J, Coogan M, Heaney E, Stewart SA, Thakur RRS, Donnelly RF. Poly(methyl vinyl ether-co-maleic acid) Hydrogels Containing Cyclodextrins and Tween 85 for Potential Application as Hydrophobic Drug Delivery Systems. Macromol Res 2019. [DOI: 10.1007/s13233-019-7074-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
In vitro and in vivo study of pH-sensitive and colon-targeting P(LE-IA-MEG) hydrogel microspheres used for ulcerative colitis therapy. Eur J Pharm Biopharm 2017; 122:70-77. [PMID: 29017953 DOI: 10.1016/j.ejpb.2017.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 01/10/2023]
Abstract
Hydrocortisone sodium succinate (HSS) is an anti-inflammatory drug, but its application on ulcerative colitis (UC) treatment is limited by its associated side-effects. To solve this problem, a kind of pH-sensitive P(LE-IA-MEG) hydrogel microspheres (HMSs) were prepared as the drug carrier of hydrocortisone sodium succinate (HSS) for the treatment of UC. The P(LE-IA-MEG) HMSs were spherical in shape with good dispersion and the mean particle size was 34.87±0.90μm. HSS was successfully loaded into the P(LE-IA-MEG) HMSs. The in vitro release study of HSS-loaded HMSs (HSS-HMSs) revealed that the HSS-HMSs possessed desirable pH-sensitivity, the cumulative release rate was 4.07% and 94.64% in the solution with pH 1.2 and pH 7.4 solution during 12h, respectively. Furthermore, the study on pharmacokinetic, gastrointestinal drug residue and side-effects were conducted to evaluate the in vivo colon-targeting property of the HSS-HMSs. All the results showed that the HSS-HMSs could deliver HSS to the colon as well as reduce its premature absorption in the upper gastrointestinal tract. Finally, the HSS-HMSs showed better ameliorative effects and therapeutic effects on mice with experimental colitis as compared to HSS. In conclusion, the HSS-HMSs had great potential in the treatment of UC.
Collapse
|