1
|
Kaur H, Gogoi B, Sharma I, Das DK, Azad MA, Pramanik DD, Pramanik A. Hydrogels as a Potential Biomaterial for Multimodal Therapeutic Applications. Mol Pharm 2024; 21:4827-4848. [PMID: 39290162 PMCID: PMC11462506 DOI: 10.1021/acs.molpharmaceut.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Hydrogels, composed of hydrophilic polymer networks, have emerged as versatile materials in biomedical applications due to their high water content, biocompatibility, and tunable properties. They mimic natural tissue environments, enhancing cell viability and function. Hydrogels' tunable physical properties allow for tailored antibacterial biomaterial, wound dressings, cancer treatment, and tissue engineering scaffolds. Their ability to respond to physiological stimuli enables the controlled release of therapeutics, while their porous structure supports nutrient diffusion and waste removal, fostering tissue regeneration and repair. In wound healing, hydrogels provide a moist environment, promote cell migration, and deliver bioactive agents and antibiotics, enhancing the healing process. For cancer therapy, they offer localized drug delivery systems that target tumors, minimizing systemic toxicity and improving therapeutic efficacy. Ocular therapy benefits from hydrogels' capacity to form contact lenses and drug delivery systems that maintain prolonged contact with the eye surface, improving treatment outcomes for various eye diseases. In mucosal delivery, hydrogels facilitate the administration of therapeutics across mucosal barriers, ensuring sustained release and the improved bioavailability of drugs. Tissue regeneration sees hydrogels as scaffolds that mimic the extracellular matrix, supporting cell growth and differentiation for repairing damaged tissues. Similarly, in bone regeneration, hydrogels loaded with growth factors and stem cells promote osteogenesis and accelerate bone healing. This article highlights some of the recent advances in the use of hydrogels for various biomedical applications, driven by their ability to be engineered for specific therapeutic needs and their interactive properties with biological tissues.
Collapse
Affiliation(s)
- Harpreet Kaur
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Bishmita Gogoi
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Ira Sharma
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, Uttar Pradesh 281 406, India
| | - Mohd Ashif Azad
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | | | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS97TF, United Kingdom
| |
Collapse
|
2
|
Niu J, Yuan M, Gao P, Wang L, Qi Y, Chen J, Bai K, Fan Y, Liu X. Microemulsion-Based Keratin-Chitosan Gel for Improvement of Skin Permeation/Retention and Activity of Curcumin. Gels 2023; 9:587. [PMID: 37504466 PMCID: PMC10379975 DOI: 10.3390/gels9070587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Curcumin (Cur) is a kind of polyphenol with a variety of topical pharmacological properties including antioxidant, analgesic and anti-inflammatory activities. However, its low water solubility and poor skin bioavailability limit its effectiveness. In the current study, we aimed to develop microemulsion-based keratin-chitosan gel for the improvement of the topical activity of Cur. The curcumin-loaded microemulsion (CME) was formulated and then loaded into the keratin-chitosan (KCS) gel to form the CME-KCS gel. The formulated CME-KCS gel was evaluated for its characterization, in vitro release, in vitro skin permeation and in vivo activity. The results showed that the developed CME-KCS gel had an orange-yellow and gel-like appearance. The particle size and zeta potential of the CME-KCS gel were 186.45 ± 0.75 nm and 9.42 ± 0.86 mV, respectively. The CME-KCS gel showed desirable viscoelasticity, spreadability, bioadhesion and controlled drug release, which was suitable for topical application. The in vitro skin permeation and retention study showed that the CME-KCS gel had better in vitro skin penetration than the Cur solution and achieved maximum skin drug retention (3.75 ± 0.24 μg/cm2). In vivo experimental results confirmed that the CME-KCS gel was more effective than curcumin-loaded microemulsion (Cur-ME) in analgesic and anti-inflammatory activities. In addition, the CME-KCS gel did not cause any erythema or edema based on a mice skin irritation test. These findings indicated that the developed CME-KCS gel could improve the skin penetration and retention of Cur and could become a promising formulation for topical delivery to treat local diseases.
Collapse
Affiliation(s)
- Jiangxiu Niu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Ming Yuan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Panpan Gao
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yueheng Qi
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jingjing Chen
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Kaiyue Bai
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yanli Fan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xianming Liu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
3
|
Teng Y, Li S, Tang H, Tao X, Fan Y, Huang Y. Medical Applications of Hydrogels in Skin Infections: A Review. Infect Drug Resist 2023; 16:391-401. [PMID: 36714352 PMCID: PMC9882970 DOI: 10.2147/idr.s396990] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
Skin infections are common diseases for which patients seek inpatient and outpatient medical care. Globally, an increasing number of people are affected by skin infections that could lead to physical and psychological damage. Skin infections always have a broad spectrum of clinical presentations that require physicians to make an aggressive and accurate diagnosis for prescribing the proper symptomatic antimicrobials. In most instances, the treatment for skin infections mainly includes oral or topical anti-infective drugs. However, some of the classical anti-infective drugs have limitations, such as poor water solubility, low bioavailability, and poor targeting efficiency, which can lead to poor efficacy, adverse effects, and drug resistance. Therefore, research priorities should focus on the development of more effective drug delivery systems with new materials. Hydrogels are a highly multifunctional class of medical materials with potential applications in dermatology. Several hydrogel dressings with anti-infective functions have been formulated and demonstrated to improve the efficacy and tolerance of oral or topical classical anti-infective drugs to a certain degree. In this study, the medical applications of hydrogels for the treatment of various skin infections are systematically reviewed to provide an important theoretical reference for future research studies on the treatment options for skin infections.
Collapse
Affiliation(s)
- Yan Teng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, People’s Republic of China
| | - Sujing Li
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, 233030, People’s Republic of China
| | - Hui Tang
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, 233030, People’s Republic of China
| | - Xiaohua Tao
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, People’s Republic of China
| | - Yibin Fan
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, People’s Republic of China
| | - Youming Huang
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, People’s Republic of China
| |
Collapse
|
4
|
Alqahtani A, Raut B, Khan S, Mohamed JMM, Fatease AA, Alqahtani T, Alamri A, Ahmad F, Krishnaraju V. The Unique Carboxymethyl Fenugreek Gum Gel Loaded Itraconazole Self-Emulsifying Nanovesicles for Topical Onychomycosis Treatment. Polymers (Basel) 2022; 14:polym14020325. [PMID: 35054731 PMCID: PMC8779379 DOI: 10.3390/polym14020325] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
The novel itraconazole (ITZ) nail penetration enhancing self-emulsifying nanovesicles (ITZ-nPEVs) loaded in carboxymethyl fenugreek gum (CMFG) gel circumvent the systemic onychomycosis treatment. The ITZ-nPEVs were prepared by the thin film hydration technique, and the particle size (PS), zeta potential (ZP), drug content (DC), entrapment efficiency (% EE), deformity index (DI), viscosity, morphology, and physical stability of the ITZ-nPEVs were measured. In terms of nail hydration, transungual drug absorption, and antifungal efficacy against Candida albicans, the chosen ITZ-nPEVs, nPEV-loaded CMFG (CMFG-ITZ-nPEVs) gel, and the commercialized Itrostred gel were compared. The ITZ-nPEVs showed spherical structure with high DC, % EE, low PS and PDI and positive ZP of ITZ ranging from 95.36 to 93.89 mg/5 mL and 95.36–96.94%, 196.55–252.5 nm, 0.092–0.49, and +11.1 to +22.5 mV, respectively. Compared to the Itrostred gel, the novel ITZ-nPEVs exhibited hydration enhancement factor for 24 h (HE24) of 1.53 and 1.39 drug uptake enhancement factor into nail clippings. Moreover, zone of inhibitions for ITZ-nPEVs (27.0 ± 0.25 mm) and CMFG-ITZ-nPEVs (33.2 ± 0.09 mm) against Candida albicans were significantly greater than that of Itrostred gel (22.9 ± 0.44 mm). For clinical investigation on onychomycotic patients, a nail penetration enhancer containing ITZ-nPEV-loaded CMFG gel presents a highly promising approach.
Collapse
Affiliation(s)
- Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.); (T.A.); (V.K.)
| | - Bhavana Raut
- Institute of Pharmaceutical Education and Research, Borgaon (Meghe) Wardha, Wardha 442001, India;
| | - Shagufta Khan
- Institute of Pharmaceutical Education and Research, Borgaon (Meghe) Wardha, Wardha 442001, India;
- Correspondence: ; Tel.: +91-75591-78862
| | | | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.F.); (A.A.)
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.); (T.A.); (V.K.)
| | - Ali Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.F.); (A.A.)
| | - Fazil Ahmad
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| | - Venkatesan Krishnaraju
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.); (T.A.); (V.K.)
| |
Collapse
|
5
|
Vu Dang H, Tran Huu H, Nguyen HMT. Investigating the influence of excipient batch variation on the structure, consistency and physical stability of polysorbate 60-based topical vehicles. Int J Cosmet Sci 2021; 43:715-728. [PMID: 34714546 DOI: 10.1111/ics.12747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
Fatty alcohol-polysorbate 60-water ternary systems were used as models to represent the continuous phases of the respective semisolid oil-in-water emulsions for topical delivery of cosmetic and medicinal agents. The influence of batch variation of polysorbate 60 and fatty alcohol on structure and consistency of these systems was investigated using microscopy, rheology, differential scanning calorimetry and X-ray scattering techniques. The polysorbate 60 : cetostearyl alcohol mixed emulsifying wax showed swelling in water, that is, the lamellar repeat distance continually augmented from 93 to 125 Å with water percentage 20-90%. Cetostearyl alcohol ternary systems were thicker than cetyl alcohol ones independently of polysorbate 60 batches used. All the ternary systems showed an initial increase in consistency over the first 2 weeks of storage, which was followed by slight changes in consistency (cetostearyl alcohol systems) due to the re-allocation of polysorbate 60 molecules in the gel network or significant breakdown of structure (cetyl alcohol systems) due to the transformation of swollen α-lamellar gel phase into β, γ crystals on 25°C storage. With all fatty alcohols, the consistency of polysorbate 60 ternary system was directly dependent upon interlamellar water thickness as governed by the length and distribution of polyoxyethylene groups within polysorbate 60 molecules. In relation with the composition of polysorbate 60 batches used, the consistency of ternary systems was higher when prepared with the polysorbate 60 batch containing a greater amount of sorbitan polyoxyethylene monoesters. It was proposed that the swollen α-crystalline gel phase could be better formed by sorbitan polyoxyethylene monoesters rather than sorbitan polyoxyethylene diesters.
Collapse
Affiliation(s)
- Hoang Vu Dang
- Department of Analytical Chemistry and Toxicology, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Hung Tran Huu
- Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, Hanoi, Vietnam
| | - Hue Minh Thi Nguyen
- Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, Hanoi, Vietnam
| |
Collapse
|
6
|
Exploring Microfluidic Platform Technique for Continuous Production of Pharmaceutical Microemulsions. J Pharm Innov 2021. [DOI: 10.1007/s12247-020-09457-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Bernardes MTCP, Agostini SBN, Pereira GR, da Silva LP, da Silva JB, Bruschi ML, Novaes RD, Carvalho FC. Preclinical study of methotrexate-based hydrogels versus surfactant based liquid crystal systems on psoriasis treatment. Eur J Pharm Sci 2021; 165:105956. [PMID: 34314841 DOI: 10.1016/j.ejps.2021.105956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
Psoriasis is an autoimmune, inflammatory and chronic skin disease in which cell growth and proliferation are increased, causing erythema, lesions and skin's peeling. Oral methotrexate (MTX) is the first-choice drug when phototherapy or retinoid treatment are not effective. Topical administration can be advantageous to better orientate the drug's delivery; however, the stratum corneum performs as a barrier for hydrofilic drugs penetration. This study sought to evaluate two different types of vehicles for MTX on the psoriasis treatment - hydrogel and liquid crystal systems (LCs). Lamellar and hexagonal liquid crystalline phases were selected from a ternary phase diagram based on polysorbate 80, isopropyl miristate and water. The hydrogel was based on alkylated carbomer (ACH). Rheological analysis showed ACH was more elastic than lamellar and hexagonal phases. ACH interacted better with pig skin than LCs in bioadhesion assay. Preclinical study revealed the ACH decreased inflammation in mice with induced psoriasis, being as effective as dexamethasone to regulate epidermis thickness, COX-2 and myeloperoxidase activity and TNF-α level, while LCs demonstrated inflammatory effect. Therefore, MTX-loaded hydrogel based platforms are indicated for local treatment of psoriasis and present great potential for further studies.
Collapse
Affiliation(s)
| | | | - Gislaine Ribeiro Pereira
- Faculdade de Farmácia, Departamento de Fármacos e Alimentos, Universidade Federal de Alfenas, Brazil
| | - Laíla Pereira da Silva
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Brazil
| | - Jéssica Bassi da Silva
- Laboratório de Pesquisa e Desenvolvimento de Sistemas de Liberação de Fármacos, Departamento de Farmácia, Universidade Estadual de Maringá, Brazil
| | - Marcos Luciano Bruschi
- Laboratório de Pesquisa e Desenvolvimento de Sistemas de Liberação de Fármacos, Departamento de Farmácia, Universidade Estadual de Maringá, Brazil
| | - Rômulo Dias Novaes
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Brazil
| | - Flávia Chiva Carvalho
- Faculdade de Farmácia, Departamento de Fármacos e Alimentos, Universidade Federal de Alfenas, Brazil.
| |
Collapse
|
8
|
Esenturk I, Gumrukcu S, Özdabak Sert AB, Kök FN, Döşler S, Gungor S, Erdal MS, Sarac AS. Silk-fibroin-containing nanofibers for topical sertaconazole delivery: preparation, characterization, and antifungal activity. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1740992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Imren Esenturk
- Department of Pharmaceutical Technology, University of Health Sciences Turkey, Istanbul, Turkey
| | - Selin Gumrukcu
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ayşe Buse Özdabak Sert
- Molecular Biology-Genetics and Biotechnology Program, MOBGAM, Istanbul Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Fatma Neşe Kök
- Molecular Biology-Genetics and Biotechnology Program, MOBGAM, Istanbul Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Sibel Döşler
- Department of Pharmaceutical Microbiology, Istanbul University, Istanbul, Turkey
| | - Sevgi Gungor
- Department of Pharmaceutical Technology, Istanbul University, Istanbul, Turkey
| | - M. Sedef Erdal
- Department of Pharmaceutical Technology, Istanbul University, Istanbul, Turkey
| | - A. Sezai Sarac
- Polymer Science and Technology, Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
9
|
Bubić Pajić N, Vucen S, Ilić T, O'Mahony C, Dobričić V, Savić S. Comparative efficacy evaluation of different penetration enhancement strategies for dermal delivery of poorly soluble drugs - A case with sertaconazole nitrate. Eur J Pharm Sci 2021; 164:105895. [PMID: 34087357 DOI: 10.1016/j.ejps.2021.105895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023]
Abstract
The aim of this study was to compare the efficacy of different approaches for enhancement of dermal availability of the highly lipophilic antifungal model drug - sertaconazole nitrate (SN). For this purpose, a physical penetration enhancer - dissolving microneedles (MNs) was fabricated by filling moulds with liquid formulation based on polyvinylpyrrolidone and loaded with SN. Dissolving MNs were characterised regarding their morphological and mechanical characteristics. A penetration enhancement efficacy of MNs was evaluated in vitro using porcine ear skin in parallel with the efficacy of formerly developed chemical penetration enhancer - biocompatible microemulsion (ME) formulation. Moreover, an ability of solid silicon MNs to significantly improve delivery of SN from ME into the skin has also been investigated. The obtained results showed that dissolving MNs had satisfying morphological properties and mechanical strength. This type of MNs provided comparable drug deposition in the skin as ME formulation, but also revealed an indication of percutaneous absorption of a portion of the administered drug dose. However, the penetration/permeation study results were largely influenced by experimental setup and dosing regimen. Although solid silicon MNs assisted SN dermal delivery led to increase of drug cutaneous retention (1.9-fold) under infinite dosing regimen, the synergistic action of solid MNs and ME applied under finite dosing was more pronounced in comparison with the application either of physical (dissolving MNs) or chemical enhancer (ME) alone. Namely, SN amount accumulated into the skin increased up to 4.67 and 4.37 folds in comparison with ME and dissolving MNs alone, respectively, while reaching a significant decrease in drug permeation through the skin compared to the use of dissolving MNs. Application of ME per se was the only approach that provided selective in vitro dermal drug delivery without SN permeation across the skin. However, despite both types of the used MNs lead to SN permeation in vitro, the ratio between the drug amount deposited in the skin and SN content permeated was significantly higher for the combined approach (12.05) than for dissolving MNs (2.10). Therefore, a combination of solid silicon MNs and biocompatible ME favoured more pronouncedly SN skin accumulation, which is preferable in the treatment of skin fungal infections.
Collapse
Affiliation(s)
- Nataša Bubić Pajić
- University of Banja Luka, Faculty of Medicine, Department of Pharmaceutical Technology and Cosmetology, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina.
| | - Sonja Vucen
- School of Pharmacy, University College Cork, Cork, Ireland.
| | - Tanja Ilić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Vladimir Dobričić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 11221 Belgrade, Serbia.
| | - Snežana Savić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
10
|
|
11
|
Recent Advances in Nanomaterials for Dermal and Transdermal Applications. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010018] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the permeation of active molecules across the stratum corneum and enable their penetration into deeper skin layers, often by interacting with the skin and creating the distinct sites with elevated local concentration, acting as reservoirs. The flux of the molecules from these reservoirs can be either limited to the underlying skin layers (for topical drug and cosmeceutical delivery) or extended across all the sublayers of the epidermis to the blood vessels of the dermis (for transdermal delivery). The type of the nanocarrier and the physicochemical nature of the active substance are among the factors that determine the final skin permeation pattern and the stability of the penetrant in the cutaneous environment. The most widely employed types of nanomaterials for dermal and transdermal applications include solid lipid nanoparticles, nanovesicular carriers, microemulsions, nanoemulsions, and polymeric nanoparticles. The recent advances in the area of nanomaterial-assisted dermal and transdermal delivery are highlighted in this review.
Collapse
|
12
|
Nanocarriers Mediated Cutaneous Drug Delivery. Eur J Pharm Sci 2021; 158:105638. [DOI: 10.1016/j.ejps.2020.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
|
13
|
Abobakr FE, Fayez SM, Elwazzan VS, Sakran W. Effect of Different Nail Penetration Enhancers in Solid Lipid Nanoparticles Containing Terbinafine Hydrochloride for Treatment of Onychomycosis. AAPS PharmSciTech 2021; 22:33. [PMID: 33404930 DOI: 10.1208/s12249-020-01893-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Onychomycosis is considered a stubborn nail fungal infection that does not respond to conventional topical antifungal treatments. This study aimed to develop and characterize novel solid lipid nanoparticles (SLNs) formulae containing terbinafine HCl (TFH) and loaded with different nail penetration enhancers (nPEs). Three (nPEs) N-acetyl-L-cysteine, thioglycolic acid, and thiourea were used. Characterization of the prepared formulae was done regarding particle size, zeta potential, polydispersity index (PDI), entrapment efficiency (EE%), physical stability, in vitro release study, infrared (FT-IR), and their morphological structures. The selected formulae and the marketed cream Lamifen® were compared in terms of their antifungal activity against Trichophyton rubrum as well as their nail hydration and their drug uptake by the nail clippers. Thiourea was the nPE of choice; formulae (N2 and N8), with thiourea, were considered the optimum TFH SLNs containing nPEs. They were selected for their optimum particle size of 426.3 ± 10.18 and 450.8 ± 11.45 nm as well as their highest EE% of 89.76 ± 1.25 and 90.35 ± 1.33, respectively. The in vitro microbiological screening of the antifungal activity of these two formulae showed significantly larger zones of inhibition in comparison with the marketed product. The ex vivo screening of the drug uptake of the two selected formulae was significantly higher than that of the marketed product. The nPE formulae present a very promising option as they showed optimum physicochemical characterization with high antifungal activity and high drug uptake as well as good nail hydration effect.
Collapse
|
14
|
Zhang L, Huang T, Bi J, Zheng Y, Lu C, Hui Q, Wang X, Lin X. Long-Term Toxicity Study of Topical Administration of a Highly-Stable rh-aFGF Carbomer 940 Hydrogel in a Rabbit Skin Wound Model. Front Pharmacol 2020; 11:58. [PMID: 32153396 PMCID: PMC7046797 DOI: 10.3389/fphar.2020.00058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
We developed a highly stable recombinant human acidic fibroblast growth factor (rh-aFGF) carbomer 940 hydrogel for wound healing. This study aimed to reveal toxicity target organs and the toxicity dose-response in the long-term administration of rh-aFGF carbomer 940 hydrogel in a rabbit skin wound model. New Zealand rabbits were topically administrated rh-aFGF carbomer 940 hydrogel at a daily dose of 900 IU/cm2, 1,800 IU/cm2, and 3,600 IU/cm2 for 28 days. Lyophilized rh-aFGF agent was used as the positive control group. General behavior, serum chemistry, skin irritation, immunogenicity, immunotoxicity, and histopathology were analyzed at designated time points. Results revealed that food intake, body weight, body temperature, heart rate, and eye examinations were all normal, suggesting no obvious toxicity induced by the rh-aFGF hydrogel. Medium and high dose rh-aFGF hydrogel groups and the positive control group displayed increased cell numbers in the local lymph nodes near the site of administration, likely caused mesenteric lymph node follicular hyperplasia, and this observation was alleviated after 14 days of recovery. Immunogenicity studies demonstrated that the serum antibody titer against rh-aFGF increased with the duration and number of drug applications but were not neutralization antibodies. After administration stopped, antibody titer decreased and disappeared in some mice. In summary, the safe dose for long-term administration of rh-aFGF carbomer 940 hydrogel for persistently damaged skin was 900 IU/cm2, which is 10 times that of the proposed clinical dosing.
Collapse
Affiliation(s)
- Li Zhang
- The Department of Dermatology of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Tongzhou Huang
- The Department of Dermatology of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
| | - Jianing Bi
- The Department of Dermatology of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
| | - Yingying Zheng
- The Department of Dermatology of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
| | - Chao Lu
- The Department of Dermatology of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
| | - Qi Hui
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
| | - Xiaojie Wang
- The Department of Dermatology of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Xiaohua Lin
- The Department of Dermatology of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| |
Collapse
|
15
|
Bubic Pajic N, Nikolic I, Mitsou E, Papadimitriou V, Xenakis A, Randjelovic D, Dobricic V, Smitran A, Cekic N, Calija B, Savic S. Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Qurt MS, Esentürk İ, Birteksöz Tan S, Erdal MS, Araman A, Güngör S. Voriconazole and sertaconazole loaded colloidal nano-carriers for enhanced skin deposition and improved topical fungal treatment. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Tao J, Zheng ZP, Guo F, Chen J. Formulation of a 7,2′,4′-trihydroxyflavanone oil-in-water microemulsion using aqua coconut oil: Characterization, stability, and antibrowning effects on fresh apple juice. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Mishra B, Sahoo SK, Sahoo S. Liranaftate loaded Xanthan gum based hydrogel for topical delivery: Physical properties and ex-vivo permeability. Int J Biol Macromol 2018; 107:1717-1723. [DOI: 10.1016/j.ijbiomac.2017.10.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/07/2017] [Indexed: 12/25/2022]
|
19
|
Wang Q, Zhang H, Huang J, Xia N, Li T, Xia Q. Self-double-emulsifying drug delivery system incorporated in natural hydrogels: a new way for topical application of vitamin C. J Microencapsul 2018; 35:90-101. [DOI: 10.1080/02652048.2018.1425752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, China
| | - Hong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, China
| | - Juan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, China
| | - Nan Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, China
| | - Tong Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, China
| | - Qiang Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, China
| |
Collapse
|
20
|
Investigation of microemulsion and microemulsion gel formulations for dermal delivery of clotrimazole. Int J Pharm 2018; 536:345-352. [DOI: 10.1016/j.ijpharm.2017.11.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/28/2017] [Accepted: 11/19/2017] [Indexed: 11/22/2022]
|
21
|
Mandlik SK, Siras SS, Birajdar KR. Optimization and characterization of sertaconazole nitrate flexisomes embedded in hydrogel for improved antifungal activity. J Liposome Res 2017; 29:10-20. [DOI: 10.1080/08982104.2017.1402926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Satish K. Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon (Bk), Pune, Maharashtra, India
| | - Shridhar S. Siras
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon (Bk), Pune, Maharashtra, India
| | - Kiran R. Birajdar
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon (Bk), Pune, Maharashtra, India
| |
Collapse
|
22
|
Radwan SAA, ElMeshad AN, Shoukri RA. Microemulsion loaded hydrogel as a promising vehicle for dermal delivery of the antifungal sertaconazole: design, optimization and ex vivo evaluation. Drug Dev Ind Pharm 2017; 43:1351-1365. [DOI: 10.1080/03639045.2017.1318899] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Shaimaa Ali Ali Radwan
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aliaa Nabil ElMeshad
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Raguia Aly Shoukri
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Gupta AK, Foley KA, Versteeg SG. New Antifungal Agents and New Formulations Against Dermatophytes. Mycopathologia 2016; 182:127-141. [PMID: 27502503 DOI: 10.1007/s11046-016-0045-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/26/2016] [Indexed: 11/24/2022]
Abstract
A variety of oral and topical antifungal agents are available for the treatment of superficial fungal infections caused by dermatophytes. This review builds on the antifungal therapy update published in this journal for the first special issue on Dermatophytosis (Gupta and Cooper 2008;166:353-67). Since 2008, there have not been additions to the oral antifungal armamentarium, with terbinafine, itraconazole, and fluconazole still in widespread use, albeit for generally more severe or recalcitrant infections. Griseofulvin is used in the treatment of tinea capitis. Oral ketoconazole has fallen out of favor in many jurisdictions due to risks of hepatotoxicity. Topical antifungals, applied once or twice daily, are the primary treatment for tinea pedis, tinea corporis/tinea cruris, and mild cases of tinea unguium. Newer topical antifungal agents introduced include the azoles, efinaconazole, luliconazole, and sertaconazole, and the oxaborole, tavaborole. Research is focused on developing formulations of existing topical antifungals that utilize novel delivery systems in order to enhance treatment efficacy and compliance.
Collapse
Affiliation(s)
- Aditya K Gupta
- Department of Medicine, University of Toronto, Toronto, Canada. .,Mediprobe Research Inc., 645 Windermere Road, London, ON, Canada.
| | - Kelly A Foley
- Mediprobe Research Inc., 645 Windermere Road, London, ON, Canada
| | - Sarah G Versteeg
- Mediprobe Research Inc., 645 Windermere Road, London, ON, Canada
| |
Collapse
|
24
|
Bseiso EA, Nasr M, Sammour O, Abd El Gawad NA. Recent advances in topical formulation carriers of antifungal agents. Indian J Dermatol Venereol Leprol 2016; 81:457-63. [PMID: 26261140 DOI: 10.4103/0378-6323.162328] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fungal infections are amongst the most commonly encountered diseases affecting the skin. Treatment approaches include both topical and oral antifungal agents. The topical route is generally preferred due to the possible side effects of oral medication. Advances in the field of formulation may soon render outdated conventional products such as creams, ointments and gels. Several carrier systems loaded with antifungal drugs have demonstrated promising results in the treatment of skin fungal infections. Examples of these newer carriers include micelles, lipidic systems such as solid lipid nanoparticles and nanostructured lipid carriers, microemulsions and vesicular systems such as liposomes, niosomes, transfersomes, ethosomes, and penetration enhancer vesicles.
Collapse
Affiliation(s)
- Eman Ahmed Bseiso
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | | | | | | |
Collapse
|
25
|
Bseiso EA, Nasr M, Sammour OA, Abd El Gawad NA. Novel nail penetration enhancer containing vesicles "nPEVs" for treatment of onychomycosis. Drug Deliv 2015; 23:2813-2819. [PMID: 26447337 DOI: 10.3109/10717544.2015.1099059] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CONTEXT The systemic treatment of onychomycosis has been hampered by the reported side effects of antifungals in addition to the limited blood circulation to the affected nails. Topical ungual treatment would circumvent the limitations of systemic onychomycosis treatment. OBJECTIVE Preparation and characterization of nail penetration enhancer containing nanovesicles (nPEVs) loaded with sertaconazole for topical treatment of onychomycosis. MATERIALS AND METHODS nPEVs were prepared using different nail penetration enhancers (N-acetyl-L-cysteine, thioglycolic acid, thiourea and ethanol) by the thin film hydration method, and characterized for their particle size, zeta potential, entrapment efficiency (EE%), elasticity, viscosity, physical stability and morphology. The selected nPEVs formula and the marketed Dermofix® cream were compared in terms of nail hydration, transungual drug uptake and antifungal activity against Trichophyton rubrum. RESULTS N-acetyl-l-cysteine was the optimum nail penetration enhancer for incorporation within vesicles. nPEVs showed high EE% of sertaconazole ranging from 77 to 95%, a size ranging from 38-538 nm and a zeta potential ranging from +48 to +72 mV. The selected nPEVs formula displayed spherical morphology and good storage stability. Compared to the conventional marketed cream, the selected nPEVs formula showed 1.4-folds higher hydration and drug uptake enhancement into nail clippings. Furthermore, it showed significantly higher zone of inhibition for Trichophyton rubrum (20.9 ± 0.25 mm) than the marketed cream (11.6 ± 0.44 mm). CONCLUSION Nail penetration enhancer containing nanovesicles (nPEVs) present a very promising option, worthy of clinical experimentation on onychomycotic patients.
Collapse
Affiliation(s)
- Eman A Bseiso
- a Department of Pharmaceutics , Faculty of Pharmacy, October 6 University , Cairo , Egypt
| | - Maha Nasr
- b Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Ain Shams University , Cairo , Egypt , and
| | - Omaima A Sammour
- b Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Ain Shams University , Cairo , Egypt , and
| | - Nabaweya A Abd El Gawad
- a Department of Pharmaceutics , Faculty of Pharmacy, October 6 University , Cairo , Egypt.,c Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Cairo University , Cairo , Egypt
| |
Collapse
|
26
|
Somagoni J, Boakye CHA, Godugu C, Patel AR, Mendonca Faria HA, Zucolotto V, Singh M. Nanomiemgel--a novel drug delivery system for topical application--in vitro and in vivo evaluation. PLoS One 2014; 9:e115952. [PMID: 25546392 PMCID: PMC4278799 DOI: 10.1371/journal.pone.0115952] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/02/2014] [Indexed: 12/27/2022] Open
Abstract
Aim The objective of this study was to formulate and evaluate a unique matrix mixture (nanomiemgel) of nanomicelle and nanoemulsion containing aceclofenac and capsaicin using in vitro and in vivo analyses and to compare it to a marketed formulation (Aceproxyvon). Methods Nanomicelles were prepared using Vitamin E TPGS by solvent evaporation method and nanoemulsion was prepared by high-pressure homogenization method. In vitro drug release and human skin permeation studies were performed and analyzed using HPLC. The efficiency of nanomiemgel as a delivery system was investigated using an imiquimod-induced psoriatic like plaque model developed in C57BL/6 mice. Results Atomic Force Microscopy images of the samples exhibited a globular morphology with an average diameter of 200, 250 and 220 nm for NMI, NEM and NMG, respectively. Nanomiemgel demonstrated a controlled release drug pattern and induced 2.02 and 1.97-fold more permeation of aceclofenac and capsaicin, respectively than Aceproxyvon through dermatomed human skin. Nanomiemgel also showed 2.94 and 2.09-fold greater Cmax of aceclofenac and capsaicin, respectively than Aceproxyvon in skin microdialysis study in rats. The PASI score, ear thickness and spleen weight of the imiquimod-induced psoriatic-like plaque model were significantly (p<0.05) reduced in NMG treated mice compared to free drug, NEM, NMI & Aceproxyvon. Conclusion Using a new combination of two different drug delivery systems (NEM+NMI), the absorption of the combined system (NMG) was found to be better than either of the individual drug delivery systems due to the utilization of the maximum possible paths of absorption available for that particular drug.
Collapse
Affiliation(s)
- Jaganmohan Somagoni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States of America
| | - Cedar H. A. Boakye
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States of America
| | - Chandraiah Godugu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States of America
| | - Apurva R. Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States of America
| | | | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, USP, 13566-590, São Carlos, SP, Brazil
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States of America
- * E-mail:
| |
Collapse
|