1
|
Zhao J, Wei Y, Xiong J, Liu H, Lv G, Zhao J, He H, Gou J, Yin T, Tang X, Zhang Y. Antibacterial-Anti-Inflammatory-Bone Restoration Procedure Achieved by MIN-Loaded PLGA Microsphere for Efficient Treatment of Periodontitis. AAPS PharmSciTech 2023; 24:74. [PMID: 36890400 DOI: 10.1208/s12249-023-02538-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/12/2023] [Indexed: 03/10/2023] Open
Abstract
The main development process of periodontitis involves periodontal pathogenic bacteria as the initiating factor causing the onset of destructive inflammation, which in turn stimulates the destruction of periodontal tissue. It is difficult to achieve the eradication of periodontitis due to the complex interaction among antibacterial, anti-inflammatory, and bone restoration. Herein, we propose an antibacterial-anti-inflammatory-bone restoration procedural treatment strategy with minocycline (MIN) for the efficient treatment of periodontitis. In brief, MIN was prepared into PLGA microspheres with tunable release behavior using different species of PLGA, respectively. The optimally selected PLGA microspheres (LA:GA with 50:50, 10 kDa, and carboxyl group) had a drug loading of 16.91%, an in vitro release of approximately 30 days, which also had a particle size of approximately 11.8 µm with a smooth appearance and a rounded morphology. The DSC and XRD results showed that the MIN was completely encapsulated in the microspheres as an amorphous state. Cytotoxicity tests demonstrated the safety and biocompatibility of the microspheres (cell viabilities at a concentration of 1-200 μg/mL were greater than 97%), and in vitro bacterial inhibition tests showed that the selected microspheres could achieve effective bacterial inhibition at the initial stage after administration. The favorable anti-inflammatory (low TNF-α and IL-10 levels) and bone restoration effects (BV/TV: 71.8869%; BMD: 0.9782 g/cm3; TB.Th: 0.1366 mm; Tb.N: 6.9318 mm-1; Tb.Sp: 0.0735 mm) were achieved in a SD rat periodontitis model after administering once a week for four weeks. The MIN-loaded PLGA microspheres were proved to be an efficient and safe treatment for periodontitis by procedural antibacterial, anti-inflammatory, and bone restoration.
Collapse
Affiliation(s)
- Jiansong Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Ying Wei
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jian Xiong
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Hongbing Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Gaoshuai Lv
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jingyi Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
2
|
A multiple controlled-release hydrophilicity minocycline hydrochloride delivery system for the efficient treatment of periodontitis. Int J Pharm 2023; 636:122802. [PMID: 36894039 DOI: 10.1016/j.ijpharm.2023.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/04/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
The complexity of periodontitis, including the complex formation mechanisms and the complex periodontium physiological environment, as well as the complex association with multiple complications, often results in poor therapy effects. Herein, we aimed to design a nanosystem with a controlled release of minocycline hydrochloride (MH) and good retention to effectively treat periodontitis by inhibiting inflammation and repairing the alveolar bone. Firstly, insoluble ion-pairing (IIP) complexes were constructed to improve the encapsulation efficiency of hydrophilic MH in PLGA nanoparticles. Then, a nanogenerator was constructed and combined with a double emulsion method to encapsulate the complexes into PLGA nanoparticles (MH-NPs). The average particle size of MH-NPs was about 100 nm as observed by AFM and TEM, and the drug loading and encapsulation efficiency were 9.59% and 95.58%, respectively. Finally, a multifunctional system (MH-NPs-in-gels) was prepared by dispersing MH-NPs into thermosensitive gels, which could continue to release drug for 21 days in vitro. And the release mechanism showed that this controlled release behavior for MH was influenced by the insoluble ion-pairing complex, PLGA nanoparticles, and gels. In addition, the periodontitis rat model was established to investigate the pharmacodynamic effects. After 4 weeks of treatment, changes in the alveolar bone were assessed by Micro-CT (BV/TV: 70.88%; BMD: 0.97 g/cm3; TB.Th: 0.14 mm; Tb.N: 6.39 mm-1; Tb.Sp: 0.07 mm). The mechanism of MH-NPs-in-gels in vivo was clarified by the analysis of pharmacodynamic results, which showed that insoluble ion-pairing complexes with the aid of PLGA nanoparticles and gels achieved significant anti-inflammatory effects and bone repair capabilities. In conclusion, the multiple controlled-release hydrophilicity MH delivery system would have good prospects for the effective treatment of periodontitis.
Collapse
|
3
|
Jain P, Garg A, Farooq U, Panda AK, Mirza MA, Noureldeen A, Darwish H, Iqbal Z. Preparation and quality by design assisted (Qb-d) optimization of bioceramic loaded microspheres for periodontal delivery of doxycycline hyclate. Saudi J Biol Sci 2021; 28:2677-2685. [PMID: 34025152 PMCID: PMC8117247 DOI: 10.1016/j.sjbs.2021.03.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/27/2022] Open
Abstract
PLGA (Lactic- co-glycolic acid) coated chitosan microspheres loaded with hydroxyapatite and doxycycline hyclate complex were developed in the present study for periodontal delivery. A modified single emulsion method was adopted for the development of microspheres. Formulation was optimized on the basis of particle size, drug loading and encapsulation efficiency with the central composite design using 23 factorial design. Microspheres were optimized and electron microscopy revealed their spherical shape and porous nature. In-vitro study showed initial burst and then sustained release behavior of the formulation for 14 days. Further, in-vitro antibacterial study performed on E. coli (ATCC-25922) and S. aureus (ATCC-29213) revealed concentration dependent activity. Also, in-vitro cyto-toxicity assessment ensures biocompatibility of the formulation with the fibroblast's cells. Overall, the quality by design assisted PLGA microspheres, demonstrated the desired attributes and were found suitable for periodontal drug delivery.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Abhinav Garg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Uzma Farooq
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amulya K. Panda
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Mohd. Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Ren B, Lu J, Li M, Zou X, Liu Y, Wang C, Wang L. Anti-inflammatory effect of IL-1ra-loaded dextran/PLGA microspheres on Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages in vitro and in vivo in a rat model of periodontitis. Biomed Pharmacother 2021; 134:111171. [PMID: 33383312 DOI: 10.1016/j.biopha.2020.111171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Periodontitis is a multifactorial chronic infectious disease leading to a host immune response involving inflammatory cytokines, especially IL-1β, which is the main reason for further developing this disease. IL-1 receptor antagonist (IL-1ra) binds IL-1 receptor, inhibiting IL-1β signaling and reducing the levels of other cytokines closely related to periodontitis, such as IL-6 and TNF-α. Therefore, the use of IL-1ra to inhibit periodontitis development in a system, ensuring its sustained release, might be an effective way to combat this disease. Hence, in this study, a novel IL-1ra-loaded dextran/PLGA microsphere was developed to allow the sustained release of IL-1ra and enhance the anti-inflammatory properties. Therefore, this study's purposes were to develop a novel periodontal treatment for inhibition and treatment of periodontitis and evaluate the sustained-release effect and anti-inflammatory properties of IL-1ra-loaded dextran/PLGA microspheres in vitro by cell experiments and in vivo by animal experiments. The results showed that IL-1ra-loaded dextran/PLGA microspheres were non-toxic both in vitro and in vivo and could be used as a safe and effective treatment. In addition, these microspheres could significantly prolong the half-life of IL-1ra drug, exerting a useful anti-inflammatory effect in macrophages stimulated with P. gingivalis lipopolysaccharide and in rats with periodontitis. In conclusion, IL-1ra-loaded dextran/PLGA microsphere might be a useful tool to combat periodontal disease.
Collapse
Affiliation(s)
- Baijie Ren
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Jingyi Lu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Minghe Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Xinying Zou
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Yue Liu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Chang Wang
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Lei Wang
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
5
|
Yue Y, Liu X, Li Y, Xia B, Yu W. The role of TLR4/MyD88/NF-κB pathway in periodontitis-induced liver inflammation of rats. Oral Dis 2020; 27:1012-1021. [PMID: 32853444 PMCID: PMC8247295 DOI: 10.1111/odi.13616] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/24/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to clarify the immune mechanism of hepatic injury induced by periodontitis using a rat model. METHODS Twenty-four SPF male Wistar rats were randomly divided into two groups: control group (CG) and periodontitis group (PG). In order to induce experimental periodontitis, we tied the wire ligature around bilateral maxillary first molar of rats. After 8 weeks, the following indicators were valued: gingival index, tooth mobility, probing pocket depth; indexes about oxidative stress and circulating biomarkers; bone retraction by micro-CT analysis; Toll-like receptor 4 (TLR4), myeloid differential protein-88 (MyD88), and nuclear factor kappa B (NF-κB) by qRT-PCR and Western blotting; tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) by qRT-PCR and immunohistochemical staining; inflammation of periodontal and hepatic tissues by histopathological observation. RESULTS Periodontal indicators and micro-CT results showed the raised levels of inflammatory response and bone retraction in PG compared with CG. The mRNA and protein levels of TLR4, MyD88, NF-κB, TNF-α, and IL-6 have indicated high values in PG versus CG. Histopathological analysis revealed a correlation between periodontitis and hepatic injury. CONCLUSION TLR4/MyD88/NF-κB pathway may play a role in periodontitis-induced liver inflammation of rats.
Collapse
Affiliation(s)
- Yiyun Yue
- Department of Periodontology, Jilin University, Changchun, China
| | - Xinchan Liu
- Department of Geriatric Stomatology, Jilin University, Changchun, China
| | - Yan Li
- Department of Periodontology, Jilin University, Changchun, China
| | - Boyuan Xia
- Department of Periodontology, Jilin University, Changchun, China
| | - Weixian Yu
- Department of Geriatric Stomatology, Jilin University, Changchun, China.,Jilin Provincial Laboratory of Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
6
|
Brun A, Moignot N, Colombier ML, Dursun E. Emerging Nanotechnology in Non-Surgical Periodontal Therapy in Animal Models: A Systematic Review. NANOMATERIALS 2020; 10:nano10071414. [PMID: 32698391 PMCID: PMC7407288 DOI: 10.3390/nano10071414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/21/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022]
Abstract
Periodontitis is one of the most prevalent inflammatory diseases. Its treatment, mostly mechanical and non-surgical, shows limitations. The aim of this systematic review was to investigate the effect of nanoparticles as a treatment alone in non-surgical periodontal therapy in animal models. A systematic search was conducted in Medline/PubMed, Web of Science, The Cochrane Library and Science Direct. The eligibility criteria were: studies (i) using nanoparticles as chemotherapeutic agent or as delivery system; (ii) including preclinical controlled animal model (experimental periodontitis); (iii) reporting alveolar bone loss; (iv) written in English; and (v) published up to June 2019. Risk of bias was evaluated according to the SYstematic Review Centre for Laboratory Animal Experimentation. On the 1324 eligible studies, 11 were included. All reported advantages in using nanoparticles for the treatment of periodontitis, highlighted by a reduction in bone loss. Agents modulating inflammation seem to be more relevant than antibiotics, in terms of efficiency and risk of antibiotic resistance. In addition, poly(lactic-co-glycolic acid) or drugs used as their own carrier appear to be the most interesting nanoparticles in terms of biocompatibility. Risk of bias assessment highlighted many criteria scored as unclear. There are encouraging preclinical data of using nanoparticles as a contribution to the treatment of periodontitis.
Collapse
Affiliation(s)
- Adrian Brun
- Faculty of Dental Surgery, Université de Paris, CEDEX F-92120 Montrouge, France; (A.B.); (N.M.); (M.-L.C.)
- Orofacial Pathologies, Imaging and Biotherapies laboratory, UR2496, Université de Paris, F-92120 Montrouge, France
- Division of Periodontology, Department of Oral Medicine, Henri Mondor Hospital, APHP, F-94000 Créteil, France
| | - Nicolas Moignot
- Faculty of Dental Surgery, Université de Paris, CEDEX F-92120 Montrouge, France; (A.B.); (N.M.); (M.-L.C.)
- Department of Oral Medicine, Bretonneau Hospital, APHP, F-75018 Paris, France
| | - Marie-Laure Colombier
- Faculty of Dental Surgery, Université de Paris, CEDEX F-92120 Montrouge, France; (A.B.); (N.M.); (M.-L.C.)
- Orofacial Pathologies, Imaging and Biotherapies laboratory, UR2496, Université de Paris, F-92120 Montrouge, France
- Division of Periodontology, Department of Oral Medicine, Louis Mourier Hospital, APHP, F-92700 Colombes, France
| | - Elisabeth Dursun
- Faculty of Dental Surgery, Université de Paris, CEDEX F-92120 Montrouge, France; (A.B.); (N.M.); (M.-L.C.)
- Innovative Dental Materials and Interfaces Research Unit (URB2i), EA4462, Université de Paris, Université Sorbonne Paris Nord, F-92120 Montrouge, France
- Division of Paediatric Dentistry, Department of Oral Medicine, Henri Mondor Hospital, APHP, F-94000 Créteil, France
- Correspondence:
| |
Collapse
|
7
|
Jain P, Mirza MA, Talegaonkar S, Nandy S, Dudeja M, Sharma N, Anwer MK, Alshahrani SM, Iqbal Z. Design and in vitro/ in vivo evaluations of a multiple-drug-containing gingiva disc for periodontotherapy. RSC Adv 2020; 10:8530-8538. [PMID: 35497829 PMCID: PMC9049995 DOI: 10.1039/c9ra09569a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/10/2020] [Indexed: 11/21/2022] Open
Abstract
In the current work, we set out to develop and evaluate a gingiva disc of cellulose acetate phthalate and poloxamer F-127 for the simultaneous delivery of multiple drugs, namely minocycline, celecoxib, doxycycline hyclate, and simvastatin, to abolish infection, impede inflammation, avert collagen destruction, and promote alveolar bone regeneration, respectively. In vitro release studies revealed the sustained release profiles of the drugs for 12 h and that they were active against Staphylococcus aureus, Escherichia coli and Streptococcus mutans. The in vivo bioactivity levels of these drugs were assessed by comparing the number of colony forming units during different phases of a study on Wistar rats, and the results showed a reduction in the number of bacterial colonies with the applied formulation. A mucosal irritation study conducted on Wistar rat gingiva confirmed the non-irritancy of the optimal gingiva disc. Hence, this customized, non-invasive polymeric gingiva disc displaying a sustained release of drugs can be a useful tool to treat acute to moderate stages of periodontitis.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi 110062 India +91-9811733016 +91-9213378765
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi 110062 India +91-9811733016 +91-9213378765
| | - Sushama Talegaonkar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi New Delhi India
| | - Shyamasree Nandy
- Department of Microbiology, Hamdard Institute of Medical Sciences and Research New Delhi India
| | - Mridu Dudeja
- Department of Microbiology, Hamdard Institute of Medical Sciences and Research New Delhi India
| | - Nilima Sharma
- Department of Dentistry, Hamdard Institute of Medical Sciences and Research & HAH Centenary Hospital, Jamia Hamdard New Delhi India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-kharj 11942 Saudi Arabia
| | - Saad M Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-kharj 11942 Saudi Arabia
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi 110062 India +91-9811733016 +91-9213378765
| |
Collapse
|
8
|
Brun A, Moignot N, Colombier ML, Dursun E. Towards the nano-control of periodontal inflammation? Oral Dis 2019; 26:245-248. [PMID: 31647146 DOI: 10.1111/odi.13219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Adrian Brun
- Faculty of Dental Surgery, Université de Paris, Montrouge, France.,Laboratory for Vascular Translational Science, Inserm U1148, Paris, France.,Division of Periodontology, Department of Oral Medicine, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Nicolas Moignot
- Faculty of Dental Surgery, Université de Paris, Montrouge, France.,Department of Oral Medicine, Bretonneau Hospital, AP-HP, Paris, France
| | - Marie-Laure Colombier
- Faculty of Dental Surgery, Université de Paris, Montrouge, France.,Orofacial Pathologies, Imaging and Biotherapies laboratory, EA2496, Montrouge, France.,Division of Periodontology, Department of Oral Medicine, Louis Mourier Hospital, AP-HP, Colombes, France
| | - Elisabeth Dursun
- Faculty of Dental Surgery, Université de Paris, Montrouge, France.,Innovative Dental Materials and Interfaces Research Unit (URB2i), EA4462, Université de Paris, Université Paris 13, Montrouge, France.,Division of Paediatric Dentistry, Department of Oral Medicine, Henri Mondor Hospital, AP-HP, Créteil, France
| |
Collapse
|
9
|
Ahmad N, Ahmad FJ, Bedi S, Sharma S, Umar S, Ansari MA. A novel Nanoformulation Development of Eugenol and their treatment in inflammation and periodontitis. Saudi Pharm J 2019; 27:778-790. [PMID: 31516320 PMCID: PMC6733787 DOI: 10.1016/j.jsps.2019.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/27/2019] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To prepare a novel nanoemulsion- Carbopol® 934 gel for Eugenol, in order to prevent the periodontitis. MATERIAL AND METHODS Spontaneous emulsification method was used for the preparation of nanoemulsion in which it contain Eugenol (oil phase), Tween-80 (surfactant), and PEG (co-surfactant). To the development of best nanoemulsion, three-factor three-level central composite design was used in which %oil; %Smix and % water were optimized as independent variables. An optimized-nanoemulsion were converted to nanoemulsion-Carbopol® 934 gel. RESULTS 5.5% oil, 35.5% Smix and 59.0% water were optimized as independent and dependent variables. Finally dependent variables optimized as a particle size (nm), PDI and %transmittance were observed 79.92 ± 6.33 nm, 0.229 ± 0.019, and 98.88 ± 1.31% respectively. The values of final results for dependent variables like particle size (nm), PDI and % transmittance were evaluated as 79.92 ± 6.33 nm, 0.229 ± 0.019, and 98.88 ± 1.31%, respectively. TEM and SEM showed a spherical shape of developed nanoemulsion with refractive index (1.63 ± 0.038), zeta potential (-19.16 ± 0.11), pH (7.4 ± 0.06), viscosity (34.28 ± 6 cp), and drug content of 98.8 ± 0.09%. After that a final optimized EUG-NE-Gel was assessed on the basis of their pH measurement, drug content, syringeability, and mucoadhesion on the goat buccal mucosa. Optimized EUG-NE-Gel (Tween-80 and Carbopol® 934 used) showed the results, to improve the periodontal drug delivery of EUG in future. CONCLUSION EUG-NE-Gel showed a significant role in anti-inflammatory activity, analgesic, and anesthetic, antibacterial, and treatment of periodontal disease.
Collapse
Affiliation(s)
- Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Farhan Jalees Ahmad
- Nanomedicine Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sumit Bedi
- Division of Pediatric Dentistry, Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sonali Sharma
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sadiq Umar
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, IL, USA
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
10
|
Li N, Jiang L, Jin H, Wu Y, Liu Y, Huang W, Wei L, Zhou Q, Chen F, Gao Y, Zhu B, Zhang X. An enzyme-responsive membrane for antibiotic drug release and local periodontal treatment. Colloids Surf B Biointerfaces 2019; 183:110454. [PMID: 31473407 DOI: 10.1016/j.colsurfb.2019.110454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Periodontitis is a chronic, destructive inflammatory disease that injures tooth- supporting tissues, eventually leading to tooth loss. Complete eradication of periodontal pathogenic microorganisms is fundamental to allow periodontal healing and commonly precedes periodontal tissue regeneration. To address this challenge, we report a strategy for developing an enzyme-mediated periodontal membrane for targeted antibiotic delivery into infectious periodontal pockets; the unique components of the membrane will also benefit periodontal alveolar bone repair. In this approach, a chitosan membrane containing polyphosphoester and minocycline hydrochloride (PPEM) was prepared. Physical, morphological, and ultrastructural analyses were carried out in order to assess cellular compatibility, drug release and antibacterial activity in vitro. Additionally, the functionality of the PPEM membrane was evaluated in vivo with a periodontal defect model in rats. The results confirm that the PPEM membrane exhibits good physical properties with excellent antibacterial activity and successfully promotes periodontal tissue repair, making it promising for periodontal treatment.
Collapse
Affiliation(s)
- Ning Li
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China; Department of Stomatology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Liting Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China; Department of Stomatology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Hua Jin
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Wu
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongjia Liu
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Huang
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Wei
- Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 200025, Shanghai, China
| | - Qi Zhou
- Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 200025, Shanghai, China
| | - Feng Chen
- Department of Orthopaedics, Shanghai Fengxian Central Hospital, South Campus of Shanghai Sixth People's Hospital, Shanghai Jiaotong University, 201499, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Bangshang Zhu
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xiuyin Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China.
| |
Collapse
|
11
|
Mester A, Ciobanu L, Taulescu M, Apostu D, Lucaciu O, Filip GA, Feldrihan V, Licarete E, Ilea A, Piciu A, Oltean‐Dan D, Scurtu I, Berce C, Campian RS. Periodontal disease may induce liver fibrosis in an experimental study on Wistar rats. J Periodontol 2019; 90:911-919. [DOI: 10.1002/jper.18-0585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/05/2018] [Accepted: 12/31/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Alexandru Mester
- Department of Oral Rehabilitation, Oral Health and Dental Office ManagementUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Lidia Ciobanu
- Department of Gastroenterology and HepatologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Marian Taulescu
- Department of PathologyUniversity of Agricultural Sciences and Veterinary Medicine Cluj‐Napoca Romania
| | - Dragos Apostu
- Department of Orthopedics and TraumatologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Ondine Lucaciu
- Department of Oral Rehabilitation, Oral Health and Dental Office ManagementUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Gabriela Adriana Filip
- Department of PhysiologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Vasile Feldrihan
- Department of Allergology and ImmunologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Emilia Licarete
- Molecular Biology Centre, Institute for Interdisciplinary Research in Bio‐Nano‐SciencesBabes‐Bolyai University Cluj‐Napoca Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Oral Health and Dental Office ManagementUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Andra Piciu
- Department of Medical OncologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Daniel Oltean‐Dan
- Department of Orthopedics and TraumatologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Iuliu Scurtu
- Department of Internal MedicineUniversity of Agricultural Sciences and Veterinary Medicine Cluj‐Napoca Romania
| | - Cristian Berce
- Animal FacilityUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - Radu Septimiu Campian
- Department of Oral Rehabilitation, Oral Health and Dental Office ManagementUniversity of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| |
Collapse
|
12
|
Yang Z, Liang X, Jiang X, Guo J, Tao Y, Wang S, Cao Y, Gui S. Development and Evaluation of Minocycline Hydrochloride-Loaded In Situ Cubic Liquid Crystal for Intra-Periodontal Pocket Administration. Molecules 2018; 23:molecules23092275. [PMID: 30200615 PMCID: PMC6225298 DOI: 10.3390/molecules23092275] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/02/2018] [Accepted: 09/05/2018] [Indexed: 11/16/2022] Open
Abstract
In the present study, an injectable in situ liquid crystal formulation was developed for local delivery of minocycline hydrochloride (MH) for chronic periodontitis treatment. The physicochemical properties, phase structures, in vitro drug release and pharmacodynamics of in situ liquid crystals were investigated. The optimal formulation (phytantriol (PT)/propylene glycol (PG)/water, 63/27/10, w/w/w) loaded with 20 mg/g MH was proved to be injectable. The precursor formulation can form a cubic phase gel in excess water in 6.97 ± 0.10 s. The results of in vitro drug release suggested the MH presented a sustained release for 4 days. Liquid crystal precursor formulation significantly reduced gingival index, probing depth and alveolar bone loss compared to the model group (p < 0.01). Besides, the pathological characteristics of model rats were improved. The results suggested that MH-loaded in situ cubic liquid crystal possessed of sustained release ability and periodontal clinical symptoms improvement. The developed in situ cubic liquid crystal may be a potentially carrier in the local delivery of MH for periodontal diseases.
Collapse
Affiliation(s)
- Zhuanzhuan Yang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Xin Liang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Xiaojing Jiang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Jian Guo
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yaotian Tao
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Shengmei Wang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yingji Cao
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
13
|
Aithal GC, Nayak UY, Mehta C, Narayan R, Gopalkrishna P, Pandiyan S, Garg S. Localized In Situ Nanoemulgel Drug Delivery System of Quercetin for Periodontitis: Development and Computational Simulations. Molecules 2018; 23:E1363. [PMID: 29882751 PMCID: PMC6099597 DOI: 10.3390/molecules23061363] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/31/2018] [Accepted: 06/03/2018] [Indexed: 11/17/2022] Open
Abstract
This study was aimed at formulating a bioabsorbable, controlled-release, nanoemulgel of Quercetin, a potent antimicrobial and anti-inflammatory agent for the treatment of periodontitis that could improve its solubility and bioavailability. Screening of components was carried out based on the solubility studies. Nanoemulsion containing cinnamon oil as the oil phase, tween 80 and Carbitol® as the surfactant-cosurfactant mixture (Smix) and water as the aqueous phase containing 125 µg/200 µL of Quercetin was prepared by using spontaneous emulsification method. Nanoemulgel was prepared using 23% w/v poloxamer 407 as gel base. Comprehensive evaluation of the formulated nanoemulgel was carried out, and the optimized formulation was studied for drug release using Franz vertical diffusion cells. The formulated nanoemulgelexhibited a remarkable release of 92.4% of Quercetin at the end of 6 h, as compared to that of pure Quercetin-loaded gel (<3% release). The viscosity of the prepared nanoemulgel was found to be 30,647 ± 0.32 cPs at 37 °C. Also, molecular dynamics (MD) simulation was utilized to understand the gelation process and role of each component in the formulation. The present study revealed that the developed nanoemulgel of Quercetin could be a potential delivery system for clinical testing in periodontitis.
Collapse
Affiliation(s)
- Gururaj C Aithal
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| | - Chetan Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| | - Reema Narayan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| | - Pratibha Gopalkrishna
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| | | | - Sanjay Garg
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
14
|
Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A, Molugulu N, Kesharwani P. Recent Update on Nanoemulgel as Topical Drug Delivery System. J Pharm Sci 2017; 106:1736-1751. [DOI: 10.1016/j.xphs.2017.03.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/11/2017] [Accepted: 03/30/2017] [Indexed: 12/22/2022]
|
15
|
Yu X, Gong Z, Lin Q, Wang W, Liu S, Li S. Denervation effectively aggravates rat experimental periodontitis. J Periodontal Res 2017. [PMID: 28621056 DOI: 10.1111/jre.12472] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- X. Yu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Department of Periodontology; School and Hospital of Stomatology; Shandong University; Jinan Shandong China
- Department of Endodontics; Jinan Stomatological Hospital; Jinan Shandong China
| | - Z. Gong
- Department of Endodontics; Jinan Stomatological Hospital; Jinan Shandong China
| | - Q. Lin
- Department of Endodontics; Jinan Stomatological Hospital; Jinan Shandong China
| | - W. Wang
- Department of Endodontics; Jinan Stomatological Hospital; Jinan Shandong China
| | - S. Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Department of Periodontology; School and Hospital of Stomatology; Shandong University; Jinan Shandong China
| | - S. Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Department of Periodontology; School and Hospital of Stomatology; Shandong University; Jinan Shandong China
| |
Collapse
|