1
|
Budiman A, Anastasya G, Handini AL, Lestari IN, Subra L, Aulifa DL. Characterization of Drug with Good Glass-Forming Ability Loaded Mesoporous Silica Nanoparticles and Its Impact Toward in vitro and in vivo Studies. Int J Nanomedicine 2024; 19:2199-2225. [PMID: 38465205 PMCID: PMC10924831 DOI: 10.2147/ijn.s453873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Solid oral dosage forms are mostly preferred in pharmaceutical formulation development due to patient convenience, ease of product handling, high throughput, low manufacturing costs, with good physical and chemical stability. However, 70% of drug candidates have poor water solubility leading to compromised bioavailability. This phenomenon occurs because drug molecules are often absorbed after dissolving in gastrointestinal fluid. To address this limitation, delivery systems designed to improve the pharmacokinetics of drug molecules are needed to allow controlled release and target-specific delivery. Among various strategies, amorphous formulations show significantly high potential, particularly for molecules with solubility-limited dissolution rates. The ease of drug molecules to amorphized is known as their glass-forming ability (GFA). Specifically, drug molecules categorized into class III based on the Taylor classification have a low recrystallization tendency and high GFA after cooling, with substantial "glass stability" when heated. In the last decades, the application of mesoporous silica nanoparticles (MSNs) as drug delivery systems (DDS) has gained significant attention in various investigations and the pharmaceutical industry. This is attributed to the unique physicochemical properties of MSNs, including high loading capacity, recrystallization inhibition, excellent biocompatibility, and easy functionalization. Therefore, this study aimed to discuss the current state of good glass former drug loaded mesoporous silica and shows its impact on the pharmaceutical properties including dissolution and physical stability, along with in vivo study. The results show the importance of determining whether mesoporous structures are needed in amorphous formulations to improve the pharmaceutical properties of drug with a favorable GFA.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Gracia Anastasya
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Annisa Luthfiyah Handini
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Ira Novianty Lestari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Laila Subra
- Department of Pharmacy, Universiti Geomatika Malaysia, Kuala Lumpur, Malaysia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
2
|
Joyce RL, Tibbs GR, David Warren J, Costa CJ, Aromolaran K, Lea Sanford R, Andersen OS, Li Z, Zhang G, Willis DE, Goldstein PA. Probucol is anti-hyperalgesic in a mouse peripheral nerve injury model of neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100141. [PMID: 38099280 PMCID: PMC10719523 DOI: 10.1016/j.ynpai.2023.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 12/17/2023]
Abstract
2,6-di-tert-butylphenol (2,6-DTBP) ameliorates mechanical allodynia and thermal hyperalgesia produced by partial sciatic nerve ligation in mice, and selectively inhibits HCN1 channel gating. We hypothesized that the clinically utilized non-anesthetic dimerized congener of 2,6-DTBP, probucol (2,6-di-tert-butyl-4-[2-(3,5-di-tert-butyl-4-hydroxyphenyl)sulfanylpropan-2-ylsulfanyl]phenol), would relieve the neuropathic phenotype that results from peripheral nerve damage, and that the anti-hyperalgesic efficacy in vivo would correlate with HCN1 channel inhibition in vitro. A single oral dose of probucol (800 mg/kg) relieved mechanical allodynia and thermal hyperalgesia in a mouse spared-nerve injury neuropathic pain model. While the low aqueous solubility of probucol precluded assessment of its possible interaction with HCN1 channels, our results, in conjunction with recent data demonstrating that probucol reduces lipopolysaccharide-induced mechanical allodynia and thermal hyperalgesia, support the testing/development of probucol as a non-opioid, oral antihyperalgesic albeit one of unknown mechanistic action.
Collapse
Affiliation(s)
- Rebecca L. Joyce
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Gareth R. Tibbs
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - J. David Warren
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | | | - Kelly Aromolaran
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - R. Lea Sanford
- Dept. of Physiology & Biophysics, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Olaf S. Andersen
- Dept. of Physiology & Biophysics, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Zhucui Li
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | - Guoan Zhang
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | - Dianna E. Willis
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Peter A. Goldstein
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
- Dept. of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Liang X, Li H, Li X, Tian X, Zhang A, Luo Q, Duan J, Chen Y, Pang L, Li C, Liang XJ, Zeng Y, Yang J. Highly sensitive H 2O 2-scavenging nano-bionic system for precise treatment of atherosclerosis. Acta Pharm Sin B 2023; 13:372-389. [PMID: 36815039 PMCID: PMC9939301 DOI: 10.1016/j.apsb.2022.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
In atherosclerosis, chronic inflammatory processes in local diseased areas may lead to the accumulation of reactive oxygen species (ROS). In this study, we devised a highly sensitive H2O2-scavenging nano-bionic system loaded with probucol (RPP-PU), to treat atherosclerosis more effectively. The RPP material had high sensitivity to H2O2, and the response sensitivity could be reduced from 40 to 10 μmol/L which was close to the lowest concentration of H2O2 levels of the pathological environment. RPP-PU delayed the release and prolonged the duration of PU in vivo. In Apolipoprotein E deficient (ApoE‒/‒) mice, RPP-PU effectively eliminated pathological ROS, reduced the level of lipids and related metabolic enzymes, and significantly decreased the area of vascular plaques and fibers. Our study demonstrated that the H2O2-scavenging nano-bionic system could scavenge the abundant ROS in the atherosclerosis lesion, thereby reducing the oxidative stress for treating atherosclerosis and thus achieve the therapeutic goals with atherosclerosis more desirably.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xuanling Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China,Medical College of Qinghai University, Xining 810016, China
| | - Xinxin Tian
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Aiai Zhang
- The First Affiliated Hospital of Hebei North University, Zhangjiakou 075061, China
| | - Qingzhi Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Jianwei Duan
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Youlu Chen
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Liyun Pang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yong Zeng
- Beijing Anzhen Hospital of Capital Medical University, Beijing 100029, China,Corresponding authors.
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China,Corresponding authors.
| |
Collapse
|
4
|
Yoshida T, Kojima H, Sako K, Kondo H. Drug delivery to the intestinal lymph by oral formulations. Pharm Dev Technol 2022; 27:175-189. [PMID: 35037843 DOI: 10.1080/10837450.2022.2030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Oral drug delivery systems (DDS) targeting lymphocytes in intestinal lymphatic vessels, ducts, and nodes are useful for treating diverse diseases. The intestinal lymph harbors numerous lymphocyte subsets, and DDS containing lipids such as triglycerides and fatty acids can deliver drugs to the lymph through the chylomicron pathway. DDS are efficient, thus allowing the administration of reduced drug doses, which mitigate systemic adverse effects. Here we review orally administered lipid formulations comprising oil solutions, suspensions, micro/nanoemulsions, self-micro/nano emulsifying DDS, liposomes, micelles, solid lipid nanoparticles, and nanostructured lipid carriers for targeting drugs to the lymph. We first describe the structures of lymphatic vessels and lymph nodes and the oral absorption of lipids and drugs into the intestinal lymph. We next summarize the effects of the properties and amounts of lipids and drugs delivered into the lymph and lymphocytes, as well as their effects on drug delivery ratios of lymph to blood. Finally, we describe lymphatic DDS containing saquinavir, tacrolimus, and methotrexate, and their potency that reduce drug concentrations in blood, which are associated with systemic adverse effects.
Collapse
Affiliation(s)
- Takayuki Yoshida
- Drug Delivery, Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., Yaizu, Japan
| | - Hiroyuki Kojima
- Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., Yaizu, Japan
| | - Kazuhiro Sako
- Corporate Advocacy, Astellas Pharma Inc., 2-5-1, Nihonbashi-honcho, Chuo-ku, Tokyo, 103-0023, Japan
| | - Hiromu Kondo
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
5
|
Pan Y, Bai J, Shen F, Sun L, He Q, Su B. Glaucocalyxin B induces apoptosis and autophagy in human cervical cancer cells. Mol Med Rep 2016; 14:1751-5. [PMID: 27356884 DOI: 10.3892/mmr.2016.5450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/03/2016] [Indexed: 11/05/2022] Open
Abstract
Glaucocalyxin (Gln), an ent‑kaurane diterpenoid isolated from the Chinese traditional medicine, Rabdosia japonica, represents a novel class of anticancer drugs. GlnA is one of the three major forms of Gln and has demonstrated potent anticancer effects in a variety of cancer types. GlnB has only one structural difference from GlnA, an acetylated hydroxyl group at C14. This acetyl group results in high liposolubility and may enhance the antitumor activity of ent‑kaurane diterpenoid GlnB. However, few studies have reported the role of GlnB in cancer. The present study investigated the effect of GlnB in cervical cancer proliferation and cell death. Treatment with GlnB inhibits the proliferation of HeLa and SiHa cervical cancer cell lines in a dose‑dependent manner, as assessed by 3‑(4,5‑dimethylthiazol-2‑yl)-2,5 diphenyl tetrazolium bromide assays. In addition, GlnB increases the apoptotic cell population of HeLa and SiHa cells, as determined by fluorescence‑activated cell sorting analysis and enhanced poly (ADP‑ribose) polymerase 1 cleavage by western blotting. GlnB also induces increased light chain 3 II/I protein cleavage in both cells, indicating the induction of autophagy. Furthermore, GlnB treatment increased the expression of phosphatase and tensin homolog and decreased the expression of phosphorylated‑protein kinase B (Akt) in HeLa and SiHa cells, as assessed by western blotting. Taken together, the present results demonstrated that GlnB inhibited the proliferation of human cervical cancer cells in vitro through the induction of apoptosis and autophagy, which may be mediated by the phosphatidylinositol‑4,5‑bisphosphate 3‑kinase/Akt signaling pathway.
Collapse
Affiliation(s)
- Ying Pan
- Xinxiang Key Lab of Translational Cancer Research, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jieyu Bai
- Xinxiang Key Lab of Translational Cancer Research, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Fangfang Shen
- Xinxiang Key Lab of Translational Cancer Research, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Li Sun
- Xinxiang Key Lab of Translational Cancer Research, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Quanzhong He
- Xinxiang Key Lab of Translational Cancer Research, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Bing Su
- Xinxiang Key Lab of Translational Cancer Research, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
6
|
Chen C, Wang L, Cao F, Miao X, Chen T, Chang Q, Zheng Y. Formulation of 20(S)-protopanaxadiol nanocrystals to improve oral bioavailability and brain delivery. Int J Pharm 2015; 497:239-47. [PMID: 26680316 DOI: 10.1016/j.ijpharm.2015.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/26/2015] [Accepted: 12/06/2015] [Indexed: 12/29/2022]
Abstract
The aim of this study was to fabricate 20(S)-protopanaxadiol (PPD) nanocrystals to improve PPD's oral bioavailability and brain delivery. PPD nanocrystals were fabricated using an anti-solvent precipitation approach where d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was optimized as the stabilizer. The fabricated nanocrystals were nearly spherical with a particle size and drug loading of 90.44 ± 1.45 nm and 76.92%, respectively. They are in the crystalline state and stable at 4°C for at least 1 month. More than 90% of the PPD could be rapidly released from the nanocrystals, which was much faster than the physical mixture and PPD powder. PPD nanocrystals demonstrated comparable permeability to solution at 2.52 ± 0.44×10(-5)cm/s on MDCK monolayers. After oral administration of PPD nanocrystals to rats, PPD was absorbed quickly into the plasma and brain with significantly higher Cmax and AUC0-t compared to those of the physical mixture. However, no brain targeting was observed, as the ratios of the plasma AUC0-t to brain AUC0-t for the two groups were similar. In summary, PPD nanocrystals are a potential oral delivery system to improve PPD's poor bioavailability and its delivery into the brain for neurodegenerative disease and intracranial tumor therapies in the future.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Lisha Wang
- Chinese Academy of Medical Sciences, Peking Union Medical College Institute of Medicinal Plant Development, China
| | - Fangrui Cao
- Chinese Academy of Medical Sciences, Peking Union Medical College Institute of Medicinal Plant Development, China
| | - Xiaoqing Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Tongkai Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Qi Chang
- Chinese Academy of Medical Sciences, Peking Union Medical College Institute of Medicinal Plant Development, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|