1
|
Kaur N, Gautam P, Nanda D, Meena AS, Shanavas A, Prasad R. Lipid Nanoparticles for Brain Tumor Theranostics: Challenges and Status. Bioconjug Chem 2024; 35:1283-1299. [PMID: 39207940 DOI: 10.1021/acs.bioconjchem.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lipid nanoparticles have been recognized as a powerful weapon for delivering various imaging and therapeutic agents to the localized solid tumors, especially brain tumors individually or in combination. Promisingly, lipid-based nanosystems have been considered as safe delivery systems which are even approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA). One recent spotlight of lipid nanoparticles as COVID-19 mRNA vaccines where lipid nanoparticles play an important role in effectively protecting and delivering mRNA to the desired cells. As of now, successive progress in lipid-based nanocarriers, viz., nanoliposomes, solid lipid nanoparticles, ionizable lipid nanostructures, etc., with better biochemical and biophysical stabilities, has been noticed and reported. Moreover, lipid nanostructures have been considered as versatile therapeutics platforms for a variety of diseases due to their biocompatibility, ability to protect and deliver therapeutics to the localized site, and better reproducibility and reliability. However, lipid nanoparticles still face morphological and biochemical changes upon their in vivo administration. These changes alter the specific biological and pathological response of lipid nanoparticles during their personalized brain tumor theranostics. Second, lipid nanomedicine still faces major challenges of zero premature leakage of loaded cargo, long-term colloidal stability, and off targeting. Herein, various lipid-based nanomedicines for brain tumor imaging and therapeutics "theranostics" have been reviewed and summarized considering major aspects of preclinical and clinical studies. On the other hand, engineering and biological challenges of lipid theranostics systems with relevant advantages and guidelines for clinical practice for different brain tumors have also been discussed. This review provides in-depth knowledge of lipid nanoparticle-based theranostics agents for brain tumor imaging and therapeutics.
Collapse
Affiliation(s)
- Navneet Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Priyadarshi Gautam
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Dibyani Nanda
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Avtar Singh Meena
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
2
|
Hameed H, Faheem S, Younas K, Jamshaid M, Ereej N, Hameed A, Munir R, Khokhar R. A comprehensive review on lipid-based nanoparticles via nose to brain targeting as a novel approach. J Microencapsul 2024:1-34. [PMID: 39286884 DOI: 10.1080/02652048.2024.2404414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The central nervous system (CNS) has been a chief concern for millions of people worldwide, and many therapeutic medications are unable to penetrate the blood-brain barrier. Advancements in nanotechnology have enabled safe, effective, and precise delivery of medications towards specific brain regions by utilising a nose-to-brain targeting route. This method reduces adverse effects, increases medication bioavailability, and facilitates mucociliary clearance while promoting accumulation of drug in the targeted brain region. Recent developments in lipid-based nanoparticles, for instance solid lipid nanoparticles (SLNs), liposomes, nanoemulsions, and nano-structured lipid carriers have been explored. SLNs are currently the most promising drug carrier system because of their capability of transporting drugs across the blood-brain barrier at the intended brain site. This approach offers higher efficacy, controlled drug delivery, target specificity, longer circulation time, and a reduction in toxicity through a biomimetic mechanism.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Komel Younas
- Faculty of Pharmacy, University Paris Saclay, Orsay, France
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Rabia Munir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rabia Khokhar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
3
|
Mendes M, Nunes S, Cova T, Branco F, Dyrks M, Koksch B, Vale N, Sousa J, Pais A, Vitorino C. Charge-switchable cell-penetrating peptides for rerouting nanoparticles to glioblastoma treatment. Colloids Surf B Biointerfaces 2024; 241:113983. [PMID: 38850741 DOI: 10.1016/j.colsurfb.2024.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Glioblastoma (GB) is one of the most lethal types of neoplasms with unique anatomic, physiologic, and pathologic features that usually persist after exposure to standard therapeutic modalities. It is biologically aggressive, and the existence of the blood-brain barrier (BBB) limits the efficacy of standard therapies. In this work, we hypothesize the potential of surface-functionalized ultra-small nanostructured lipid carriers (usNLCs) with charge-switchable cell-penetrating peptides (CPPs) to overcome this biological barrier and improve targeted delivery to brain tumor tissues. The big question is: what is the potential of CPPs in directing nanoparticles toward brain tumor tissue? To answer this question, the usNLCs were functionalized with distinct biomolecules [five CPPs, c(RGDfK) and transferrin, Tf] through electrostatic interaction and its ability as a targeting approach to BBB (HBMEC) and glioma cells (U87 cells) evaluated in terms of physicochemical properties, cellular uptake, permeability in a 2D-BBB model, and tumor growth inhibition. Monte Carlo simulations elucidated CPP adsorption patterns. The permeability studies revealed that targeted usNLCs, especially usNLCsTf and usNLCsCPP4, exhibited an increased permeability coefficient compared to the non-targeted usNLCs. Functionalized usNLCs evidenced enhanced uptake in BBB cells, with smaller CPPs showing higher internalization (CPP1 and CPP2). Similarly, functionalized usNLCs exhibited more significant cytotoxicity in glioma cells, with specific CPPs promoting favorable internalization. Analysis of the endocytic pathway indicated that usNLCsCPPs were mainly internalized by direct translocation and caveolae-mediated endocytosis. Optimal usNLCs with dual targeting capabilities to both BBB and GB cells provide a promising therapeutic strategy for GB.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra 3004-535, Portugal
| | - Sandra Nunes
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra 3004-535, Portugal
| | - Tânia Cova
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra 3004-535, Portugal
| | - Francisco Branco
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - Michael Dyrks
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 20, Berlin 14195, Germany
| | - Beate Koksch
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 20, Berlin 14195, Germany
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; CINTESIS@RISE, Faculty of Medicine, University of Porto (FFUP), Alameda Professor Hernâni Monteiro, Porto 4200-319, Portugal; Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, Porto 4200-450, Portugal
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra 3004-535, Portugal
| | - Alberto Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra 3004-535, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra 3004-535, Portugal.
| |
Collapse
|
4
|
Branco F, Cunha J, Mendes M, Vitorino C, Sousa JJ. Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma. ACS NANO 2024; 18:16359-16394. [PMID: 38861272 PMCID: PMC11223498 DOI: 10.1021/acsnano.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma (GBM) remains the epitome of aggressiveness and lethality in the spectrum of brain tumors, primarily due to the blood-brain barrier (BBB) that hinders effective treatment delivery, tumor heterogeneity, and the presence of treatment-resistant stem cells that contribute to tumor recurrence. Nanoparticles (NPs) have been used to overcome these obstacles by attaching targeting ligands to enhance therapeutic efficacy. Among these ligands, peptides stand out due to their ease of synthesis and high selectivity. This article aims to review single and multiligand strategies critically. In addition, it highlights other strategies that integrate the effects of external stimuli, biomimetic approaches, and chemical approaches as nanocatalytic medicine, revealing their significant potential in treating GBM with peptide-functionalized NPs. Alternative routes of parenteral administration, specifically nose-to-brain delivery and local treatment within the resected tumor cavity, are also discussed. Finally, an overview of the significant obstacles and potential strategies to overcome them are discussed to provide a perspective on this promising field of GBM therapy.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Cunha
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Mendes
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - João J. Sousa
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
5
|
Pashirova TN, Nemtarev AV, Buzyurova DN, Shaihutdinova ZM, Dimukhametov MN, Babaev VM, Voloshina AD, Mironov VF. Terpenes-Modified Lipid Nanosystems for Temozolomide, Improving Cytotoxicity against Glioblastoma Human Cancer Cells In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:55. [PMID: 38202510 PMCID: PMC10780480 DOI: 10.3390/nano14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Currently, increasing the efficiency of glioblastoma treatment is still an unsolved problem. In this study, a combination of promising approaches was proposed: (i) an application of nanotechnology approach to create a new terpene-modified lipid system (7% w/w), using soybean L-α-phosphatidylcholine, N-carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine for delivery of the chemotherapy drug, temozolomide (TMZ, 1 mg/mL); (ii) use of TMZ associated with natural compounds-terpenes (1% w/w) abietic acid and Abies sibirica Ledeb. resin (A. sibirica). Different concentrations and combinations of terpene-lipid systems were employed to treat human cancer cell lines T 98G (glioblastoma), M-Hela (carcinoma of the cervix) and human liver cell lines (Chang liver). The terpene-lipid systems appeared to be unilamellar and of spherical shape under transmission electron microscopy (TEM). The creation of a TMZ-loaded terpene-lipid nanosystem was about 100 nm in diameter with a negative surface charge found by dynamic light scattering. The 74% encapsulation efficiency allowed the release time of TMZ to be prolonged. The modification by terpenes of TMZ-loaded lipid nanoparticles improved by four times the cytotoxicity against human cancer T 98G cells and decreased the cytotoxicity against human normal liver cells. Terpene-modified delivery lipid systems are of potential interest as a combination therapy.
Collapse
Affiliation(s)
- Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Andrey V. Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Daina N. Buzyurova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Zukhra M. Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Mudaris N. Dimukhametov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Vasily M. Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Vladimir F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| |
Collapse
|
6
|
Gupta T, Sahoo RK, Singh H, Katke S, Chaurasiya A, Gupta U. Lipid-Based Nanocarriers in the Treatment of Glioblastoma Multiforme (GBM): Challenges and Opportunities. AAPS PharmSciTech 2023; 24:102. [PMID: 37041350 DOI: 10.1208/s12249-023-02555-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
Glioblastoma multiforme (also known as glioblastoma; GBM) is one of the most malignant types of brain tumors that occurs in the CNS. Treatment strategies for glioblastoma are majorly comprised of surgical resection, radiotherapy, and chemotherapy along with combination therapy. Treatment of GBM is itself a tedious task but the involved barriers in GBM are one of the main impediments to move one step closer to the treatment of GBM. Basically, two of the barriers are of utmost importance in this regard, namely blood brain barrier (BBB) and blood brain tumor barrier (BBTB). This review will address different challenges and barriers in the treatment of GBM along with their etiology. The role and recent progress of lipid-based nanocarriers like liposomes, solid lipid nanocarriers (SLNs), nanostructured lipid carriers (NLCs), lipoplexes, and lipid hybrid carriers in the effective management of GBM will be discussed in detail.
Collapse
Affiliation(s)
- Tanisha Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Rakesh K Sahoo
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Himani Singh
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Sumeet Katke
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India
| | - Akash Chaurasiya
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
7
|
Nicoleti LR, Di Filippo LD, Duarte JL, Luiz MT, Sábio RM, Chorilli M. Development, characterization and in vitro cytotoxicity of kaempferol-loaded nanostructured lipid carriers in glioblastoma multiforme cells. Colloids Surf B Biointerfaces 2023; 226:113309. [PMID: 37054466 DOI: 10.1016/j.colsurfb.2023.113309] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
Glioblastoma multiforme is the most common and most aggressive human brain cancer. GBM treatment is still a challenge because many drugs are not able to cross the blood-brain barrier, in addition to the increasing resistance to currently available chemotherapy. New therapeutic alternatives are emerging, and, in this context, we highlight kaempferol, a flavonoid with remarkable anti-tumor activity but with limited bioavailability due to its strong lipophilic property. A promising tool to improve the biopharmaceutical properties of molecules such as kaempferol is the use of drug-delivery nanosystems, such as nanostructured lipid carriers (NLC), which can facilitate the dispersion and delivery of highly lipophilic molecules. The present work aimed at the development and characterization of kaempferol-loaded NLC (K-NLC) and the evaluation of its biological properties using in vitro models. The K-NLC showed an average size of 120 nm, zeta potential of - 21 mV, and polydispersity index of 0.099. The K-NLC presented high kaempferol encapsulation efficiency (93%), a drug loading of 3.58%, and a sustained kaempferol release profile for up to 48 h. In addition to presenting a 7-fold increase in kaempferol cytotoxicity, its encapsulation in NLC promoted a cellular uptake of 75%, which corroborates with increased cytotoxicity in U-87MG cells, as observed. Together, these data reinforce the promising antineoplastic properties of kaempferol in addition to the key role of NLC as a platform for the efficient delivery of lipophilic drugs to neoplastic cells, which improved their uptake and therapeutic efficacy in glioblastoma multiforme cells.
Collapse
Affiliation(s)
- Luisa Ribeiro Nicoleti
- São Paulo State University "Júlio de Mesquita Filho", School of Pharmaceutical Sciences, Araraquara 14800903, São Paulo, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University "Júlio de Mesquita Filho", School of Pharmaceutical Sciences, Araraquara 14800903, São Paulo, Brazil.
| | - Jonatas Lobato Duarte
- São Paulo State University "Júlio de Mesquita Filho", School of Pharmaceutical Sciences, Araraquara 14800903, São Paulo, Brazil
| | - Marcela Tavares Luiz
- São Paulo State University "Júlio de Mesquita Filho", School of Pharmaceutical Sciences, Araraquara 14800903, São Paulo, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University "Júlio de Mesquita Filho", School of Pharmaceutical Sciences, Araraquara 14800903, São Paulo, Brazil
| | - Marlus Chorilli
- São Paulo State University "Júlio de Mesquita Filho", School of Pharmaceutical Sciences, Araraquara 14800903, São Paulo, Brazil
| |
Collapse
|
8
|
Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv Colloid Interface Sci 2023; 314:102871. [PMID: 36958181 DOI: 10.1016/j.cis.2023.102871] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized.
Collapse
Affiliation(s)
- Pablo Graván
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Aixa Aguilera-Garrido
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK.
| | | |
Collapse
|
9
|
Cossu J, Thoreau F, Boturyn D. Multimeric RGD-Based Strategies for Selective Drug Delivery to Tumor Tissues. Pharmaceutics 2023; 15:pharmaceutics15020525. [PMID: 36839846 PMCID: PMC9961187 DOI: 10.3390/pharmaceutics15020525] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
RGD peptides have received a lot of attention over the two last decades, in particular to improve tumor therapy through the targeting of the αVβ3 integrin receptor. This review focuses on the molecular design of multimeric RGD compounds, as well as the design of suitable linkers for drug delivery. Many examples of RGD-drug conjugates have been developed, and we show the importance of RGD constructs to enhance binding affinity to tumor cells, as well as their drug uptake. Further, we also highlight the use of RGD peptides as theranostic systems, promising tools offering dual modality, such as tumor diagnosis and therapy. In conclusion, we address the challenging issues, as well as ongoing and future development, in comparison with large molecules, such as monoclonal antibodies.
Collapse
Affiliation(s)
- Jordan Cossu
- University Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Fabien Thoreau
- University Poitiers, Inst Chim Milieux & Mat Poitiers IC2MP, UMR CNRS 7285, F-86073 Poitiers, France
| | - Didier Boturyn
- University Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
- Correspondence:
| |
Collapse
|
10
|
Lopes C, Cristóvão J, Silvério V, Lino PR, Fonte P. Microfluidic production of mRNA-loaded lipid nanoparticles for vaccine applications. Expert Opin Drug Deliv 2022; 19:1381-1395. [PMID: 36223174 DOI: 10.1080/17425247.2022.2135502] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION During past years, lipid nanoparticles (LNPs) have emerged as promising carriers for RNA delivery, with several clinical trials focusing on both infectious diseases and cancer. More recently, the success of messenger RNA (mRNA) vaccines for the treatment of severe diseases such as acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is partially justified by the development of LNPs encapsulating mRNA for efficient cytosolic delivery. AREAS COVERED This review examines the production and formulation of LNPs by using microfluidic devices, the status of mRNA-loaded LNPs therapeutics and explores spray drying process, as a promising dehydration process to enhance LNP stability and provide alternative administration routes. EXPERT OPINION Microfluidic techniques for preparation of LNPs based on organic solvent injection method promotes the generation of stable, uniform, and monodispersed nanoparticles enabling higher encapsulation efficiency. In particular, the application of microfluidics for the fabrication of mRNA-loaded LNPs is based on rapid mixing of small volumes of ethanol solution containing lipids and aqueous solution containing mRNA. Control of operating parameters and formulation has enabled the optimization of nanoparticle physicochemical characteristics and encapsulation efficiency.
Collapse
Affiliation(s)
- Carolina Lopes
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,Hovione Farmaciência S.A., R&D Analytical Development, Lumiar Campus, Building R,1649-038 Lisbon, Portugal.,Hovione Farmaciência S.A., R&D Inhalation and Advance Drug Delivery, Lumiar Campus, Building R, 1649-038 Lisbon, Portugal
| | - Joana Cristóvão
- Hovione Farmaciência S.A., R&D Inhalation and Advance Drug Delivery, Lumiar Campus, Building R, 1649-038 Lisbon, Portugal
| | - Vânia Silvério
- Institute of Systems and Computer Engineering for Microsystems and Nanotechnologies, INESC MN, 1000-029 Lisbon, Portugal.,Department of Physics, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Paulo Roque Lino
- Hovione Farmaciência S.A., R&D Inhalation and Advance Drug Delivery, Lumiar Campus, Building R, 1649-038 Lisbon, Portugal
| | - Pedro Fonte
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,Center of Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
11
|
Internalisation of RGD-Engineered Extracellular Vesicles by Glioblastoma Cells. BIOLOGY 2022; 11:biology11101483. [PMID: 36290387 PMCID: PMC9598886 DOI: 10.3390/biology11101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary Glioblastoma multiforme (GBM) is the most aggressive and malignant type of central nervous system (CNS) tumour. Although several treatment options are available, patients generally succumb within 14 months after diagnosis. With the rapid progression of exosome bioengineering technologies, novel therapy opportunities are emerging for GBM treatment. The surface of GBM cells is characterised by the overexpression of transmembrane receptor integrins, which are essential for cell interactions with several proteins in the extracellular matrix. Therefore, integrin-binding drug delivery vehicles have been proposed as a potential strategy for glioblastoma therapy. Small extracellular vesicles possess several attractive characteristics for drug delivery: small size, biocompatibility, ability to cross the blood–brain barrier and capacity to be loaded with exogenous materials. Current bioengineering technologies further increase extracellular vesicle capabilities by loading them with anticancer drugs and incorporating targeting ligands. This study explored the capacity of Arginylglycylaspartic acid (RGD, or Arginine–Glycine–Aspartate)-polypeptide-engineered extracellular vesicles to internalise and deliver loaded cargo in GBM cells. The results demonstrate that introducing the RGD ligand to extracellular vesicles could significantly increase their internalisation by GBM cells and hence improve drug delivery efficacy. Abstract Glioblastoma multiforme (GBM) is the most aggressive CNS tumour with no efficient treatment, partly due to the retention of anticancer drugs by the blood–brain barrier (BBB) and their insufficient concentration in tumour cells. Extracellular vesicles (EVs) are attractive drug carriers because of their biocompatibility and ability to cross the BBB. Additional efficiency can be achieved by adding GBM-cell-specific ligands. GBM cells overexpress integrins; thus, one of the most straightforward targeting strategies is to modify EVs with integrin-recognising molecules. This study investigated the therapeutic potential of genetically engineered EVs with elevated membrane levels of the integrin-binding peptide RGD (RGD-EVs) against GBM cells in vitro. For RGD-EV production, stable RGD-HEK 293FT cells were generated by using a pcDNA4/TO-Lamp2b-iRGD-HA expression vector and performing antibiotic-based selection. RGD-EVs were isolated from RGD-HEK 293FT-cell-conditioned medium and characterised by size (Zetasizer), specific markers (ELISA) and RGD expression (Western Blot). Internalisation by human GBM cells HROG36 and U87 MG and BJ-5ta human fibroblasts was assessed by fluorescent EV RNA labelling. The effect of doxorubicin-loaded RGD-EVs on GBM cells was evaluated by the metabolic PrestoBlue viability assay; functional GAPDH gene knockdown by RGD-EV-encapsulated siRNA was determined by RT-qPCR. RGD-EVs had 40% higher accumulation in GBM cells (but not in fibroblasts) and induced significantly stronger toxicity by loaded doxorubicin and GAPDH silencing by loaded siRNA compared to unmodified EVs. Thus, RGD modification substantially increases the specific delivery capacity of HEK 293FT-derived EVs to GBM cells.
Collapse
|
12
|
Jatyan R, Singh P, Sahel DK, Karthik YG, Mittal A, Chitkara D. Polymeric and small molecule-conjugates of temozolomide as improved therapeutic agents for glioblastoma multiforme. J Control Release 2022; 350:494-513. [PMID: 35985493 DOI: 10.1016/j.jconrel.2022.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/31/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022]
Abstract
Temozolomide (TMZ), an imidazotetrazine, is a second-generation DNA alkylating agent used as a first-line treatment of glioblastoma multiforme (GBM). It was approved by FDA in 2005 and declared a blockbuster drug in 2008. Although TMZ has shown 100% oral bioavailability and crosses the blood-brain barrier effectively, however it suffers from limitations such as a short half-life (∼1.8 h), rapid metabolism, and lesser accumulation in the brain (∼10-20%). Additionally, development of chemoresistance has been associated with its use. Since it is a potential chemotherapeutic agent with an unmet medical need, advanced delivery strategies have been explored to overcome the associated limitations of TMZ. Nanocarriers including liposomes, solid lipid nanoparticles (SLNs), nanostructure lipid carriers (NLCs), and polymeric nanoparticles have demonstrated their ability to improve its circulation time, stability, tissue-specific accumulation, sustained release, and cellular uptake. Because of the appreciable water solubility of TMZ (∼5 mg/mL), the physical loading of TMZ in these nanocarriers is always challenging. Alternatively, the conjugation approach, wherein TMZ has been conjugated to polymers or small molecules, has been explored with improved outcomes in vitro and in vivo. This review emphasized the practical evidence of the conjugation strategy to improve the therapeutic potential of TMZ in the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Reena Jatyan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Prabhjeet Singh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Deepak Kumar Sahel
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Y G Karthik
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India.
| |
Collapse
|
13
|
Duskey JT, Rinaldi A, Ottonelli I, Caraffi R, De Benedictis CA, Sauer AK, Tosi G, Vandelli MA, Ruozi B, Grabrucker AM. Glioblastoma Multiforme Selective Nanomedicines for Improved Anti-Cancer Treatments. Pharmaceutics 2022; 14:1450. [PMID: 35890345 PMCID: PMC9325049 DOI: 10.3390/pharmaceutics14071450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma Multiforme (GBM) is a devastating disease with a low survival rate and few efficacious treatment options. The fast growth, late diagnostics, and off-target toxicity of currently used drugs represent major barriers that need to be overcome to provide a viable cure. Nanomedicines (NMeds) offer a way to overcome these pitfalls by protecting and loading drugs, increasing blood half-life, and being targetable with specific ligands on their surface. In this study, the FDA-approved polymer poly (lactic-co-glycolic) acid was used to optimise NMeds that were surface modified with a series of potential GBM-specific ligands. The NMeds were fully characterised for their physical and chemical properties, and then in vitro testing was performed to evaluate cell uptake and GBM cell specificity. While all targeted NMeds showed improved uptake, only those decorated with the-cell surface vimentin antibody M08 showed specificity for GBM over healthy cells. Finally, the most promising targeted NMed candidate was loaded with the well-known chemotherapeutic, paclitaxel, to confirm targeting and therapeutic effects in C6 GBM cells. These results demonstrate the importance of using well-optimised NMeds targeted with novel ligands to advance delivery and pharmaceutical effects against diseased cells while minimising the risk for nearby healthy cells.
Collapse
Affiliation(s)
- Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Arianna Rinaldi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Caraffi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | | | - Ann Katrin Sauer
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.A.D.B.); (A.K.S.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Andreas Martin Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.A.D.B.); (A.K.S.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
14
|
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022; 86:805-833. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The treatment of central nervous system (CNS) malignancies, including brain cancers, is limited by a number of obstructions, including the blood-brain barrier (BBB), the heterogeneity and high invasiveness of tumors, the inaccessibility of tissues for early diagnosis and effective surgery, and anti-cancer drug resistance. Therapies employing nanomedicine have been shown to facilitate drug penetration across the BBB and maintain biodistribution and accumulation of therapeutic agents at the desired target site. The application of lipid-, polymer-, or metal-based nanocarriers represents an advanced drug delivery system for a growing group of anti-cancer chemicals. The nanocarrier surface is designed to contain an active ligand (cancer cell marker or antibody)-binding structure which can be modified to target specific cancer cells. Glioblastoma, ependymoma, neuroblastoma, medulloblastoma, and primary CNS lymphomas were recently targeted by easily absorbed nanocarriers. The metal- (such as transferrin drug-loaded systems), polymer- (nanocapsules and nanospheres), or lipid- (such as sulfatide-containing nanoliposomes)-based nano-vehicles were loaded with apoptosis- and/or ferroptosis-stimulating agents and demonstrated promising anti-cancer effects. This review aims to discuss effective nanomedicine approaches designed to overcome the current limitations in the therapy of brain cancers and age-dependent neurodegenerative disorders. To accent current obstacles for successful CNS-based cancer therapy, we discuss nanomedicine perspectives and limitations of nanodrug use associated with the specificity of nervous tissue characteristics and the effects nanocarriers have on cognition.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Olga A Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| |
Collapse
|
15
|
Dutra JAP, Luiz MT, Tavares Junior AG, Di Filippo LD, Carvalho SG, Chorilli M. Temozolomide: an Overview of Biological Properties, Drug Delivery Nanosystems, and Analytical Methods. Curr Pharm Des 2022; 28:2073-2088. [PMID: 35658888 DOI: 10.2174/1381612828666220603152918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
Temozolomide (TMZ) is an imidazotetrazine prodrug used to treat glioblastoma multiforme. Its physicochemical prop-erties and small size confer the ability to cross the blood-brain barrier. The antitumor activity depends on pH-dependent hydrolysis of the methyldiazonium cation, which is capable of methylating purine bases (O6-guanine; N7-guanine, and N3-adenine) and causing DNA damage and cell death. TMZ is more stable in acidic media (pH ≤ 5.0) than in basic media (pH ≥ 7.0) due to the protonated form that minimizes the catalytic process. Because of this, TMZ has high oral bioavailability, but it has a half-life of 1.8 h and low brain distribution (17.8%), requiring a repeated dos-ing regimen that limits its efficacy and increases adverse events. Drug delivery Nanosystems (DDNs) improve the phys-icochemical properties of TMZ and may provide controlled and targeted delivery. Therefore, DDNs can increase the efficacy and safety of TMZ. In this context, to ensure the efficiency of DDNs, analytical methods are used to evaluate TMZ pharmacokinetic parameters, encapsulation efficiency, and the release profile of DDNs. Among the methods, high-performance liquid chromatography is the most used due to its detection sensitivity in complex matrices such as tissues and plasma. Micellar electrokinetic chromatography features fast analysis and no sample pretreatment. Spec-trophotometric methods are still used to determine encapsulation efficiency due to their low cost, despite their low sen-sitivity. This review summarizes the physicochemical and pharmacological properties of free TMZ and TMZ-loaded DDNs. In addition, this review addresses the main analytical methods employed to characterize TMZ in different ma-trices.
Collapse
Affiliation(s)
| | - Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Bra-zil
| | | | | | - Suzana Gonçalves Carvalho
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| |
Collapse
|
16
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
17
|
Petrenko D, Chubarev V, Syzrantsev N, Ismail N, Merkulov V, Sologova S, Grigorevskikh E, Smolyarchuk E, Alyautdin R. Temozolomide Efficacy and Metabolism: The Implicit Relevance of Nanoscale Delivery Systems. Molecules 2022; 27:3507. [PMID: 35684445 PMCID: PMC9181940 DOI: 10.3390/molecules27113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
The most common primary malignant brain tumors in adults are gliomas. Glioblastoma is the most prevalent and aggressive tumor subtype of glioma. Current standards for the treatment of glioblastoma include a combination of surgical, radiation, and drug therapy methods. The drug therapy currently includes temozolomide (TMZ), an alkylating agent, and bevacizumab, a recombinant monoclonal IgG1 antibody that selectively binds to and inhibits the biological activity of vascular endothelial growth factor. Supplementation of glioblastoma radiation therapy with TMZ increased patient survival from 12.1 to 14.6 months. The specificity of TMZ effect on brain tumors is largely determined by special aspects of its pharmacokinetics. TMZ is an orally bioavailable prodrug, which is well absorbed from the gastrointestinal tract and is converted to its active alkylating metabolite 5-(3-methyl triazen-1-yl)imidazole-4-carbozamide (MTIC) spontaneously in physiological condition that does not require hepatic involvement. MTIC produced in the plasma is not able to cross the BBB and is formed locally in the brain. A promising way to increase the effectiveness of TMZ chemotherapy for glioblastoma is to prevent its hydrolysis in peripheral tissues and thereby increase the drug concentration in the brain that nanoscale delivery systems can provide. The review discusses possible ways to increase the efficacy of TMZ using nanocarriers.
Collapse
Affiliation(s)
- Daria Petrenko
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Vladimir Chubarev
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Nikita Syzrantsev
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Nafeeza Ismail
- Department of Pharmacology, University Technology MARA, Kuala Lumpur 50450, Malaysia;
| | - Vadim Merkulov
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
- Scientific Centre for Expert Evaluation of Medicinal Products, 127051 Moscow, Russia
| | - Susanna Sologova
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Ekaterina Grigorevskikh
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Elena Smolyarchuk
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Renad Alyautdin
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
- Scientific Centre for Expert Evaluation of Medicinal Products, 127051 Moscow, Russia
| |
Collapse
|
18
|
Xu Y, Fourniols T, Labrak Y, Préat V, Beloqui A, des Rieux A. Surface Modification of Lipid-Based Nanoparticles. ACS NANO 2022; 16:7168-7196. [PMID: 35446546 DOI: 10.1021/acsnano.2c02347] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is a growing interest in the development of lipid-based nanocarriers for multiple purposes, including the recent increase of these nanocarriers as vaccine components during the COVID-19 pandemic. The number of studies that involve the surface modification of nanocarriers to improve their performance (increase the delivery of a therapeutic to its target site with less off-site accumulation) is enormous. The present review aims to provide an overview of various methods associated with lipid nanoparticle grafting, including techniques used to separate grafted nanoparticles from unbound ligands or to characterize grafted nanoparticles. We also provide a critical perspective on the usefulness and true impact of these modifications on overcoming different biological barriers, with our prediction on what to expect in the near future in this field.
Collapse
Affiliation(s)
- Yining Xu
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| | - Thibaut Fourniols
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| | - Yasmine Labrak
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 72 B1.72.01, 1200 Brussels, Belgium
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| |
Collapse
|
19
|
Witika BA, Poka MS, Demana PH, Matafwali SK, Melamane S, Malungelo Khamanga SM, Makoni PA. Lipid-Based Nanocarriers for Neurological Disorders: A Review of the State-of-the-Art and Therapeutic Success to Date. Pharmaceutics 2022; 14:836. [PMID: 35456669 PMCID: PMC9031624 DOI: 10.3390/pharmaceutics14040836] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Neurodegenerative disorders including Alzheimer's, Parkinson's, and dementia are chronic and advanced diseases that are associated with loss of neurons and other related pathologies. Furthermore, these disorders involve structural and functional defections of the blood-brain barrier (BBB). Consequently, advances in medicines and therapeutics have led to a better appreciation of various pathways associated with the development of neurodegenerative disorders, thus focusing on drug discovery and research for targeted drug therapy to the central nervous system (CNS). Although the BBB functions as a shield to prevent toxins in the blood from reaching the brain, drug delivery to the CNS is hindered by its presence. Owing to this, various formulation approaches, including the use of lipid-based nanocarriers, have been proposed to address shortcomings related to BBB permeation in CNS-targeted therapy, thus showing the potential of these carriers for translation into clinical use. Nevertheless, to date, none of these nanocarriers has been granted market authorization following the successful completion of all stages of clinical trials. While the aforementioned benefits of using lipid-based carriers underscores the need to fast-track their translational development into clinical practice, technological advances need to be initiated to achieve appropriate capacity for scale-up and the production of affordable dosage forms.
Collapse
Affiliation(s)
- Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Madan Sai Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Patrick Hulisani Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| | - Siyabonga Melamane
- Stutterheim Hospital, No.1 Hospital Street, Stutterheim 4930, South Africa;
| | | | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
20
|
Garg J, Pathania K, Sah SP, Pawar SV. Nanostructured lipid carriers: a promising drug carrier for targeting brain tumours. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00414-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
In recent years, the field of nanotechnology and nanomedicine has transformed the pharmaceutical industry with the development of novel drug delivery systems that overcome the shortcomings of traditional drug delivery systems. Nanostructured lipid carriers (NLCs), also known as the second-generation lipid nanocarriers, are one such efficient and targeted drug delivery system that has gained immense attention all across due to their myriad advantages and applications. Scientific advancements have revolutionized our health system, but still, brain diseases like brain tumour have remained formidable owing to poor prognosis and the challenging drug delivery to the brain tissue. In this review, we highlighted the application and potential of NLCs in brain-specific delivery of chemotherapeutic agents.
Main body
NLCs are lipid-based formulations with a solid matrix at room temperature and offer advantages like enhanced stability, low toxicity, increased shelf life, improved drug loading capacity, and biocompatibility over other conventional lipid-based nanocarriers such as nanoemulsions and solid lipid nanoparticles. This review meticulously articulates the structure, classification, components, and various methods of preparation exemplified with various research studies along with their advantages and disadvantages. The concept of drug loading and release has been discussed followed by a brief about stability and strategies to improve stability of NLCs. The review also summarizes various in vitro and in vivo research studies on NLCs encapsulated with cytotoxic drugs and their potential application in brain-specific drug delivery.
Conclusion
NLCs are employed as an important carrier for the delivery of food, cosmetics, and medicines and recently have been used in brain targeting, cancer, and gene therapy. However, in this review, the applications and importance of NLCs in targeting brain tumour have been discussed in detail stating examples of various research studies conducted in recent years. In addition, to shed light on the promising role of NLCs, the current clinical status of NLCs has also been summarized.
Graphical Abstract
Collapse
|
21
|
Zhou YS, Wang W, Chen N, Wang LC, Huang JB. Research progress of anti-glioma chemotherapeutic drugs (Review). Oncol Rep 2022; 47:101. [PMID: 35362540 PMCID: PMC8990335 DOI: 10.3892/or.2022.8312] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma is the most common primary intracranial malignancy in the central nervous system. At present, the most important treatment option is surgical resection of the tumor combined with radiotherapy and chemotherapy. The principle of operation is to remove the tumor to the maximal extent on the basis of preserving brain function. However, prominent invasive and infiltrative proliferation of glioma tumor cells into the surrounding normal tissues frequently reduces the efficacy of treatment. This in turn worsens the prognosis, because the tumor cannot be completely removed, which can readily relapse. Chemotherapeutic agents when applied individually have demonstrated limited efficacy for the treatment of glioma. However, multiple different chemotherapeutic agents can be used in combination with other treatment modalities to improve the efficacy while circumventing systemic toxicity and drug resistance. Therefore, it is pivotal to unravel the inhibitory mechanism mediated by the different chemotherapeutic drugs on glioma cells in preclinical studies. The aim of the present review is to provide a summary for understanding the effects of different chemotherapeutic drugs in glioma, in addition to providing a reference for the preclinical research into novel chemotherapeutic agents for future clinical application.
Collapse
Affiliation(s)
- Yi-Shu Zhou
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Wei Wang
- Department of Radiology and Research Institute for Translation Medicine on Molecular Function and Artificial Intelligence Imaging, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Na Chen
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Li-Cui Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jin-Bai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
22
|
AaTs-1: A Tetrapeptide from Androctonus australis Scorpion Venom, Inhibiting U87 Glioblastoma Cells Proliferation by p53 and FPRL-1 Up-Regulations. Molecules 2021; 26:molecules26247610. [PMID: 34946686 PMCID: PMC8704564 DOI: 10.3390/molecules26247610] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma is an aggressive cancer, against which medical professionals are still quite helpless, due to its resistance to current treatments. Scorpion toxins have been proposed as a promising alternative for the development of effective targeted glioblastoma therapy and diagnostic. However, the exploitation of the long peptides could present disadvantages. In this work, we identified and synthetized AaTs-1, the first tetrapeptide from Androctonus australis scorpion venom (Aa), which exhibited an antiproliferative effect specifically against human glioblastoma cells. Both the native and synthetic AaTs-1 were endowed with the same inhibiting effect on the proliferation of U87 cells with an IC50 of 0.56 mM. Interestingly, AaTs-1 was about two times more active than the anti-glioblastoma conventional chemotherapeutic drug, temozolomide (TMZ), and enhanced its efficacy on U87 cells. AaTs-1 showed a significant similarity with the synthetic peptide WKYMVm, an agonist of a G-coupled formyl-peptide receptor, FPRL-1, known to be involved in the proliferation of glioma cells. Interestingly, the tetrapeptide triggered the dephosphorylation of ERK, p38, and JNK kinases. It also enhanced the expression of p53 and FPRL-1, likely leading to the inhibition of the store operated calcium entry. Overall, our work uncovered AaTs-1 as a first natural potential FPRL-1 antagonist, which could be proposed as a promising target to develop new generation of innovative molecules used alone or in combination with TMZ to improve glioblastoma treatment response. Its chemical synthesis in non-limiting quantity represents a valuable advantage to design and develop low-cost active analogues to treat glioblastoma cancer.
Collapse
|
23
|
Antineoplastics Encapsulated in Nanostructured Lipid Carriers. Molecules 2021; 26:molecules26226929. [PMID: 34834022 PMCID: PMC8619566 DOI: 10.3390/molecules26226929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Ideally, antineoplastic treatment aims to selectively eradicate cancer cells without causing systemic toxicity. A great number of antineoplastic agents (AAs) are available nowadays, with well-defined therapeutic protocols. The poor bioavailability, non-selective action, high systemic toxicity, and lack of effectiveness of most AAs have stimulated the search for novel chemotherapy protocols, including technological approaches that provide drug delivery systems (DDS) for gold standard medicines. Nanostructured lipid carriers (NLC) are DDS that contain a core of solid and lipid liquids stabilised by surfactants. NLC have high upload capacity for lipophilic drugs, such as the majority of AAs. These nanoparticles can be prepared with a diversity of biocompatible (synthetic or natural) lipid blends, administered by different routes and functionalised for targeting purposes. This review focused on the research carried out from 2000 to now, regarding NLC formulations for AAs (antimetabolites, antimitotics, alkylating agents, and antibiotics) encapsulation, with special emphasis on studies carried out in vivo. NLC systems for codelivery of AAs were also considered, as well as those for non-classical drugs and therapies (natural products and photosensitisers). NLC have emerged as powerful DDS to improve the bioavailability, targeting and efficacy of antineoplastics, while decreasing their toxic effect in the treatment of different types of cancer.
Collapse
|
24
|
Multifunctional lipidic nanocarriers for effective therapy of glioblastoma: recent advances in stimuli-responsive, receptor and subcellular targeted approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00548-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Background
Glioblastoma, or glioblastoma multiforme (GBM), remains a fatal cancer type despite the remarkable progress in understanding the genesis and propagation of the tumor. Current treatment modalities, comprising mainly of surgery followed by adjuvant chemoradiation, are insufficient for improving patients' survival owing to existing hurdles, including the blood–brain barrier (BBB). In contemporary practice, the prospect of long-term survival or cure continues to be a challenge for patients suffering from GBM. This review provides an insight into the drug delivery strategies and the significant efforts made in lipid-based nanoplatform research to circumvent the challenges in optimal drug delivery in GBM.
Area covered
Owing to the unique properties of lipid-based nanoplatforms and advancements in clinical translation, this article describes the application of various stimuli-responsive lipid nanocarriers and tumor subcellular organelle-targeted therapy to give an idea about the strategies that can be applied to enhance site-specific drug delivery for GBM. Furthermore, active targeting of drugs via surface-modified lipid-based nanostructures and recent findings in alternative therapeutic platforms such as gene therapy, immunotherapy, and multimodal therapy have also been overviewed.
Expert opinion
Lipid-based nanoparticles stand out among the other nanocarriers explored for GBM drug delivery, as they support both passive and active drug targeting by crossing/bypassing the BBB at the same time minimizing toxicity and projects better pharmacological parameters. Although these nanocarriers could be a plausible choice for treating GBM, in-depth research is essential to advance neuro-oncology research and enhance outcomes in patients with brain tumors.
Collapse
|
25
|
Nsairat H, Khater D, Odeh F, Al-Adaileh F, Al-Taher S, Jaber AM, Alshaer W, Al Bawab A, Mubarak MS. Lipid nanostructures for targeting brain cancer. Heliyon 2021; 7:e07994. [PMID: 34632135 PMCID: PMC8488847 DOI: 10.1016/j.heliyon.2021.e07994] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
Advancements in both material science and bionanotechnology are transforming the health care sector. To this end, nanoparticles are increasingly used to improve diagnosis, monitoring, and therapy. Huge research is being carried out to improve the design, efficiency, and performance of these nanoparticles. Nanoparticles are also considered as a major area of research and development to meet the essential requirements for use in nanomedicine where safety, compatibility, biodegradability, biodistribution, stability, and effectiveness are requirements towards the desired application. In this regard, lipids have been used in pharmaceuticals and medical formulations for a long time. The present work focuses on the use of lipid nanostructures to combat brain tumors. In addition, this review summarizes the literature pertaining to solid lipid nanoparticles (SLN) and nanostructured lipid carriers (LNC), methods of preparation and characterization, developments achieved to overcome blood brain barrier (BBB), and modifications used to increase their effectiveness.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Dima Khater
- Department of Chemistry, Faculty of Arts and Science, Applied Science Private University, Amman 11931, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Fedaa Al-Adaileh
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Suma Al-Taher
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Areej M. Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Abeer Al Bawab
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | | |
Collapse
|
26
|
Delello Di Filippo L, Hofstätter Azambuja J, Paes Dutra JA, Tavares Luiz M, Lobato Duarte J, Nicoleti LR, Olalla Saad ST, Chorilli M. Improving temozolomide biopharmaceutical properties in glioblastoma multiforme (GBM) treatment using GBM-targeting nanocarriers. Eur J Pharm Biopharm 2021; 168:76-89. [PMID: 34461214 DOI: 10.1016/j.ejpb.2021.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/24/2021] [Accepted: 08/22/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer. GBM has aggressive development, and the pharmacological treatment remains a challenge due to GBM anatomical characteristics' (the blood-brain barrier and tumor microenvironment) and the increasing resistance to marketed drugs, such as temozolomide (TMZ), the first-line drug for GBM treatment. Due to physical-chemical properties such as short half-life time and the increasing resistance shown by GBM cells, high doses and repeated administrations are necessary, leading to significant adverse events. This review will discuss the main molecular mechanisms of TMZ resistance and the use of functionalized nanocarriers as an efficient and safe strategy for TMZ delivery. GBM-targeting nanocarriers are an important tool for the treatment of GBM, demonstrating to improve the biopharmaceutical properties of TMZ and repurpose its use in anti-GBM therapy. Technical aspects of nanocarriers will be discussed, and biological models highlighting the advantages and effects of functionalization strategies in TMZ anti-GBM activity. Finally, conclusions regarding the main findings will be made in the context of new perspectives for the treatment of GBM using TMZ as a chemotherapy agent, improving the sensibility and biological anti-tumor effect of TMZ through functionalization strategies.
Collapse
Affiliation(s)
| | | | | | - Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Luiza Ribeiro Nicoleti
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
27
|
Temozolomide nano enabled medicine: promises made by the nanocarriers in glioblastoma therapy. J Control Release 2021; 336:549-571. [PMID: 34229001 DOI: 10.1016/j.jconrel.2021.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is abnormal cell proliferation of glial cells. GBM is the grade IV glioma brain cancer which is life-threatening to many individuals affected by this cancer. The DNA alkylating agent Temozolomide (TMZ) has the distinctiveness of being FDA approved anticancer drug for the first line treatment for GBM. However, treatment of GBM still remains a challenge. This is attributed to TMZ's toxic nature, severe side effects, and fast degradation in vivo. In addition, the lack of targeting ability increases the chances of systemic toxicities. A nano enabled targeted delivery system not only improves the efficiency of TMZ by making it cross the blood brain barrier, have specificity to target, but also reduces toxicity to healthy tissues. Over the last decade the significant advances in the area of nanotechnology applied to medicine have developed many multifunctional therapeutics. In this context, the present review article comprehends the significant progress in the field of TMZ loaded nanocarriers showing promise for futuristic nanomedicine therapies in treating GBM.
Collapse
|
28
|
Rizwanullah M, Ahmad MZ, Garg A, Ahmad J. Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application. Biochim Biophys Acta Gen Subj 2021; 1865:129936. [PMID: 34058266 DOI: 10.1016/j.bbagen.2021.129936] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/18/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cancer development is associated with abnormal, uncontrolled cell growth and causes significant economic and social burdens to society. The global statistics of different cancers have been increasing because of the aging population, and the increasing prevalence of risk factors such as stress condition, overweight, changing reproductive patterns, and smoking. The prognosis of cancer treatment is high, if diagnosed in the early stage. Late-stage diagnosis, however, is still a big challenge for the clinician. The usual treatment scheme involves chemotherapy and surgery followed by radiotherapy. SCOPE OF REVIEW Chemotherapy is the most widely used therapeutic approach against cancer. However, it suffers from the major limitation of poor delivery of anticancer therapeutics to specific cancer-targeted tissues/cells. MAJOR CONCLUSIONS Nanomedicines, particularly nanostructured lipid carriers (NLCs) can improve the efficacy of encapsulated payload either through an active or passive targeting approach against different cancers. The targeted nanomedicine can be helpful in transporting drug carriers to the specifically tumor-targeted tissue/cells while sparing abstaining from the healthy tissue/cells. The active targeting utilizes the binding of a specific cancer ligand to the surface of the NLCs, which improves the therapeutic efficacy and safety of the cancer therapeutics. GENERAL SIGNIFICANCE This review shed light on the utilization of NLCs system for targeted therapy in different cancers. Furthermore, modification of NLCs as cancer theranostics is a recent advancement that is also discussed in the manuscript with a review of contemporary research carried out in this field.
Collapse
Affiliation(s)
- Md Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| |
Collapse
|
29
|
Tran K, Brice R, Yao L. Bioscaffold-based study of glioblastoma cell behavior and drug delivery for tumor therapy. Neurochem Int 2021; 147:105049. [PMID: 33945833 DOI: 10.1016/j.neuint.2021.105049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is a severe form of brain cancer with an average five-year survival rate of 6.7%. Current treatment strategies include surgical resection of the tumor area and lining the lesion site with therapeutics, which offer only a moderate impact on increasing survival rates. Drug-testing models based on the monolayer cell culture method may partially explain the lack of advancement in effective GBM treatment, because this model is limited in its ability to show heterogeneous cell-cell and cell-environment interactions as tumor cells in the in vivo state. The development of bioscaffold-based culture models is an important improvement in GBM research, preclinical trials, and targeted drug testing, through better mimicking of the heterogeneity of tumor environmental conditions. A major hurdle towards better GBM outcomes is in delivering medication across the blood-brain barrier (BBB), which normally prevents the crossing of materials into the treatment site. The delivery of therapeutics using bioscaffolds is a potential means of overcoming the BBB and could potentially facilitate long-lasting drug release. A number of natural and synthetic materials have been studied for their biodegradability, toxicity, distribution, and pharmaceutical stability, which are needed to determine the overall effectiveness and safety of glioblastoma treatment. This review summarizes advancements in the research of bioscaffold-based GBM cell growth systems and the potential of using bioscaffolds as a carrier for drug delivery.
Collapse
Affiliation(s)
- Kimmy Tran
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
| | - Ryan Brice
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
| | - Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA.
| |
Collapse
|
30
|
Ortiz R, Perazzoli G, Cabeza L, Jiménez-Luna C, Luque R, Prados J, Melguizo C. Temozolomide: An Updated Overview of Resistance Mechanisms, Nanotechnology Advances and Clinical Applications. Curr Neuropharmacol 2021; 19:513-537. [PMID: 32589560 PMCID: PMC8206461 DOI: 10.2174/1570159x18666200626204005] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/22/2022] Open
Abstract
Temozolomide (TMZ), an oral alkylating prodrug which delivers a methyl group to purine bases of DNA (O6-guanine; N7-guanine and N3-adenine), is frequently used together with radiotherapy as part of the first-line treatment of high-grade gliomas. The main advantages are its high oral bioavailability (almost 100% although the concentration found in the cerebrospinal fluid was approximately 20% of the plasma concentration of TMZ), its lipophilic properties, and small size that confer the ability to cross the blood-brain barrier. Furthermore, this agent has demonstrated activity not only in brain tumors but also in a variety of solid tumors. However, conventional therapy using surgery, radiation, and TMZ in glioblastoma results in a median patient survival of 14.6 months. Treatment failure has been associated with tumor drug resistance. This phenomenon has been linked to the expression of O6-methylguanine-DNA methyltransferase, but the mismatch repair system and the presence of cancer stem-like cells in tumors have also been related to TMZ resistance. The understanding of these mechanisms is essential for the development of new therapeutic strategies in the clinical use of TMZ, including the use of nanomaterial delivery systems and the association with other chemotherapy agents. The aim of this review is to summarize the resistance mechanisms of TMZ and the current advances to improve its clinical use.
Collapse
Affiliation(s)
- Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | | | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | - Cristina Jiménez-Luna
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges 1066, Switzerland
| | - Raquel Luque
- Medical Oncology Service, Virgen de las Nieves Hospital, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| |
Collapse
|
31
|
Xu M, Li G, Zhang H, Chen X, Li Y, Yao Q, Xie M. Sequential delivery of dual drugs with nanostructured lipid carriers for improving synergistic tumor treatment effect. Drug Deliv 2021; 27:983-995. [PMID: 32611218 PMCID: PMC8216445 DOI: 10.1080/10717544.2020.1785581] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To improve synergistic anticancer efficacy and minimize the adverse effects of chemotherapeutic drugs, temozolomide (TMZ) and curcumin (CUR) co-loaded nanostructured lipid carriers (NLCs) were prepared by microemulsion in this study. And the physicochemical properties, drug release behavior, intracellular uptake efficiency, in vitro and in vivo anticancer effects of TMZ/CUR-NLCs were evaluated. TMZ/CUR-NLCs showed enhanced inhibitory effects on glioma cells compared to single drug loaded NLCs, which may be owing to that the quickly released CUR can sensitize the cancer cells to TMZ. The inhibitory mechanism is a combination of S phase cell cycle arrest associated with induced apoptosis. Notably, TMZ/CUR-NLCs can accumulate at brain and tumor sites effectively and perform a significant synergistic anticancer effect in vivo. More importantly, the toxic effects of TMZ/CUR-NLCs on major organs and normal cells at the same therapeutic dosage were not observed. In conclusion, NLCs are promising nanocarriers for delivering dual chemotherapeutic drugs sequentially, showing potentials in the synergistic treatment of tumors while reducing adverse effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Man Xu
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China.,Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guangmeng Li
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haoxiang Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaoming Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yi Li
- School of Materials, The University of Manchester, Manchester, UK
| | - Qianming Yao
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Maobin Xie
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China.,Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
32
|
Iturrioz-Rodríguez N, Bertorelli R, Ciofani G. Lipid-Based Nanocarriers for The Treatment of Glioblastoma. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000054. [PMID: 33623931 PMCID: PMC7116796 DOI: 10.1002/anbr.202000054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant neoplasia having origin in the brain. The current treatments involve surgery, radiotherapy, and chemotherapy, being complete surgical resection the best option for the patient survival chances. However, in those cases where a complete removal is not possible, radiation and chemotherapy are applied. Herein, the main challenges of chemotherapy, and how they can be overcome with the help of nanomedicine, are approached. Natural pathways to cross the blood-brain barrier (BBB) are detailed, and different in vivo studies where these pathways are mimicked functionalizing the nanomaterial surface are shown. Later, lipid-based nanocarriers, such as liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, are presented. To finish, recent studies that have used lipid-based nanosystems carrying not only therapeutic agents, yet also magnetic nanoparticles, are described. Although the advantages of using these types of nanosystems are explained, including their biocompatibility, the possibility of modifying their surface to enhance the cell targeting, and their intrinsic ability of BBB crossing, it is important to mention that research in this field is still at its early stage, and extensive preclinical and clinical investigations are mandatory in the close future.
Collapse
Affiliation(s)
- Nerea Iturrioz-Rodríguez
- Smart Bio-Interfaces Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology Istituto Italiano di Tecnologia Via Morego 30, Genova 16163, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| |
Collapse
|
33
|
Glioblastoma Break-in; Try Something New. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Glioblastoma is the most invasive brain tumor with a poor prognosis and rapid progression. The standard therapy (surgical resection, adjuvant chemotherapy, and radiotherapy) ensures survival only up to 18 months. In this article, we focus on innovative types of radiotherapy, various combinations of temozolomide with novel substances, and methods of their administration and vector delivery to tumor cells. Evidence Acquisition: For a detailed study of the various options for chemotherapy and radiotherapy, Elsevier, NCBI MedLine, Scopus, Google Scholar, Embase, Web of Science, The Cochrane Library, EMBASE, Global Health, CyberLeninka, and RSCI databases were analyzed. Results: The most available method is oral or intravenous administration of temozolomide. More efficient is the combined chemotherapy of temozolomide with innovative drugs and substances such as lomustine, histone deacetylase inhibitors, and chloroquine, as well as olaparib. These combinations improve patient survival and are effective in the treatment of resistant tumors. Compared to standard fractionated radiotherapy (60 Gy, 30 fractions, 6 weeks), hypofractionated is more effective for elderly patients due to lack of toxicity; brachytherapy reduces the risk of glioblastoma recurrence, while radiosurgery with bevacizumab is more effective against recurrent or inoperable tumors. Currently, the most effective treatment is considered to be the intranasal administration of anti-Ephrin A3 (anti-EPHA3)-modified containing temozolomide butyl ester-loaded (TBE-loaded) poly lactide-co-glycolide nanoparticles (P-NPs) coated with N-trimethylated chitosan (TMC) to overcome nasociliary clearance. Conclusions: New radiotherapeutic methods significantly increase the survival rates of glioblastoma patients. With some improvement, it may lead to the elimination of all tumor cells leaving the healthy alive. New chemotherapeutic drugs show impressive results with adjuvant temozolomide. Anti-EPHA3-modified TBE-loaded P-NPs coated with TMC have high absorption specificity and kill glioblastoma cells effectively. A new “step forward” may become a medicine of the future, which reduces the specific accumulation of nanoparticles in the lungs, but simultaneously does not affect specific absorption by tumor cells.
Collapse
|
34
|
Akhter MH, Rizwanullah M, Ahmad J, Amin S, Ahmad MZ, Minhaj MA, Mujtaba MA, Ali J. Molecular Targets and Nanoparticulate Systems Designed for the Improved Therapeutic Intervention in Glioblastoma Multiforme. Drug Res (Stuttg) 2020; 71:122-137. [DOI: 10.1055/a-1296-7870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractGlioblastoma multiforme (GBM) is the most aggressive and fatal CNS related tumors, which is responsible for about 4% of cancer-related deaths. Current GBM therapy includes surgery, radiation, and chemotherapy. The effective chemotherapy of GBM is compromised by two barriers, i. e., the blood-brain barrier (BBB) and the blood tumor barrier (BTB). Therefore, novel therapeutic approaches are needed. Nanoparticles are one of the highly efficient drug delivery systems for a variety of chemotherapeutics that have gained massive attention from the last three decades. Perfectly designed nanoparticles have the ability to cross BBB and BTB and precisely deliver the chemotherapeutics to GBM tissue/cells. Nanoparticles can encapsulate both hydrophilic and lipophilic drugs, genes, proteins, and peptides, increase the stability of drugs by protecting them from degradation, improve plasma half-life, reduce adverse effects and control the release of drugs/genes at the desired site. This review focussed on the different signaling pathways altered in GBM cells to understand the rationale behind selecting new therapeutic targets, challenges in the drug delivery to the GBM, various transport routes in brain delivery, and recent advances in targeted delivery of different drug and gene loaded various lipidic, polymeric and inorganic nanoparticles in the effective management of GBM.
Collapse
Affiliation(s)
- Md. Habban Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Md. Akram Minhaj
- Department of Pharmacology, Maulana Azad Medical College and Hospital, New Delhi, India
| | - Md. Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha, Kingdom of Saudi Arabia (KSA)
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
35
|
Hierarchical design of hyaluronic acid-peptide constructs for glioblastoma targeting: Combining insights from NMR and molecular dynamics simulations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Jnaidi R, Almeida AJ, Gonçalves LM. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Smart Drug Delivery Systems in the Treatment of Glioblastoma Multiforme. Pharmaceutics 2020; 12:E860. [PMID: 32927610 PMCID: PMC7558650 DOI: 10.3390/pharmaceutics12090860] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant type of brain tumor. In fact, tumor recurrence usually appears a few months after surgical resection and chemotherapy, mainly due to many factors that make GBM treatment a real challenge, such as tumor location, heterogeneity, presence of the blood-brain barrier (BBB), and others. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) represent the most promising carriers for therapeutics delivery into the central nervous system (CNS) owing to their inherent ability to cross the BBB. In this review, we present the main challenges in GBM treatment, a description of SLNs and NLCs and their valuable role as drug carriers in GBM treatment, and finally, a detailed description of all modification strategies that aim to change composition of SLNs and NLCs to enhance treatment outcomes. This includes modification of SLNs and NLCs to improve crossing the BBB, reduced GBM cell resistance, target GBM cells selectively minimizing side effects, and modification strategies to enhance SLNs and NLCs nose-to-brain delivery. Finally, future perspectives on their use are also be discussed, to provide insight about all strategies with SLNs and NLCs formulation that could result in drug delivery systems for GBM treatment with highly effective theraputic and minimum undesirable effects.
Collapse
Affiliation(s)
| | | | - Lídia M. Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.J.); (A.J.A.)
| |
Collapse
|
37
|
Particulate systems for improving therapeutic efficacy of pharmaceuticals against central nervous system-related diseases. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Bao H, Zheng N, Li Z, Zhi Y. Synergistic Effect of Tangeretin and Atorvastatin for Colon Cancer Combination Therapy: Targeted Delivery of These Dual Drugs Using RGD Peptide Decorated Nanocarriers. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3057-3068. [PMID: 32801644 PMCID: PMC7397562 DOI: 10.2147/dddt.s256636] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
Purpose Colorectal cancer (CRC) is the third most frequently diagnosed cancer and the fourth leading cause of cancer death over the world. Nano-sized drug delivery systems are used for the treatment of cancers. The aim of this study was to develop a tangeretin (TAGE) and atorvastatin (ATST) combined nano-system decorated with RGD (RGD-ATST/TAGE CNPs) for colon cancer combination therapy. Materials and Methods In this study, cyclized arginine-glycine-aspartic acid sequences (RGD) contained ligand was synthesized by conjugating cyclo (Arg-Gly-Asp-d-Phe-Lys) (cRGDfK) with D-α-tocopheryl succinate dichloromethane (TOSD) using polyethylene glycol (PEG) as a linker to obtain cRGDfK-PEG-TOSD. ATST and TAGE combined nano-systems: RGD-ATST/TAGE CNPs were prepared. The combination effects as well as antitumor effects of these two agents were evaluated on colon cancer cells and mice bearing cancer models. Results Drug entrapment efficiencies of nano-systems were high (around 90%), suggesting the good loading capacity. The release profiles of ATST or TAGE from RGD-ATST/TAGE CNPs followed Higuchi model. The RGD-decorated nano-system showed more obvious cytotoxicity on HT-29 cells than the undecorated nano-system, but no obvious difference was found on normal CCD-18 cells. The strongest synergism was observed when the weight ratio of ATST to TAGE was 1:1. In vivo biodistribution of RGD-ATST/TAGE CNPs in the tumor site is high and prominently inhibited the in vivo tumor growth. Conclusion The results demonstrated that RGD-ATST/TAGE CNPs showed the most significant synergistic therapeutic efficacy, exhibited no significant toxicity to major organs and tissues, and body weight of the treated mice was stable. Therefore, the combination nano-system is a promising platform for colon cancer therapy.
Collapse
Affiliation(s)
- He Bao
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Nanbo Zheng
- Department of Pharmacy, Xi'an Central Hospital, Xi'an 710003, People's Republic of China
| | - Zhuanting Li
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Yuan Zhi
- Department of Pharmacy, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, Shaanxi, People's Republic of China
| |
Collapse
|
39
|
Kuo YC, Rajesh R. Biomaterial-based drug delivery systems used to improve chemotherapeutic activity of pharmaceuticals and to target inhibitors of apoptosis proteins. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Ullah I, Chung K, Bae S, Li Y, Kim C, Choi B, Nam HY, Kim SH, Yun CO, Lee KY, Kumar P, Lee SK. Nose-to-Brain Delivery of Cancer-Targeting Paclitaxel-Loaded Nanoparticles Potentiates Antitumor Effects in Malignant Glioblastoma. Mol Pharm 2020; 17:1193-1204. [PMID: 31944768 DOI: 10.1021/acs.molpharmaceut.9b01215] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive tumor with no curative treatment. The tumor recurrence after resection often requires chemotherapy or radiation to delay the infiltration of tumor remnants. Intracerebral chemotherapies are preferentially being used to prevent tumor regrowth, but treatments remain unsuccessful because of the poor drug distribution in the brain. In this study, we investigated the therapeutic efficacy of cancer-targeting arginyl-glycyl-aspartic tripeptide (RGD) conjugated paclitaxel (PTX)-loaded nanoparticles (NPs) against GBM by nose-to-brain delivery. Our results demonstrated that RGD-modified PTX-loaded NPs showed cancer-specific delivery and enhanced anticancer effects in vivo. The intranasal (IN) inoculation of RGD-PTX-loaded NPs effectively controls the tumor burden (75 ± 12% reduction) by inducing apoptosis and/or inhibiting cancer cell proliferation without affecting the G0 stage of normal brain cells. Our data provide therapeutic evidence supporting the use of intranasally delivered cancer-targeted PTX-loaded NPs for GBM therapy.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea.,Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven 06510, United States
| | - Kunho Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Sumin Bae
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Yan Li
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea.,National Cancer Center, Gyeonggi-do, Goyang 10408, Korea
| | - Chunggu Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Boyoung Choi
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea.,Samyang Biopharmaceuticals Co., Seoul 13488, Korea
| | | | - Sun Hwa Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Chae-Ok Yun
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Kuen Yong Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven 06510, United States
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
41
|
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Patel RJ, Ajazuddin, Ravichandiran V, Murty US, Alexander A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release 2020; 321:372-415. [PMID: 32061621 DOI: 10.1016/j.jconrel.2020.02.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
In last two decades, the lipid nanocarriers have been extensively investigated for their drug targeting efficiency towards the critical areas of the human body like CNS, cardiac region, tumor cells, etc. Owing to the flexibility and biocompatibility, the lipid-based nanocarriers, including nanoemulsion, liposomes, SLN, NLC etc. have gained much attention among various other nanocarrier systems for brain targeting of bioactives. Across different lipid nanocarriers, NLC remains to be the safest, stable, biocompatible and cost-effective drug carrier system with high encapsulation efficiency. Drug delivery to the brain always remains a challenging issue for scientists due to the complex structure and various barrier mechanisms surrounding the brain. The application of a suitable nanocarrier system and the use of any alternative route of drug administration like nose-to-brain drug delivery could overcome the hurdle and improves the therapeutic efficiency of CNS acting drugs thereof. NLC, a second-generation lipid nanocarrier, upsurges the drug permeation across the BBB due to its unique structural properties. The biocompatible lipid matrix and nano-size make it an ideal drug carrier for brain targeting. It offers many advantages over other drug carrier systems, including ease of manufacturing and scale-up to industrial level, higher drug targeting, high drug loading, control drug release, compatibility with a wide range of drug substances, non-toxic and non-irritant behavior. This review highlights recent progresses towards the development of NLC for brain targeting of bioactives with particular reference to its surface modifications, formulations aspects, pharmacokinetic behavior and efficacy towards the treatment of various neurological disorders like AD, PD, schizophrenia, epilepsy, brain cancer, CNS infection (viral and fungal), multiple sclerosis, cerebral ischemia, and cerebral malaria. This work describes in detail the role and application of NLC, along with its different fabrication techniques and associated limitations. Specific emphasis is given to compile a summary and graphical data on the area explored by scientists and researchers worldwide towards the treatment of neurological disorders with or without NLC. The article also highlights a brief insight into two prime approaches for brain targeting, including drug delivery across BBB and direct nose-to-brain drug delivery along with the current global status of specific neurological disorders.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, NCI-Frederick, NIH, Frederick, USA
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Sciences and Technology (CHARUSAT), Gujarat 388421, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Ministry of Chemicals & Fertilizers, Govt. of India, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India.
| |
Collapse
|
42
|
de Melo MT, Piva HL, Tedesco AC. Design of new protein drug delivery system (PDDS) with photoactive compounds as a potential application in the treatment of glioblastoma brain cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110638. [PMID: 32204072 DOI: 10.1016/j.msec.2020.110638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022]
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive malignant brain tumor. Despite advances in treatment modalities, it remains largely incurable. This unfavorable prognosis for GBM is at least partly due to the lack of a successful drug delivery system across the blood-brain barrier (BBB). The delivery of drugs through nanomedicines combined with less invasive alternative therapies represents an important hope for the future of these incurable brain tumors. Whey protein nanocarriers represent promising strategy for targeted drug delivery to tumor cells by enhancing the drug's bioavailability and distribution, and reducing the body's response towards drug resistance. They have been extensively studied to find new alternatives for capacity to encapsulate different drugs and no need for cross-linkers. In this study, we report for the first time the incorporation and administration of Aluminum phthalocyanine chloride (AlClPc)-loaded whey protein drug delivery system (AlClPc-PDDS) for the treatment of glioblastoma brain cancer. This system was designed and optimized (with the use of the spray drying technique) to obtain the required particle size (in the range of 100 to 300 nm), zeta potential and drug loading. Our results suggest that we have developed a drug delivery system from a low-cost raw material and preparation method that is capable of incorporating hydrophobic drugs which, in combination with irradiation, cause photodamage to neoplasic cells, working as an effective adjuvant treatment for malignant glioma.
Collapse
Affiliation(s)
- Maryanne Trafani de Melo
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Henrique Luis Piva
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
43
|
Lombardo SM, Schneider M, Türeli AE, Günday Türeli N. Key for crossing the BBB with nanoparticles: the rational design. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:866-883. [PMID: 32551212 PMCID: PMC7277618 DOI: 10.3762/bjnano.11.72] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/08/2020] [Indexed: 05/15/2023]
Abstract
Central nervous system diseases are a heavy burden on society and health care systems. Hence, the delivery of drugs to the brain has gained more and more interest. The brain is protected by the blood-brain barrier (BBB), a selective barrier formed by the endothelial cells of the cerebral microvessels, which at the same time acts as a bottleneck for drug delivery by preventing the vast majority of drugs to reach the brain. To overcome this obstacle, drugs can be loaded inside nanoparticles that can carry the drug through the BBB. However, not all particles are able to cross the BBB and a multitude of factors needs to be taken into account when developing a carrier system for this purpose. Depending on the chosen pathway to cross the BBB, nanoparticle material, size and surface properties such as functionalization and charge should be tailored to fit the specific route of BBB crossing.
Collapse
Affiliation(s)
- Sonia M Lombardo
- MyBiotech GmbH; Industriestraße 1B, 66802 Überherrn, Germany
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Akif E Türeli
- MyBiotech GmbH; Industriestraße 1B, 66802 Überherrn, Germany
| | | |
Collapse
|
44
|
Sabir F, Ismail R, Csoka I. Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook. Drug Discov Today 2019; 25:185-194. [PMID: 31629966 DOI: 10.1016/j.drudis.2019.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 12/25/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the most devastating and deadly types of tumor. Among all the present treatment strategies, the utmost prerequisite is prolonged intervention at the malignant site. The blood-brain barrier (BBB) is the bottleneck in the delivery of anti-GBM drugs and invasive treatment comes with many pitfalls. This review will discuss the potential of embedding antitumor drugs into nanocarriers for intranasal delivery. Additionally, it emphasizes the significance of applying quality by design (QbD) methodology from the early development stages to ensure the high quality, safety and efficacy of the developed carrier system.
Collapse
Affiliation(s)
- Fakhara Sabir
- University of Szeged, Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Ruba Ismail
- University of Szeged, Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Ildiko Csoka
- University of Szeged, Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, H-6720 Szeged, Eötvös u. 6, Hungary.
| |
Collapse
|
45
|
Chu L, Wang A, Ni L, Yan X, Song Y, Zhao M, Sun K, Mu H, Liu S, Wu Z, Zhang C. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv 2019; 25:1634-1641. [PMID: 30176744 PMCID: PMC6127843 DOI: 10.1080/10717544.2018.1494226] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma is the most common malignant brain tumor. Efficient delivery of drugs targeting glioblastomas remains a challenge. Ephrin type-A receptor 3 (EPHA3) tyrosine kinase antibody-modified polylactide-co-glycolide (PLGA) nanoparticles (NPs) were developed to target glioblastoma via nose-to-brain delivery. Anti-EPHA3-modified, TBE-loaded NPs were prepared using an emulsion-solvent evaporation method, showed a sustained in vitro release profile up to 48 h and a mean particle size of 145.9 ± 8.7 nm. The cellular uptake of anti-EPHA3-modified NPs by C6 cells was significantly enhanced compared to that of nontargeting NPs (p < .01). In vivo imaging and distribution studies on the glioma-bearing rats showed that anti-EPHA3-modified NPs exhibited high fluorescence intensity in the brain and effectively accumulated to glioma tissues, indicating the targeting effect of anti-EPHA3. Glioma-bearing rats treated with anti-EPHA3-modified NPs resulted in significantly higher tumor cell apoptosis (p < .01) than that observed with other formulations and prolonged the median survival time of glioma-bearing rats to 26 days, which was 1.37-fold longer than that of PLGA NPs. The above results indicated that anti-EPHA3-modified NPs may potentially serve as a nose-to-brain drug carrier for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Liuxiang Chu
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Aiping Wang
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China.,b State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd , Yantai , China
| | - Ling Ni
- b State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd , Yantai , China
| | - Xiuju Yan
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Yina Song
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Mingyu Zhao
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Kaoxiang Sun
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China.,b State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd , Yantai , China
| | - Hongjie Mu
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Sha Liu
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Zimei Wu
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Chunyan Zhang
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| |
Collapse
|
46
|
Samal J, Rebelo AL, Pandit A. A window into the brain: Tools to assess pre-clinical efficacy of biomaterials-based therapies on central nervous system disorders. Adv Drug Deliv Rev 2019; 148:68-145. [PMID: 30710594 DOI: 10.1016/j.addr.2019.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/04/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
Therapeutic conveyance into the brain is a cardinal requirement for treatment of diverse central nervous system (CNS) disorders and associated pathophysiology. Effectual shielding of the brain by the blood-brain barrier (BBB) sieves out major proportion of therapeutics with the exception of small lipophilic molecules. Various nano-delivery systems (NDS) provide an effective solution around this obstacle owing to their small size and targeting properties. To date, these systems have been used for several pre-clinical disease models including glioma, neurodegenerative diseases and psychotic disorders. An efficacy screen for these systems involves a test battery designed to probe into the multiple facets of therapeutic delivery. Despite their wide application in redressing various disease targets, the efficacy evaluation strategies for all can be broadly grouped into four modalities, namely: histological, bio-imaging, molecular and behavioural. This review presents a comprehensive insight into all of these modalities along with their strengths and weaknesses as well as perspectives on an ideal design for a panel of tests to screen brain nano-delivery systems.
Collapse
Affiliation(s)
- Juhi Samal
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Ana Lucia Rebelo
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
47
|
Zheng G, Zheng M, Yang B, Fu H, Li Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed Pharmacother 2019; 116:109006. [PMID: 31152925 DOI: 10.1016/j.biopha.2019.109006] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/03/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the leading cause of cancer mortality in women worldwide. To overcome the toxic side effects and multidrug resistance (MDR) during doxorubicin (DOX) chemotherapy, an arginine-glycine-aspartic (RGD) tripeptide modified, pH-sensitive solid lipid nanoparticles (SLNs) is employed in this study. In this study, a RGD conjugated, pH sensitive lipid was synthesized using glycerin monostearate (GMS) and adipic acid dihydrazide (HZ) as lipid materials and named RGD-HZ-GMS. RGD-HZ-GMS was applied to encapsulate DOX to construct a RGD modified, DOX loaded SLNs (RGD-DOX-SLNs). To evaluate the anticancer effect of RGD-DOX-SLNs, breast cancer cell line (MCF-7 cells) and DOX resistant cell line (MCF-7/ADR cells) were used. in vivo tumor suspension and toxicity effects were evaluated on mice bearing MCF-7/ADR cells breast cancer model. RGD-DOX-SLNs had a uniformly spherical shape. The mean particle size and zeta potential of the RGD-DOX-SLNs was 96.3 nm and 35.6 mV, respectively. RGD-DOX-SLNs showed 5.58 fold higher area under the plasma concentration - time curve (AUC) compared with DOX solution. Terminal half life (T1/2) and peak concentration (Cmax) of RGD-DOX-SLNs was 10.85 h and 39.12 ± 2.71 L/kg/h. in vitro and in vivo antitumor results indicate that RGD-DOX-SLNs might be a promising novel lipid carrier which could improve breast cancer therapy.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Surgical Ward 2, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China
| | - Meizhu Zheng
- Department of Surgical Ward 2, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China
| | - Ben Yang
- Department of Surgical Ward 2, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China
| | - Hui Fu
- Department of Surgical Ward 2, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China
| | - Yongqing Li
- Department of Surgical Ward 1, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China.
| |
Collapse
|
48
|
Zottel A, Videtič Paska A, Jovčevska I. Nanotechnology Meets Oncology: Nanomaterials in Brain Cancer Research, Diagnosis and Therapy. MATERIALS 2019; 12:ma12101588. [PMID: 31096609 PMCID: PMC6567262 DOI: 10.3390/ma12101588] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023]
Abstract
Advances in technology of the past decades led to development of new nanometer scale diagnosis and treatment approaches in cancer medicine leading to establishment of nanooncology. Inorganic and organic nanomaterials have been shown to improve bioimaging techniques and targeted drug delivery systems. Their favorable physico-chemical characteristics, like small sizes, large surface area compared to volume, specific structural characteristics, and possibility to attach different molecules on their surface transform them into excellent transport vehicles able to cross cell and/or tissue barriers, including the blood–brain barrier. The latter is one of the greatest challenges in diagnosis and treatment of brain cancers. Application of nanomaterials can prolong the circulation time of the drugs and contrasting agents in the brain, posing an excellent opportunity for advancing the treatment of the most aggressive form of the brain cancer—glioblastomas. However, possible unwanted side-effects and toxicity issues must be considered before final clinical translation of nanoparticles.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Alja Videtič Paska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
49
|
Cao C, Wang Q, Liu Y. Lung cancer combination therapy: doxorubicin and β-elemene co-loaded, pH-sensitive nanostructured lipid carriers. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1087-1098. [PMID: 31118562 PMCID: PMC6498957 DOI: 10.2147/dddt.s198003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Abstract
Purpose: Co-delivery of drugs to achieve the synergistic anticancer effect is a promising strategy for lung cancer therapy. The purpose of this research is to develop a doxorubicin (DOX) and β-elemene (ELE) co-loaded, pH-sensitive nanostructured lipid carriers (DOX/ELE Hyd NLCs). Methods: In this study, DOX/ELE Hyd NLCs were produced by a hot homogenization and ultrasonication method and used for lung cancer treatment. In vitro and in vivo efficiency as well as toxicity of the system was evaluated on lung cancer cell lines and lung tumor-bearing mice. Results: DOX/ELE Hyd NLCs had a particle size of 190 nm, with a PDI lower than 0.2. DOX/ELE Hyd NLCs exhibited a significantly enhanced cytotoxicity (drug concentration causing 50% inhibition was 7.86 μg/mL), synergy antitumor effect (combination index lower than 1), and profound tumor inhibition ability (tumor inhibition ratio of 82.9%) compared with the non pH-responsive NLCs and single-drug-loaded NLCs. Conclusion: Since the synergistic effect of the drugs was found in this system, it would have great potential to inhibit lung tumor cells and tumor growth.
Collapse
Affiliation(s)
- Chengsong Cao
- Department of Oncology, Xuzhou Center Hospital, Xuzhou, Jiangsu, People's Republic of China
| | - Qun Wang
- Department of Oncology, Xuzhou Center Hospital, Xuzhou, Jiangsu, People's Republic of China
| | - Yong Liu
- Department of Oncology, Xuzhou Center Hospital, Xuzhou, Jiangsu, People's Republic of China
| |
Collapse
|
50
|
Zou Y, Liu Y, Yang Z, Zhang D, Lu Y, Zheng M, Xue X, Geng J, Chung R, Shi B. Effective and Targeted Human Orthotopic Glioblastoma Xenograft Therapy via a Multifunctional Biomimetic Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803717. [PMID: 30328157 DOI: 10.1002/adma.201803717] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/31/2018] [Indexed: 02/05/2023]
Abstract
Glioblastoma multiforme (GBM) is a fatal central nervous system tumor without effective treatment. Chemotherapeutic agents are mainstays in the treatment of glioblastoma. However, the effectiveness of these is seriously hindered by poor blood-brain-barrier (BBB) penetrance and tumor targeting, together with short biological half-life. Improved chemotherapy is thus urgently needed for GBM. Multifunctional nanoparticle delivery systems offer much promise in overcoming current limitations. Accordingly, a multifunctional biomimetic nanomedicine is developed by functionalizing the surface of red blood cell membranes (RBCms) with angiopep-2 and loading pH-sensitive nanoparticles (polymer, doxorubicin (Dox), and lexiscan (Lex)) using the functionalized cell membrane to generate the novel nanomedicine, Ang-RBCm@NM-(Dox/Lex). The studies toward orthotopic U87MG human glioblastoma tumor-bearing nude mice show that the Ang-RBCm@NM-(Dox/Lex) nanomedicine has much improved blood circulation time, superb BBB penetration, superior tumor accumulation and retention. Moreover, effective suppression of tumor growth and significantly improved medium survival time are also observed after Ang-RBCm@NM-(Dox/Lex) treatment. The results show that this biomimetic nanoplatform can serve as a flexible and powerful system for GBM treatment which can be readily adapted for the treatment of other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Yan Zou
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Macquarie University; Sydney NSW 2109 Australia
| | - Yanjie Liu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Zhipeng Yang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Dongya Zhang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Yiqing Lu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Meng Zheng
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology; College of Pharmacy; Nankai University; Tianjin 300050 P. R. China
| | - Jia Geng
- Department of Laboratory Medicine; State Key Laboratory of Biotherapy; West China Hospital; Sichuan University and Collaborative Innovation Center for Biotherapy; Chengdu 610041 China
| | - Roger Chung
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Macquarie University; Sydney NSW 2109 Australia
| | - Bingyang Shi
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| |
Collapse
|