1
|
Khan BA, Naz F, Alqahtani A, Khalid Khan M. A nanocomposite competent to overcome solubility and permeation issues of capsaicin and thiocolchicoside simultaneously in gout management: Fabrication of nanocubosomes. Saudi Pharm J 2024; 32:102050. [PMID: 38577488 PMCID: PMC10992725 DOI: 10.1016/j.jsps.2024.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024] Open
Abstract
This study aimed to formulate nano-cubosomes (NCs) co-loaded with capsaicin (CAP) and thiocolchicoside (TCS) to enhance their bioavailability and minimize associated potential side effects through transdermal delivery alongside their synergistic activity. Twenty seven (27) nano-cubosomal dispersions were prepared according to Box-Behnken factorial design and the effect of CAP, TCS, glyceryl mono oleate (GMO) and poloxamer 407 (P407) concentrations on particle size, polydispersity index (PDI), zeta potential, and entrapment efficiency were assessed. The results revealed that the optimized formulation exhibited a mean droplet size of 503 ± 10.3 nm, PDI of 0.405 ± 0.02, zeta potential of -10.0 ± 1.70 mV and entrapment efficiency of 86.9 ± 3.56 %. The in vivo anti-inflammatory effect of optimized formulation was studied in rats by injecting carrageenan to induce edema. The results of in vivo study showed that transdermal application of nano-cubosomes co-loaded with CAP and TCS significantly (p value < 0.05) improved carrageenan induced inflammation compared with standard treatment. The analgesic activity of optimized formulation was evaluated in rats by using Eddy's hot plate method. The findings of analgesic activity illustrated that the analgesic effects exhibited by test formulation may be associated with increased licking period and inhibition of prostaglandins level. In conclusion, the transdermal application of NCs co-loaded with CAP and TCS may be a promising delivery system for enhancing their bioavailability as well as synergistic analgesic and anti-inflammatory activity in gout management.
Collapse
Affiliation(s)
- Barkat Ali Khan
- Drug Delivery and Cosmetic Lab (DDCL), Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, D.I.Khan, 29050, Pakistan
| | - Falak Naz
- Drug Delivery and Cosmetic Lab (DDCL), Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, D.I.Khan, 29050, Pakistan
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Muhammad Khalid Khan
- Drug Delivery and Cosmetic Lab (DDCL), Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, D.I.Khan, 29050, Pakistan
| |
Collapse
|
2
|
Fredua-Agyeman M. Surviving process and transit: Controlled freeze drying, storage and enteric coated capsules for targeted delivery of probiotic Lactobacillusacidophilus. Heliyon 2024; 10:e28407. [PMID: 38560212 PMCID: PMC10981131 DOI: 10.1016/j.heliyon.2024.e28407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Viability loss of probiotics often occur during processing, storage and gastrointestinal transit. In this study, the viability of freeze-dried Lactobacillus acidophilus LA-5® was assessed after controlled freeze drying and storage at 4 °C and 25 °C over six months using glycerol, skim milk and trehalose as protectants. The freeze-dried probiotic was filled into hard gelatin capsules and enteric coated with the co-polymer Eudragit L100-55 using a fluidised bed coater to determine if the freeze-dried probiotic will survive the enteric coating process and remain viable during gastric transit. Empty hard gelatin capsules were also enteric coated by dipping in the co-polymer solution. These were dried, filled with microcrystalline cellulose and tested for their resistance to simulated gastric condition. The results showed that controlled freezing of the probiotic bacteria did not cause significant loss in viability when the cells were cryopreserved in the protectants. Viable cell loss was greater during the drying stage. Relatively better cell survival was recorded when the freeze-dried samples that were cryopreserved with skim milk were stored over six months at 4 °C. Freeze-dried samples that were preserved with trehalose stored better at 25 °C. The results also demonstrated that capsules coated with Eudragit L100-55 did not disintegrate in simulated gastric fluid. However, the capsules disintegrated in a simulated intestinal fluid. The enteric coating process resulted in about 95% recovery of viable cells. The high viable cell recovery after the coating process is likely due to the coating solution and conditions impacting the capsule body and cap rather than the cells directly. The study highlights that enteric coated capsules can offer gastric protection whilst minimizing viability losses associated with the enteric coating process.
Collapse
Affiliation(s)
- Mansa Fredua-Agyeman
- School of Pharmacy, University of Ghana, College of Health Sciences, Accra, Ghana
| |
Collapse
|
3
|
Yang N, Pan X, Zhou X, Liu Z, Yang J, Zhang J, Jia Z, Shen Q. Biomimetic Nanoarchitectonics with Chitosan Nanogels for Collaborative Induction of Ferroptosis and Anticancer Immunity for Cancer Therapy. Adv Healthc Mater 2024; 13:e2302752. [PMID: 37975280 DOI: 10.1002/adhm.202302752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Immunogenic cell death (ICD) shows promising therapeutic potential for tumor regression. However, the low sensitivity and immunosuppressive state of current cell death manners seriously impede tumor immunogenicity. Ferroptosis characterized by excessive lipid peroxidation, has emerged as a potential strategy to induce ICD and activate antitumor immune responses. However, the effectiveness of ferroptosis is limited by antioxidant regulatory networks, including the glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) pathways, presenting challenges for its induction. Herein, they propose a novel approach that involves utilizing functionalized chitosan-ferrocene-sodium alginate (CFA) crosslinked nanogels, which are modified to pravastatin (PRV) and M1 macrophage membrane (MM) (designing as CFA/PRV@MM). Specifically, ferrocene boots intracellular reactive oxygen species levels for efficient glutathione (GSH) depletion through Fenton reaction, thus disrupting the GPX4/GSH axis, while PRV intervenes in the mevalonate pathway to inhibit the FSP1/CoQ10 antioxidant axis, thereby synergistically causing pronounced ferroptotic damage and promoting ICD. The CFA/PRV@MM nanogels demonstrate superior therapeutic efficacy in a mouse breast model, resulting in effective tumor ablation and immune response with minimal side effects. RNA transcription analysis reveals that nanogels can significantly affect metabolic progress, as well as immune activation. This research provides valuable insights into the design of ferroptosis induction for cancer immunotherapy.
Collapse
Affiliation(s)
- Ning Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Xiuhua Pan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Xiawei Zhou
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Zengyi Liu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Jie Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Zengguang Jia
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| |
Collapse
|
4
|
Elsayed SI, El-Dahan MS, Girgis GNS. Pharmacodynamic Studies of Pravastatin Sodium Nanoemulsion Loaded Transdermal Patch for Treatment of Hyperlipidemia. AAPS PharmSciTech 2024; 25:34. [PMID: 38332233 DOI: 10.1208/s12249-024-02746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Pravastatin sodium (PVS) is a hypolipidemic drug with poor oral bioavailability due to the first-pass effect. Therefore, this study aims to formulate and evaluate transdermal patches containing PVS-loaded nanoemulsions (PVS-NEs) to increase PVS's hypolipidemic and hepatoprotective activities. PVS-NEs were prepared using the aqueous titration method, where oleic acid was chosen as an oil phase, and span 80 and tween 80 were used as surfactant and cosurfactant respectively. Droplet size (DS), polydispersity index (PDI), zeta potential (ZP), clarity, and thermodynamic stability of NEs were all characterized. Also, PVS-NEs (NE2) with 50% oil phase, 40% SC mix 2:1, and 10% water were selected as an optimum formula based on the results of DS (251 ± 16), PDI (0.4 ± 0.16), and ZP (-70 ± 10.4) to be incorporated into a transdermal patch, and PVS-NE2 loaded transdermal patches (PVS-NE2-TDPs) were prepared by solvent evaporation method. F1 patch with HPMC E15 and PVP K30 in a ratio of 3:1 represented satisfactory patch properties with good drug-excipients compatibility. Thus, it was selected as an optimum patch formula. The optimized F1 patch was characterized for thickness, moisture content, weight variation, and drug-excipients incompatibility. Therefore, it was subjected to ex vivo skin permeation and finally pharmacodynamic studies. Ex vivo permeation studies of F1 revealed that the cumulative amount of PVS permeated across rat skin was 271.66 ± 19 µg/cm2 in 72 h, and the pharmacodynamic studies demonstrated that the F1 patch was more effective in treating hyperlipidemia than PVS-TDP (control patch) based on both blood analysis and histopathological examination. .
Collapse
Affiliation(s)
- Seham I Elsayed
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt.
| | - Marwa S El-Dahan
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Germeen N S Girgis
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| |
Collapse
|
5
|
Shoman NA, Gebreel RM, El-Nabarawi MA, Attia A. Optimization of hyaluronan-enriched cubosomes for bromfenac delivery enhancing corneal permeation: characterization, ex vivo, and in vivo evaluation. Drug Deliv 2023; 30:2162162. [PMID: 36587627 PMCID: PMC9943252 DOI: 10.1080/10717544.2022.2162162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To design and evaluate hyaluronan-based cubosomes loaded with bromfenac sodium (BS) for ocular application to enhance the corneal permeation and retention in pterygium and cataract treatment. BS-loaded cubosomes were prepared by the emulsification method, employing 23 full factorial design using Design-Expert® software. Glycerol monoolein (GMO) and poloxamer 407 (P407) as lipid phase and polyvinyl alcohol (PVA) as stabilizer were the used ingredients. The optimized formulation (OBC; containing GMO (7% w/w), P407 (0.7% w/w) and PVA (2.5% w/w)) was further evaluated. OBC had an entrapment efficiency of 61.66 ± 1.01%, a zeta potential of -30.80 ± 0.61 mV, a mean particle size of 149.30 ± 15.24 nm and a polydispersity index of 0.21 ± 0.02. Transmission electron microscopy confirmed its cubic shape and excellent dispersibility. OBC exhibited high stability and no ocular irritation that was ensured by histopathology. Ex vivo permeation study showed a significant increase in drug deposition and permeability parameters through goat cornea, besides, confocal laser microscopy established the superior permeation capability of OBC, as compared to drug solution. In vivo pharmacokinetics in aqueous humor indicated higher AUC0-tlast (18.88 µg.h/mL) and mean residence time (3.16 h) of OBC when compared to the marketed eye drops (7.93 µg.h/mL and 1.97 h, respectively). Accordingly, hyaluronan-enriched cubosomes can be regarded as a promising carrier for safe and effective topical ocular delivery.
Collapse
Affiliation(s)
- Nabil A. Shoman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Rana M. Gebreel
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alshaimaa Attia
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt,CONTACT Alshaimaa Attia Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
6
|
Elsayed SI, Girgis GNS, El-Dahan MS. Formulation and Evaluation of Pravastatin Sodium-Loaded PLGA Nanoparticles: In vitro-in vivo Studies Assessment. Int J Nanomedicine 2023; 18:721-742. [PMID: 36816332 PMCID: PMC9936887 DOI: 10.2147/ijn.s394701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Purpose Pravastatin sodium (PVS) is a hypolipidemic drug which suffers from extensive first-pass metabolism and short half-life. Poly(d,l-lactide-co-glycolide) (PLGA) is considered a promising carrier to improve its hypolipidemic and hepatoprotective activities. Methods PVS-loaded PLGA nanoparticles (PVS-PLGA-NPs) were prepared by double emulsion method using a full 32 factorial design. The in vitro release and the physical stability studies of the optimized PVS-PLGA-NPs (F5) were performed. Finally, both hypolipidemic and hepatoprotective activities of the optimized F5 NPs were studied and compared to PVS solution. Results All the studied physical parameters of the prepared NPs were found in the accepted range. The particle size (PS) ranged from 90 ± 0.125 nm to 179.33 ± 4.509 nm, the poly dispersity index (PDI) ranged from 0.121 ± 0.018 to 0.158 ± 0.014. The optimized NPs (F5) have the highest entrapment efficiency (EE%) (51.7 ± 5%), reasonable PS (168.4 ± 2.506 nm) as well as reasonable zeta potential (ZP) (-28.3 ± 1.18mv). Solid-state characterization indicated that PVS is well entrapped into NPs. All NPs have distinct spherical shape with smooth surface. The prepared NPs showed a controlled release profile. F5 showed good stability at 4 ± 2°C during the whole storage period of 3 months. In vivo study and histopathological examination indicated that F5 NPs showed significant increase in PVS hypolipidemic as well as hepatoprotective activity compared to PVS solution. Conclusion The PVS-PLGA-NPs could be considered a promising model to evade the first-pass effect and showed improvement in the hypolipidemic and hepatoprotective activities compared to PVS solution.
Collapse
Affiliation(s)
- Seham I Elsayed
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt,Correspondence: Seham I Elsayed, Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, Dakahlia, Egypt, Tel +201066300417, Fax +20504730097, Email
| | - Germeen N S Girgis
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Marwa S El-Dahan
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| |
Collapse
|
7
|
Mabrouk AA, El-Mezayen NS, Tadros MI, El-Gazayerly ON, El-Refaie WM. Novel mucoadhesive celecoxib-loaded cubosomal sponges: Anticancer potential and regulation of myeloid-derived suppressor cells in oral squamous cell carcinoma. Eur J Pharm Biopharm 2023; 182:62-80. [PMID: 36513316 DOI: 10.1016/j.ejpb.2022.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Oral squamous-cell carcinoma (OSCC) is a widespread health problem. Myeloid-derived suppressor cells (MDSCs) are major tumor microenvironment (TME) population that govern many carcinogenesis aspects by establishing immunosuppressive milieu favoring tumor aggressiveness and treatment resistance. Cyclooxygenase-2 (COX-2) regulates MDSCs activity, hence, COX-2-selective inhibition by celecoxib (CXB) showed good anticancer effect at relatively high doses with possible subsequent cardiovascular complications. Therefore, targeted CXB delivery to MDSCs may represent a promising OSCC treatment strategy. Novel mucoadhesive-cubosomal buccal sponges were prepared for MDSCs targeting and were evaluated for their in-vitro quality attributes, ex-vivo mucoadhesion using buccal chicken-mucosa. Optimally-selected formulation showed considerable uptake by CD33+/11b+MDSCs in human OSCC cell-line (SCC-4) when quantitatively analyzed by flow-cytometry and examined using confocal-laser microscope. Optimum formulations loaded with low CXB doses (12 mg) were promoted to in-vivo studies via local application, using 4-nitroquinoline-1-oxide-induced OSCC in rats, and compared to their corresponding CXB gels. SP16 revealed the highest ability to decrease MDSC activation, recruitment and TME-immunosuppression in the isolated tumors. Consequently, SP16 exerted the greatest capacity to reduce histologic tumor grade, the OSCC-specific serum tumor markers levels, cancer hallmarks and stemness markers. CXB-loaded cubosomal sponges preferentially target MDSCs with noticeable anticancer potential and may exemplify novel mucoadhesive nanocarriers for OSCC treatment.
Collapse
Affiliation(s)
- Aya A Mabrouk
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Nesrine S El-Mezayen
- Department of Pharmacology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Mina I Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt; Department of Pharmaceutics, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Egypt.
| | - Omaima N El-Gazayerly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Wessam M El-Refaie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| |
Collapse
|
8
|
Al-mahallawi AM, Abdelbary AA, El-Zahaby SA. Norfloxacin loaded nano-cubosomes for enhanced management of otitis externa: In vitro and in vivo evaluation. Int J Pharm 2021. [DOI: https://doi.org/10.1016/j.ijpharm.2021.120490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Al-Mahallawi AM, Abdelbary AA, El-Zahaby SA. Norfloxacin loaded nano-cubosomes for enhanced management of otitis externa: In vitro and in vivo evaluation. Int J Pharm 2021; 600:120490. [PMID: 33744451 DOI: 10.1016/j.ijpharm.2021.120490] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
The research's goal is to design and formulate nano-structured cubosomes loaded with norfloxacin (NFX)formanagement of otitis externa. In this study, glyceryl monooleate (GMO) as lipid phase, Cremophor EL as surfactant and either Pluronic F108 or Pluronic F127 as stabilizer were the used ingredients. The nano-cubosomal formulation "CUB 1" (its dispersed phase is composed of GMO (95%), Cremophor EL (2.5%) and Pluronic F108 (2.5%)) was the best achieved one. It had small particles size (216.75 ± 2.47 nm), good polydispersity index (0.339 ± 0.012) and acceptable zeta potential (-41.2 ± 2.262 mV). Images obtained after transmission electron microscopy examination ensured nearly cubic shape of formed nanoparticles with excellent dispersibility. Moreover, micrographs of rabbit ear skin specimens examined by confocal laser microscopy ensured good permeation capability of nano-structured cubosomes.In addition, in vivoskin deposition results revealed that higher amount of NFX was deposited in the rabbit ear skin throughout the study period (10 h) compared to drug suspension. Additionally, histopathological results proved that NFX loaded cubosomes can be safely applied topically on ear skin without any signs of inflammation nor skin irritation. Accordingly, these results anticipated the nano-structured cubosomal capabilities as a favorable nano-carrier for dermal NFX delivery to external ear skin for enhancing the management of otitis externa.
Collapse
Affiliation(s)
- Abdulaziz M Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Aly A Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| |
Collapse
|
10
|
Ammar HO, Mohamed MI, Tadros MI, Fouly AA. High frequency ultrasound mediated transdermal delivery of ondansetron hydrochloride employing bilosomal gel systems: ex-vivo and in-vivo characterization studies. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00491-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Wathoni N, Nguyen AN, Rusdin A, Umar AK, Mohammed AFA, Motoyama K, Joni IM, Muchtaridi M. Enteric-Coated Strategies in Colorectal Cancer Nanoparticle Drug Delivery System. Drug Des Devel Ther 2020; 14:4387-4405. [PMID: 33116423 PMCID: PMC7585804 DOI: 10.2147/dddt.s273612] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is one of the most common cancer diseases with the increase of cases prevalence >5% every year. Multidrug resistance mechanisms and non-localized therapy become primary problems of chemotherapy drugs for curing colorectal cancer disease. Therefore, the enteric-coated nanoparticle system has been studied and proved to be able to resolve those problems with good performance for colorectal cancer. The highlight of our review aims to summarize and discuss the enteric-coated nanoparticle drug delivery system specific for colorectal cancer disease. The main and supporting literatures were collected from published research articles of journals indexed in Scopus and PubMed databases. In the oral route of administration, Eudragit pH-sensitive copolymer as a coating agent prevents the degradation of the nanoparticle system from the gastric fluid and releases drug to intestinal-colon track. Therefore, it provides a colon-specific targeting ability. Impressively, enteric-coated nanoparticles having a sustained release profile significantly increase the cytotoxic effect of chemotherapeutic drugs and achieve cell-specific target delivery. The enteric-coated nanoparticle drug delivery system represents an excellent modification to improve the effectiveness and performance of anticancer drugs for colorectal cancer disease in terms of the oral route of administration.
Collapse
Affiliation(s)
- Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang45363, Indonesia
- Functional Nano Powder University Research Center of Excellence, Universitas Padjadjaran, Sumedang45363, Indonesia
| | - An Ny Nguyen
- Department of Pharmacy, Faculty for Chemistry and Pharmacy, Ludwig Maximilians Universität Munich, Germany
| | - Agus Rusdin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang45363, Indonesia
| | - Abd Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang45363, Indonesia
| | | | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - I Made Joni
- Functional Nano Powder University Research Center of Excellence, Universitas Padjadjaran, Sumedang45363, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang45363, Indonesia
| | - Muchtaridi Muchtaridi
- Functional Nano Powder University Research Center of Excellence, Universitas Padjadjaran, Sumedang45363, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Universitas Padjadjaran, Sumedang45363, Indonesia
| |
Collapse
|
12
|
Adapted nano-carriers for gastrointestinal defense components: surface strategies and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102277. [DOI: 10.1016/j.nano.2020.102277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022]
|
13
|
El-Laithy HM, Badawi A, Abdelmalak NS, El-Sayyad N. Cubosomes as Oral Drug Delivery Systems: A Promising Approach for Enhancing the Release of Clopidogrel Bisulphate in the Intestine. Chem Pharm Bull (Tokyo) 2018; 66:1165-1173. [DOI: 10.1248/cpb.c18-00615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hanan M. El-Laithy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA)
| | - Alia Badawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University
| | | | - Nihal El-Sayyad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA)
| |
Collapse
|
14
|
Tawfik MA, Tadros MI, Mohamed MI. Lipomers (Lipid-polymer Hybrid Particles) of Vardenafil Hydrochloride: a Promising Dual Platform for Modifying the Drug Release Rate and Enhancing Its Oral Bioavailability. AAPS PharmSciTech 2018; 19:3650-3660. [PMID: 30291543 DOI: 10.1208/s12249-018-1191-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/19/2018] [Indexed: 11/30/2022] Open
Abstract
Vardenafil hydrochloride is commonly used for the curing of erectile dysfunction. VAR suffers certain limitations: (i) short elimination half-life (4-5 h), (ii) low aqueous solubility (0.11 mg/mL), (iii) susceptibility to extensive first-pass metabolism and drug efflux transporters (P-glycoprotein), and (iv) limited (15%) oral bioavailability. The current study focused on the development of VAR lipomers as promising modified release systems able to enhance oral bioavailability. VAR-lipomers (lipid-polymer complexes) were successfully developed by a modified precipitation technique employing a lipid (polyglyceryl-6-distearate or glyceryl tristearate) and an amphiphilic polymer (Gantrez®). Three VAR:lipid ratios [1:1, 1:2, and 1:3] and three VAR:Gantrez® ratios [4:1, 2:1, and 1:1] were investigated. Solid-state characterization studies involved differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy. The systems were assessed for particle size, polydispersity index (PDI), zeta-potential, VAR entrapment-efficiency (EE%), morphology, and VAR released % after 2 h (Q2h) and 8 h (Q8h). The best-achieved system (the highest desirability) was promoted for pharmacokinetic studies in fasted rabbits. Statistical analysis of data revealed that L9 system (PGDS, VAR, and Gantrez®; 3:1:1, respectively) had the highest desirability (0.85) with respect to spherical particle size (622.15 nm), PDI (0.11), zeta-potential (-27.90 mV), EE% (62.80%), Q2h (43.45%), and Q8h (77.40%). With respect to Levitra® tablets, the significantly higher relative bioavailability (170%), delayed Tmax, and extended MRT(0-∞) clarified the dual ability of L9 system. Lipomers are emerging systems capable of modifying the rate of VAR release and promoting its oral bioavailability.
Collapse
|
15
|
Gou J, Liang Y, Miao L, Chao Y, Zhang Y, Yin T, He H, Tang X. The promoting effect of enteric materials on the oral absorption of larotaxel-loaded polymer-lipid hybrid nanoparticles. Eur J Pharm Sci 2018; 124:288-294. [DOI: 10.1016/j.ejps.2018.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/19/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
|
16
|
Ammar HO, Mohamed MI, Tadros MI, Fouly AA. Transdermal Delivery of Ondansetron Hydrochloride via Bilosomal Systems: In Vitro, Ex Vivo, and In Vivo Characterization Studies. AAPS PharmSciTech 2018; 19:2276-2287. [PMID: 29845503 DOI: 10.1208/s12249-018-1019-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/12/2018] [Indexed: 11/30/2022] Open
Abstract
Ondansetron hydrochloride (OND) is commonly used for management of postoperative and chemotherapeutic-induced nausea and vomiting. It suffers from low bioavailability (60%) and rapid elimination (t1/2; 3-4 h). The current work aimed to develop OND-loaded bilosomes as a promising transdermal delivery system capable of surmount drug limitations. The variables influencing the development of OND-loaded bilosomes and niosomes (18 systems) via the thin film hydration technique were investigated, including surfactant type (Span®60 or Span®80), surfactant/cholesterol molar ratio (7:0, 7:1, or 7:3), and sodium deoxycholate (SDC) concentration (0, 2.5, or 5%, w/v). The systems were characterized for particle size, polydispersity index, zeta potential, drug entrapment efficiency (EE%), and in vitro permeation. Based on factorial analysis (32·21) and calculations of desirability values, six systems were further subjected to ex vivo permeation through excised rat skin, differential scanning calorimetry (DSC), powder x-ray diffraction (PXRD), and transmission electron microscopy. Histopathological and in vivo permeation studies in rats were conducted on the best achieved system (B6) in comparison to drug solution. Higher desirability values were achieved with Span® 60-based bilosomes, surfactant/cholesterol molar ratio of 7:1, and SDC concentration of 2.5% w/v with respect to small vesicle size, polydispersity index and high zeta potential, EE%, and cumulative drug permeation. OND was dispersed in amorphous state as revealed from DSC and PXRD studies. No marked effect was observed in rat skin following application of B6 system while higher ex vivo and in vivo cumulative permeation profiles were revealed. Bilosomal systems were considered as safe and efficient carriers for the transdermal delivery for OND.
Collapse
|
17
|
Tawfik MA, Tadros MI, Mohamed MI. Polyamidoamine (PAMAM) dendrimers as potential release modulators and oral bioavailability enhancers of vardenafil hydrochloride. Pharm Dev Technol 2018; 24:293-302. [PMID: 29723110 DOI: 10.1080/10837450.2018.1472611] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Vardenafil hydrochloride (VAR) is an erectile dysfunction treating drug. VAR has a short elimination half-life (4-5 h) and suffers low oral bioavailability (15%). This work aimed to explore the dual potential of VAR-dendrimer complexes as drug release modulators and oral bioavailability enhancers. VAR-dendrimer complexes were prepared by solvent evaporation technique using four dendrimer generations (G4.5, G5, G5.5 and G6) at three concentrations (190 nM, 380 nM and 950 nM). The systems were evaluated for intermolecular interactions, particle size, zeta potential, drug entrapment efficiency percentages (EE%) and drug released percentages after 2 h (Q2h) and 24 h (Q24h). The results were statistically analyzed, and the system showing the highest desirability was selected for further pharmacokinetic studies in rabbits, in comparison to Levitra® tablets. The highest desirability (0.82) was achieved with D10 system comprising VAR (10 mg) and G6 (190 nM). It possessed small particle size (113.85 nm), low PDI (0.19), positive zeta potential (+21.53), high EE% (75.24%), promising Q2 h (41.45%) and Q24 h (74.05%). Compared to Levitra® tablets, the significantly (p < 0.01) delayed Tmax, prolonged MRT(0-∞) and higher relative bioavailability (3.7-fold) could clarify the dual potential of D10 as a sustained release system capable of enhancing VAR oral bioavailability.
Collapse
Affiliation(s)
- Mai Ahmed Tawfik
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Mina Ibrahim Tadros
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Magdy Ibrahim Mohamed
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| |
Collapse
|