1
|
Nguyen PHD, Jayasinghe MK, Le AH, Peng B, Le MTN. Advances in Drug Delivery Systems Based on Red Blood Cells and Their Membrane-Derived Nanoparticles. ACS NANO 2023; 17:5187-5210. [PMID: 36896898 DOI: 10.1021/acsnano.2c11965] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Red blood cells (RBCs) and RBC membrane-derived nanoparticles have been historically developed as bioinspired drug delivery systems to combat the issues of premature clearance, toxicity, and immunogenicity of synthetic nanocarriers. RBC-based delivery systems possess characteristics including biocompatibility, biodegradability, and long circulation time, which make them suited for systemic administration. Therefore, they have been employed in designing optimal drug formulations in various preclinical models and clinical trials to treat a wide range of diseases. In this review, we provide an overview of the biology, synthesis, and characterization of drug delivery systems based on RBCs and their membrane including whole RBCs, RBC membrane-camouflaged nanoparticles, RBC-derived extracellular vesicles, and RBC hitchhiking. We also highlight conventional and latest engineering strategies, along with various therapeutic modalities, for enhanced precision and effectiveness of drug delivery. Additionally, we focus on the current state of RBC-based therapeutic applications and their clinical translation as drug carriers, as well as discussing opportunities and challenges associated with these systems.
Collapse
Affiliation(s)
- Phuong Hoang Diem Nguyen
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Anh Hong Le
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Boya Peng
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Minh T N Le
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
2
|
Bhateria M, Rachumallu R, Singh R, Bhatta RS. Erythrocytes-based synthetic delivery systems: transition from conventional to novel engineering strategies. Expert Opin Drug Deliv 2014; 11:1219-36. [PMID: 24912015 DOI: 10.1517/17425247.2014.927436] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Erythrocytes (red blood cells [RBCs]) and artificial or synthetic delivery systems such as liposomes, nanoparticles (NPs) are the most investigated carrier systems. Herein, progress made from conventional approach of using RBC as delivery systems to novel approach of using synthetic delivery systems based on RBC properties will be reviewed. AREAS COVERED We aim to highlight both conventional and novel approaches of using RBCs as potential carrier system. Conventional approaches which include two main strategies are: i) directly loading therapeutic moieties in RBCs; and ii) coupling them with RBCs whereas novel approaches exploit structural, mechanical and biological properties of RBCs to design synthetic delivery systems through various engineering strategies. Initial attempts included coupling of antibodies to liposomes to specifically target RBCs. Knowledge obtained from several studies led to the development of RBC membrane derived liposomes (nanoerythrosomes), inspiring future application of RBC or its structural features in other attractive delivery systems (hydrogels, filomicelles, microcapsules, micro- and NPs) for even greater potential. EXPERT OPINION In conclusion, this review dwells upon comparative analysis of various conventional and novel engineering strategies in developing RBC based drug delivery systems, diversifying their applications in arena of drug delivery. Regardless of the challenges in front of us, RBC based delivery systems offer an exciting approach of exploiting biological entities in a multitude of medical applications.
Collapse
Affiliation(s)
- Manisha Bhateria
- CSIR-Central Drug Research Institute, Pharmacokinetics & Metabolism Division , B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow - 226031 , India +91 522 2771940 Ext-4853 ; +91 522 2771941 ; ,
| | | | | | | |
Collapse
|
3
|
Ngoepe M, Choonara YE, Tyagi C, Tomar LK, du Toit LC, Kumar P, Ndesendo VMK, Pillay V. Integration of biosensors and drug delivery technologies for early detection and chronic management of illness. SENSORS (BASEL, SWITZERLAND) 2013; 13:7680-713. [PMID: 23771157 PMCID: PMC3715220 DOI: 10.3390/s130607680] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/21/2013] [Accepted: 06/07/2013] [Indexed: 11/17/2022]
Abstract
Recent advances in biosensor design and sensing efficacy need to be amalgamated with research in responsive drug delivery systems for building superior health or illness regimes and ensuring good patient compliance. A variety of illnesses require continuous monitoring in order to have efficient illness intervention. Physicochemical changes in the body can signify the occurrence of an illness before it manifests. Even with the usage of sensors that allow diagnosis and prognosis of the illness, medical intervention still has its downfalls. Late detection of illness can reduce the efficacy of therapeutics. Furthermore, the conventional modes of treatment can cause side-effects such as tissue damage (chemotherapy and rhabdomyolysis) and induce other forms of illness (hepatotoxicity). The use of drug delivery systems enables the lowering of side-effects with subsequent improvement in patient compliance. Chronic illnesses require continuous monitoring and medical intervention for efficient treatment to be achieved. Therefore, designing a responsive system that will reciprocate to the physicochemical changes may offer superior therapeutic activity. In this respect, integration of biosensors and drug delivery is a proficient approach and requires designing an implantable system that has a closed loop system. This offers regulation of the changes by means of releasing a therapeutic agent whenever illness biomarkers prevail. Proper selection of biomarkers is vital as this is key for diagnosis and a stimulation factor for responsive drug delivery. By detecting an illness before it manifests by means of biomarkers levels, therapeutic dosing would relate to the severity of such changes. In this review various biosensors and drug delivery systems are discussed in order to assess the challenges and future perspectives of integrating biosensors and drug delivery systems for detection and management of chronic illness.
Collapse
Affiliation(s)
- Mpho Ngoepe
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Yahya E. Choonara
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Charu Tyagi
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Lomas Kumar Tomar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Lisa C. du Toit
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Valence M. K. Ndesendo
- School of Pharmacy and Pharmaceutical Sciences, St. John's University of Tanzania, Dodoma, Tanzania; E-Mail:
| | - Viness Pillay
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| |
Collapse
|
4
|
Biagiotti S, Paoletti MF, Fraternale A, Rossi L, Magnani M. Drug delivery by red blood cells. IUBMB Life 2011; 63:621-31. [DOI: 10.1002/iub.478] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 03/30/2011] [Indexed: 02/04/2023]
|
5
|
Pierigè F, Serafini S, Rossi L, Magnani M. Cell-based drug delivery. Adv Drug Deliv Rev 2008; 60:286-95. [PMID: 17997501 DOI: 10.1016/j.addr.2007.08.029] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/14/2007] [Indexed: 12/24/2022]
Abstract
Drug delivery has been greatly improved over the years by means of chemical and physical agents that increase bioavailability, improve pharmacokinetic and reduce toxicities. At the same time, cell based delivery systems have also been developed. These possesses a number of advantages including prolonged delivery times, targeting of drugs to specialized cell compartments and biocompatibility. Here we'll focus on erythrocyte-based drug delivery. These systems are especially efficient in releasing drugs in circulations for weeks, have a large capacity, can be easily processed and could accommodate traditional and biologic drugs. These carriers have also been used for delivering antigens and/or contrasting agents. Carrier erythrocytes have been evaluated in thousands of drug administration in humans proving safety and efficacy of the treatments. Erythrocyte-based delivery of new and conventional drugs is thus experiencing increasing interests in drug delivery and in managing complex pathologies especially when side effects could become serious issues.
Collapse
Affiliation(s)
- F Pierigè
- Institute of Biological Chemistry Giorgio Fornaini, University of Urbino Carlo Bo, Urbino, Italy
| | | | | | | |
Collapse
|
6
|
Damonte G, Salis A, Rossi L, Magnani M, Benatti U. High throughput HPLC-ESI-MS method for the quantitation of dexamethasone in blood plasma. J Pharm Biomed Anal 2007; 43:376-80. [PMID: 16887316 DOI: 10.1016/j.jpba.2006.06.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/23/2006] [Accepted: 06/27/2006] [Indexed: 11/28/2022]
Abstract
Dexamethasone is a synthetic glucocorticoid with potent anti-inflammatory properties. However, its administration causes significant side effects, specially in long-term therapy. A new approach for limiting adverse effects consists in the slow and constant deliver of this drug, using dexamethasone-21-phosphate-loaded erythrocytes (RBC) as circulating bioreactors converting the non-diffusible dexamethasone-21-phosphate into the diffusible dexamethasone. In order to evaluate the real possibility to use this new method of administration, a simple, cheap and rapid assay was set to manage a large number of samples originating from clinical studies. Due to the sample complexity and analite polarity, electrospray mass spectrometry (MS) is the most powerful technique to achieve qualitative and quantitative data. In order to overcome the complex, time-consuming and expensive LC-MS/MS methods reported in the literature in the present work a standard fluxes HPLC-ESI-MS method was set up for quantitative evaluation of dexamethasone. Thanks to the extraction ion chromatogram (XIC) feature of the software, it was possible to obtain sharp profiles for dexamethasone (DXM) and for the employed internal standard (IS) flumethasone (FM), in spite of the extremely complicated chromatogram obtained after HPLC separation of acetonitrile extracted plasma sample, thus avoiding the use of the expensive deuterated internal standard. This enabled us to obtain a linear response curve, allowing the quantification of DXM from blood samples at the picomoles level.
Collapse
Affiliation(s)
- Gianluca Damonte
- Dipartimeto di Medicina Sperimentale, Sezione di Biochimica e Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Viale Benedetto XV 5, 16132 Genova, Italy.
| | | | | | | | | |
Collapse
|
7
|
Rossi L, Castro M, D'Orio F, Damonte G, Serafini S, Bigi L, Panzani I, Novelli G, Dallapiccola B, Panunzi S, Di Carlo P, Bella S, Magnani M. Low doses of dexamethasone constantly delivered by autologous erythrocytes slow the progression of lung disease in cystic fibrosis patients. Blood Cells Mol Dis 2004; 33:57-63. [PMID: 15223012 DOI: 10.1016/j.bcmd.2004.04.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 04/15/2004] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the safety and efficacy of the administration of low doses of glucocorticoids in patients with cystic fibrosis (CF) by using autologous erythrocytes loaded with dexamethasone 21-phosphate. STUDY DESIGN Nine consecutive CF patients (patients nos. 1-9) received autologous erythrocytes loaded with increasing amounts of dexamethasone 21-phosphate to obtain a slow delivery of dexamethasone in circulation. The appearance of possible adverse effects, the reproducibility of the procedure, and the dexamethasone pharmacokinetics were evaluated. Subsequently, patient no. 9 and eight additional patients (patient nos. 10-17) received dexamethasone 21-phosphate-loaded erythrocytes at 1-month intervals to evaluate the efficacy of continuous release in circulation of low doses of dexamethasone. RESULTS Erythrocytes from CF patients can be processed to be loaded with increasing dexamethasone 21-P concentrations. Once reinfused in respective donors, a slow and prolonged delivery of dexamethasone in the blood stream was measured up to 28 days. Repeated administrations of drug-loaded erythrocytes at 4-week intervals for 15 months showed that very low doses of glucocorticoids provide significant improvement in FEV1 values and significant reduction of infective relapses due to Pseudomonas aeruginosa without adverse effects. CONCLUSIONS The administration of very low doses of glucocorticoids using autologous erythrocytes is possible, with benefits for patients and without side effects. This method is likely to be extended to other chronic diseases.
Collapse
Affiliation(s)
- Luigia Rossi
- Institute of Biological Chemistry G. Fornaini, University of Urbino, 61029 Urbino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rossi L, Brandi G, Schiavano GF, Scarfi S, Millo E, Damonte G, Benatti U, De Flora A, Magnani M. Heterodimer-loaded erythrocytes as bioreactors for slow delivery of the antiviral drug azidothymidine and the antimycobacterial drug ethambutol. AIDS Res Hum Retroviruses 1999; 15:345-53. [PMID: 10082118 DOI: 10.1089/088922299311312] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Disseminated infection with Mycobacterium avium complex (MAC) remains the most common serious bacterial infection in patients with advanced AIDS. The organisms that make up this complex are found ubiquitously in the environment, yet rarely cause disseminated disease in nonimmunocompromised human patients; on the contrary, up to 50% of patients with AIDS may ultimately develop the pathology. Hence, therapeutic strategies able to inhibit HIV and Mycobacterium replication are needed. Because of the rapid plasma elimination and toxicity of the most commonly used drugs, daily multiple-drug therapies must often be continued throughout life, frequently causing major side effects and, as a consequence, poor patient compliance. Therefore, alternative strategies that reduce the toxicity of the drugs and allow prolonged application intervals are sorely needed. Since erythrocytes (RBCs) can behave as bioreactors able to convert impermeant prodrugs to membrane-releasable active drugs, new compounds (AZTpEMB, AZTpEMBpAZT, and AZTp2EMB) consisting of both an antiretroviral and an antimicrobial drug were designed and synthesized. Among these, only AZTp2EMB was hydrolyzed by erythrocyte enzymes and could be encapsulated inside RBCs. AZTp2EMB-loaded RBCs slowly released AZT and EMB in culture medium, reducing its concentration by one-half about every 48 hr of incubation at 37 degrees C. Moreover, when AZTp2EMB-loaded erythrocytes were incubated for 6 days in the presence of human macrophages infected with Mycobacterium avium (M. avium) a marked bactericidal effect (>1 log) was observed. Thus, AZTp2EMB-loaded erythrocytes could be used as endogenous bioreactors for AZT and EMB delivery in the treatment of HIV and M. avium infection.
Collapse
Affiliation(s)
- L Rossi
- Institute of Biochemistry G. Fornaini, University of Urbino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fraternale A, Rossi L, Magnani M. Encapsulation, metabolism and release of 2-fluoro-ara-AMP from human erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1291:149-54. [PMID: 8898876 DOI: 10.1016/0304-4165(96)00059-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
2-Fluoro-ara-AMP (fludarabine phosphate) is a purine analogue with anti-neoplastic activity in lymphoproliferative malignancies. Fludarabine phosphate activity and toxicity is schedule-dependent; multiple daily administrations (for five days) are more effective than single dose. We have encapsulated fludarabine phosphate in human erythrocytes and found that it is slowly released as fludarabine for more than four days. Encapsulated fludarabine phosphate does not affect erythrocyte metabolism and is rapidly converted by erythrocyte enzymes both to fludarabine with a Km of 0.4 mM and a Vmax of 20 nmol/min per g hemoglobin and to fludarabine diphosphate and triphosphate. The apparent Km for fludarabine monophosphate in the phosphorylation reaction was 0.4 mM and the Vmax 40 nmol/min per g hemoglobin. In the phosphorylation of 2-fluoro-ara-AMP to the di- and triphosphate derivatives, ATP was the phosphate donor with apparent Km of 0.12 and 1.0 mM, respectively. During incubations of 2-fluoro-ara-AMP-loaded erythrocytes at 37 degrees C fludarabine was found in equilibrium between the erythrocyte and the culture medium suggesting that permeation of the erythrocyte membrane is not rate-limiting. Thus, fludarabine phosphate-loaded erythrocytes might be used as a slow-delivery system for fludarabine administration in the treatment of lymphoid malignancies.
Collapse
Affiliation(s)
- A Fraternale
- Institute of Biochemistry Giorgio Fornaini, University of Urbino, Italy
| | | | | |
Collapse
|