1
|
Amirghasemi F, Al-Shami A, Ushijima K, Mousavi MPS. Flexible Acetylcholine Neural Probe with a Hydrophobic Laser-Induced Graphene Electrode and a Fluorous-Phase Sensing Membrane. ACS MATERIALS LETTERS 2024; 6:4158-4167. [PMID: 39309214 PMCID: PMC11415234 DOI: 10.1021/acsmaterialslett.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This work develops the first laser-induced graphene (LIG)-based electrochemical sensor with a superhydrophobic fluorous membrane for a flexible acetylcholine (ACh) sensor. ACh regulates several physiological functions, including synaptic transmission and glandular secretion. The ACh sensing membrane is doped with a fluorophilic cation-exchanger that can selectively measure ACh based on the inherent selectivity of the fluorous phase for hydrophobic ions, such as ACh. The fluorous-phase sensor improves the selectivity for ACh over Na+ and K+ by 2 orders of magnitude (compared to traditional lipophilic membranes), thus lowering the detection limit in artificial cerebrospinal fluid (aCSF) from 331 to 0.38 μ M, thereby allowing measurement in physiologically relevant ranges of ACh. Engraving LIG under argon creates a hydrophobic surface with a 133.7° contact angle, which minimizes the formation of a water layer. The flexible solid-contact LIG fluorous sensor exhibited a slope of 59.3 mV/decade in aCSF and retained function after 20 bending cycles, thereby paving the way for studying ACh's role in memory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Abdulrahman Al-Shami
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Kara Ushijima
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Maral P S Mousavi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Grousson E, Mahler F, Keller S, Contino-Pépin C, Durand G. Hybrid Fluorocarbon-Hydrocarbon Surfactants: Synthesis and Colloidal Characterization. J Org Chem 2021; 86:14672-14683. [PMID: 34609857 DOI: 10.1021/acs.joc.1c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four double-tailed hybrid fluorocarbon-hydrocarbon (F-H) surfactants with a poly(ethylene glycol) (PEG) polar headgroup were synthesized. The hydrophobic scaffold consists of an amino acid core, onto which were grafted both fluorocarbon and hydrocarbon chains of different lengths. The PEG polar head was connected to the hydrophobic scaffold through a copper(I)-mediated click reaction. The four derivatives exhibit aqueous solubility >100 g/L and self-assemble into micellar aggregates with micromolar critical micellar concentration (CMC) values, as demonstrated by isothermal titration calorimetry (ITC), surface tension (ST) measurements, and steady-state fluorescence spectroscopy. The CMC value decreased by a factor of ∼6 for each additional pair of CH2 groups, whereas a decrease by a factor of ∼2.5 was observed when the size of the PEG polar head was reduced from 2000 to 750 g/mol. Dynamic light scattering (DLS) showed unimodal micelle populations with hydrodynamic diameters of 10-15 nm, in agreement with results obtained from size-exclusion chromatography (SEC). The aggregation number increased with the hydrocarbon chain length but decreased with increasing PEG chain lengths. The combination in one molecular design of both low CMC and high water solubility makes these new surfactants promising systems for novel drug-delivery systems.
Collapse
Affiliation(s)
- Emilie Grousson
- Institut des Biomolécules Max Mousseron (IBMM)─UMR5247, 34093 Montpellier, France.,Equipe Chimie Bioorganique et Systèmes Amphiphiles (CBSA), Avignon Université, 84000 Avignon, France
| | - Florian Mahler
- Molecular Biophysics, Technische Universität Kaiserslautern, (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern, (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany.,Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010 Graz, Austria.,Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.,BioTechMed-Graz, 8010 Graz, Austria
| | - Christiane Contino-Pépin
- Institut des Biomolécules Max Mousseron (IBMM)─UMR5247, 34093 Montpellier, France.,Equipe Chimie Bioorganique et Systèmes Amphiphiles (CBSA), Avignon Université, 84000 Avignon, France
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron (IBMM)─UMR5247, 34093 Montpellier, France.,Equipe Chimie Bioorganique et Systèmes Amphiphiles (CBSA), Avignon Université, 84000 Avignon, France
| |
Collapse
|
3
|
Functional, Metabolic and Morphologic Results of Ex Vivo Donor Lung Perfusion with a Perfluorocarbon-Based Oxygen Carrier Nanoemulsion in a Large Animal Transplantation Model. Cells 2020; 9:cells9112501. [PMID: 33218154 PMCID: PMC7698917 DOI: 10.3390/cells9112501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Ex vivo lung perfusion (EVLP) is a technology that allows the re-evaluation of questionable donor lung before implantation and it has the potential to repair injured donor lungs that are otherwise unsuitable for transplantation. We hypothesized that perfluorocarbon-based oxygen carrier, a novel reconditioning strategy instilled during EVLP would improve graft function. Methods: We utilized perfluorocarbon-based oxygen carrier (PFCOC) during EVLP to recondition and improve lung graft function in a pig model of EVLP and lung transplantation. Lungs were retrieved and stored for 24 h at 4 °C. EVLP was done for 6 h with or without PFCOC. In the transplantation groups, left lung transplantation was done after EVLP with or without PFCOC. Allograft function was assessed by means of pulmonary gas exchange, lung mechanics and vascular pressures, histology and transmission electron microscopy (TEM). Results: In the EVLP only groups, physiological and biochemical markers during the 6-h perfusion period were comparable. However, perfusate lactate potassium levels were lower and ATP levels were higher in the PFCOC group. Radiologic assessment revealed significantly more lung infiltrates in the controls than in the PFCOC group (p = 0.04). In transplantation groups, perfusate glucose consumption was higher in the control group. Lactate levels were significantly lower in the PFCOC group (p = 0.02). Perfusate flavin mononucleotide (FMN) was significantly higher in the controls (p = 0.008). Post-transplant gas exchange was significantly better during the 4-h reperfusion period in the PFCOC group (p = 0.01). Plasma IL-8 and IL-12 levels were significantly lower in the PFCOC group (p = 0.01, p = 0.03, respectively). ATP lung tissue levels at the end of the transplantation were higher and myeloperoxidase (MPO) levels in lung tissue were lower in the PFCOC group compared to the control group. In the PFCOC group, TEM showed better tissue preservation and cellular viability. Conclusion: PFCOC application is safe during EVLP in lungs preserved 24 h at 4 °C. Although this strategy did not significantly affect the EVLP physiology, metabolic markers of the donor quality such as lactate production, glucose consumption, neutrophil infiltration and preservation of mitochondrial function were better in the PFCOC group. Following transplantation, PFCOC resulted in better graft function and TEM showed better tissue preservation, cellular viability and improved gas transport.
Collapse
|
4
|
André Dias S, Planus E, Angely C, Lotteau L, Tissier R, Filoche M, Louis B, Pelle G, Isabey D. Perfluorocarbon induces alveolar epithelial cell response through structural and mechanical remodeling. Biomech Model Mechanobiol 2018; 17:961-973. [PMID: 29450740 DOI: 10.1007/s10237-018-1005-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/02/2018] [Indexed: 01/25/2023]
Abstract
During total liquid ventilation, lung cells are exposed to perfluorocarbon (PFC) whose chemophysical properties highly differ from standard aqueous cell feeding medium (DMEM). We herein perform a systematic study of structural and mechanical properties of A549 alveolar epithelial cells in order to characterize their response to PFC exposure, using DMEM as control condition. Changes in F-actin structure, focal adhesion density and glycocalyx distribution are evaluated by confocal fluorescent microscopy. Changes in cell mechanics and adhesion are measured by multiscale magnetic twisting cytometry (MTC). Two different microrheological models (single Voigt and power law) are used to analyze the cell mechanics characterized by cytoskeleton (CSK) stiffness and characteristic relaxation times. Cell-matrix adhesion is analyzed using a stochastic multibond deadhesion model taking into account the non-reversible character of the cell response, allowing us to quantify the adhesion weakness and the number of associated bonds. The roles of F-actin structure and glycocalyx layer are evaluated by depolymerizing F-actin and degrading glycocalyx, respectively. Results show that PFC exposure consistently induces F-actin remodeling, CSK softening and adhesion weakening. These results demonstrate that PFC triggers an alveolar epithelial cell response herein evidenced by a decay in intracellular CSK tension, an adhesion weakening and a glycocalyx layer redistribution. These PFC-induced cell adjustments are consistent with the hypothesis that cells respond to a decrease in adhesion energy at cell surface. This adhesion energy can be even further reduced in the presence of surfactant adsorbed at the cell surface.
Collapse
Affiliation(s)
- Sofia André Dias
- Inserm, IMRB, U955, Équipe 13, Biomécanique & Appareil Respiratoire, Université Paris Est, UMR S955, UPEC, CNRS, ERL 7000, 8, rue du Général Sarrail, 94010, Créteil Cedex, France.,Bertin Technologies, 78180, Montigny le Bretonneux, France
| | - Emmanuelle Planus
- Centre de Recherche, Université Grenoble Alpes, Inserm U1209, CNRS 5309, Grenoble, France
| | - Christelle Angely
- Inserm, IMRB, U955, Équipe 13, Biomécanique & Appareil Respiratoire, Université Paris Est, UMR S955, UPEC, CNRS, ERL 7000, 8, rue du Général Sarrail, 94010, Créteil Cedex, France
| | - Luc Lotteau
- Bertin Technologies, 78180, Montigny le Bretonneux, France
| | - Renaud Tissier
- Inserm, IMRB, U955, Equipe 03, Université Paris Est, UMRS955, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du général de Gaulle, 94700, Maisons-Alfort, France
| | - Marcel Filoche
- Inserm, IMRB, U955, Équipe 13, Biomécanique & Appareil Respiratoire, Université Paris Est, UMR S955, UPEC, CNRS, ERL 7000, 8, rue du Général Sarrail, 94010, Créteil Cedex, France.,Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128, Palaiseau, France
| | - Bruno Louis
- Inserm, IMRB, U955, Équipe 13, Biomécanique & Appareil Respiratoire, Université Paris Est, UMR S955, UPEC, CNRS, ERL 7000, 8, rue du Général Sarrail, 94010, Créteil Cedex, France
| | - Gabriel Pelle
- Inserm, IMRB, U955, Équipe 13, Biomécanique & Appareil Respiratoire, Université Paris Est, UMR S955, UPEC, CNRS, ERL 7000, 8, rue du Général Sarrail, 94010, Créteil Cedex, France.,APHP, Groupe Hospitalier H. Mondor A. Chenevier, Service des Explorations Fonctionnelles, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France
| | - Daniel Isabey
- Inserm, IMRB, U955, Équipe 13, Biomécanique & Appareil Respiratoire, Université Paris Est, UMR S955, UPEC, CNRS, ERL 7000, 8, rue du Général Sarrail, 94010, Créteil Cedex, France.
| |
Collapse
|
5
|
Zhang H, Barralet JE. Mimicking oxygen delivery and waste removal functions of blood. Adv Drug Deliv Rev 2017; 122:84-104. [PMID: 28214553 DOI: 10.1016/j.addr.2017.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
In addition to immunological and wound healing cell and platelet delivery, ion stasis and nutrient supply, blood delivers oxygen to cells and tissues and removes metabolic wastes. For decades researchers have been trying to develop approaches that mimic these two immediately vital functions of blood. Oxygen is crucial for the long-term survival of tissues and cells in vertebrates. Hypoxia (oxygen deficiency) and even at times anoxia (absence of oxygen) can occur during organ preservation, organ and cell transplantation, wound healing, in tumors and engineering of tissues. Different approaches have been developed to deliver oxygen to tissues and cells, including hyperbaric oxygen therapy (HBOT), normobaric hyperoxia therapy (NBOT), using biochemical reactions and electrolysis, employing liquids with high oxygen solubility, administering hemoglobin, myoglobin and red blood cells (RBCs), introducing oxygen-generating agents, using oxygen-carrying microparticles, persufflation, and peritoneal oxygenation. Metabolic waste accumulation is another issue in biological systems when blood flow is insufficient. Metabolic wastes change the microenvironment of cells and tissues, influence the metabolic activities of cells, and ultimately cause cell death. This review examines advances in blood mimicking systems in the field of biomedical engineering in terms of oxygen delivery and metabolic waste removal.
Collapse
|
6
|
Shah SWH, Schwieger C, Li Z, Kressler J, Blume A. Effect of Perfluoroalkyl Endgroups on the Interactions of Tri-Block Copolymers with Monofluorinated F-DPPC Monolayers. Polymers (Basel) 2017; 9:polym9110555. [PMID: 30965858 PMCID: PMC6418721 DOI: 10.3390/polym9110555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 12/16/2022] Open
Abstract
We studied the interaction of amphiphilic and triphilic polymers with monolayers prepared from F-DPPC (1-palmitoyl-2-(16-fluoropalmitoyl)-sn-glycero-3-phosphocholine), a phospholipid with a single fluorine atom at the terminus of the sn-2 chain, an analogue of dipalmitoyl-phosphatidylcholine (DPPC). The amphiphilic block copolymers contained a hydrophobic poly(propylene oxide) block flanked by hydrophilic poly(glycerol monomethacrylate) blocks (GP). F-GP was derived from GP by capping both termini with perfluoro-n-nonyl segments. We first studied the adsorption of GP and F-GP to lipid monolayers of F-DPPC. F-GP was inserted into the monolayer up to a surface pressure Π of 42.4 mN m−1, much higher than GP (32.5 mN m−1). We then studied isotherms of lipid-polymer mixtures co-spread at the air-water interface. With increasing polymer content in the mixture a continuous shift of the onset of the liquid-expanded (LE) to liquid-condensed (LC) transition towards higher molecular and higher area per lipid molecule was observed. F-GP had a larger effect than GP indicating that it needed more space. At a Π-value of 32 mN m−1, GP was excluded from the mixed monolayer, whereas F-GP stayed in F-DPPC monolayers up to 42 mN m−1. F-GP is thus more stably anchored in the monolayer up to higher surface pressures. Images of mixed monolayers were acquired using different fluorescent probes and showed the presence of perfluorinated segments of F-GP at LE-LC domain boundaries.
Collapse
Affiliation(s)
- Syed W H Shah
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
- Chemistry Department, Hazara University, 21120 Mansehra, Pakistan.
| | - Christian Schwieger
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
| | - Zheng Li
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
| | - Jörg Kressler
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
| | - Alfred Blume
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, D 06099 Halle, Germany.
| |
Collapse
|
7
|
Lee AL, Gee CT, Weegman BP, Einstein SA, Juelfs A, Ring HL, Hurley KR, Egger SM, Swindlehurst G, Garwood M, Pomerantz WCK, Haynes CL. Oxygen Sensing with Perfluorocarbon-Loaded Ultraporous Mesostructured Silica Nanoparticles. ACS NANO 2017; 11:5623-5632. [PMID: 28505422 PMCID: PMC5515277 DOI: 10.1021/acsnano.7b01006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Oxygen homeostasis is important in the regulation of biological function. Disease progression can be monitored by measuring oxygen levels, thus producing information for the design of therapeutic treatments. Noninvasive measurements of tissue oxygenation require the development of tools with minimal adverse effects and facile detection of features of interest. Fluorine magnetic resonance imaging (19F MRI) exploits the intrinsic properties of perfluorocarbon (PFC) liquids for anatomical imaging, cell tracking, and oxygen sensing. However, the highly hydrophobic and lipophobic properties of perfluorocarbons require the formation of emulsions for biological studies, though stabilizing these emulsions has been challenging. To enhance the stability and biological loading of perfluorocarbons, one option is to incorporate perfluorocarbon liquids into the internal space of biocompatible mesoporous silica nanoparticles. Here, we developed perfluorocarbon-loaded ultraporous mesostructured silica nanoparticles (PERFUMNs) as 19F MRI detectable oxygen-sensing probes. Ultraporous mesostructured silica nanoparticles (UMNs) have large internal cavities (average = 1.8 cm3 g-1), facilitating an average 17% loading efficiency of PFCs, meeting the threshold fluorine concentrations needed for imaging studies. Perfluoro-15-crown-5-ether PERFUMNs have the highest equivalent nuclei per PFC molecule and a spin-lattice (T1) relaxation-based oxygen sensitivity of 0.0032 mmHg-1 s-1 at 16.4 T. The option of loading PFCs after synthesizing UMNs, rather than traditional in situ core-shell syntheses, allows for use of a broad range of PFC liquids from a single material. The biocompatible and tunable chemistry of UMNs combined with the intrinsic properties of PFCs makes PERFUMNs a MRI sensor with potential for anatomical imaging, cell tracking, and metabolic spectroscopy with improved stability.
Collapse
Affiliation(s)
- Amani L. Lee
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Clifford T. Gee
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Bradley P. Weegman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, United States
| | - Samuel A. Einstein
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, United States
| | - Adam Juelfs
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hattie L. Ring
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, United States
| | - Katie R. Hurley
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Sam M. Egger
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Garrett Swindlehurst
- Department of Chemical Engineering & Material Science, University of Minnesota, Minneapolis, MN 55455, United States
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, United States
| | | | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
8
|
Håti AG, Bassett DC, Ribe JM, Sikorski P, Weitz DA, Stokke BT. Versatile, cell and chip friendly method to gel alginate in microfluidic devices. LAB ON A CHIP 2016; 16:3718-3727. [PMID: 27546333 DOI: 10.1039/c6lc00769d] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Alginate is used extensively in microfluidic devices to produce discrete beads or fibres at the microscale. Such structures may be used to encapsulate sensitive cargoes such as cells and biomolecules. On chip gelation of alginate represents a significant challenge since gelling kinetics or physicochemical conditions are not biocompatible. Here we present a new method that offers a hitherto unprecedented level of control over the gelling kinetics and pH applied to the encapsulation of a variety of cells in both bead and fibre geometries. This versatile approach proved straightforward to adjust to achieve appropriate solution conditions required for implementation in microfluidic devices and resulted in highly reliable device operation and very high viability of several different encapsulated cell types for prolonged periods. We believe this method offers a paradigm shift in alginate gelling technology for application in microfluidics.
Collapse
Affiliation(s)
- Armend G Håti
- Biophysics and Medical Technology, Dept. of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
9
|
Håti AG, Arnfinnsdottir NB, Østevold C, Sletmoen M, Etienne G, Amstad E, Stokke BT. Microarrays for the study of compartmentalized microorganisms in alginate microbeads and (W/O/W) double emulsions. RSC Adv 2016. [DOI: 10.1039/c6ra23945e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we present two array platforms for small (50–100 μm) cell-containing 3D compartments prepared by droplet-based microfluidics.
Collapse
Affiliation(s)
- Armend G. Håti
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| | - Nina Bjørk Arnfinnsdottir
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| | - Camilla Østevold
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| | - Marit Sletmoen
- Dept. of Biotechnology
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| | - Gianluca Etienne
- Soft Materials Laboratory (SMaL)
- Institute of Materials
- École Polytechnique Fédérale de Lausanne
- 1015 Lausanne
- Switzerland
| | - Esther Amstad
- Soft Materials Laboratory (SMaL)
- Institute of Materials
- École Polytechnique Fédérale de Lausanne
- 1015 Lausanne
- Switzerland
| | - Bjørn T. Stokke
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| |
Collapse
|
10
|
Gruner P, Riechers B, Chacòn Orellana LA, Brosseau Q, Maes F, Beneyton T, Pekin D, Baret JC. Stabilisers for water-in-fluorinated-oil dispersions: Key properties for microfluidic applications. Curr Opin Colloid Interface Sci 2015. [DOI: 10.1016/j.cocis.2015.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Jacoby C, Temme S, Mayenfels F, Benoit N, Krafft MP, Schubert R, Schrader J, Flögel U. Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR IN BIOMEDICINE 2014; 27:261-71. [PMID: 24353148 DOI: 10.1002/nbm.3059] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 05/22/2023]
Abstract
Inflammatory processes can reliably be assessed by (19)F MRI using perfluorocarbons (PFCs), which is primarily based on the efficient uptake of emulsified PFCs by circulating cells of the monocyte-macrophage system and subsequent infiltration of the (19)F-labeled cells into affected tissue. An ideal candidate for the sensitive detection of fluorine-loaded cells is the biochemically inert perfluoro-15-crown-5 ether (PFCE), as it contains 20 magnetically equivalent (19)F atoms. However, the biological half-life of PFCE in the liver and spleen is extremely long, and so this substance is not suitable for future clinical applications. In the present study, we investigated alternative, nontoxic PFCs with predicted short biological half-lives and high fluorine content: perfluorooctyl bromide (PFOB), perfluorodecalin (PFD) and trans-bis-perfluorobutyl ethylene (F-44E). Despite the complex spectra of these compounds, we obtained artifact-free images using sine-squared acquisition-weighted three-dimensional chemical shift imaging and dedicated reconstruction accomplished with in-house-developed software. The signal-to-noise ratio of the images was maximized using a Nutall window with only moderate localization error. Using this approach, the retention times of the different PFCs in murine liver and spleen were determined at 9.4 T. The biological half-lives were estimated to be 9 days (PFD), 12 days (PFOB) and 28 days (F-44E), compared with more than 250 days for PFCE. In vivo sensitivity for inflammation imaging was assessed using an ear clip injury model. The alternative PFCs PFOB and F-44E provided 37% and 43%, respectively, of the PFCE intensities, whereas PFD did not show any signal in the ear model. Thus, for in vivo monitoring of inflammatory processes, PFOB emerges as the most promising candidate for possible future translation of (19)F MR inflammation imaging to human applications.
Collapse
Affiliation(s)
- Christoph Jacoby
- Institut für Molekulare Kardiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chan HF, Zhang Y, Ho YP, Chiu YL, Jung Y, Leong KW. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep 2013; 3:3462. [PMID: 24322507 PMCID: PMC3857570 DOI: 10.1038/srep03462] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/21/2013] [Indexed: 12/24/2022] Open
Abstract
An attractive option for tissue engineering is to use of multicellular spheroids as microtissues, particularly with stem cell spheroids. Conventional approaches of fabricating spheroids suffer from low throughput and polydispersity in size, and fail to supplement cues from extracellular matrix (ECM) for enhanced differentiation. In this study, we report the application of microfluidics-generated water-in-oil-in-water (w/o/w) double-emulsion (DE) droplets as pico-liter sized bioreactor for rapid cell assembly and well-controlled microenvironment for spheroid culture. Cells aggregated to form size-controllable (30–80 μm) spheroids in DE droplets within 150 min and could be retrieved via a droplet-releasing agent. Moreover, precursor hydrogel solution can be adopted as the inner phase to produce spheroid-encapsulated microgels after spheroid formation. As an example, the encapsulation of human mesenchymal stem cells (hMSC) spheroids in alginate and alginate-arginine-glycine-aspartic acid (-RGD) microgel was demonstrated, with enhanced osteogenic differentiation further exhibited in the latter case.
Collapse
Affiliation(s)
- Hon Fai Chan
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | | | | | | | | | | |
Collapse
|
13
|
Choi JY, Kim JY, Moon HJ, Park MH, Jeong B. CO2
- and O2
-Sensitive Fluorophenyl End-Capped Poly(ethylene glycol). Macromol Rapid Commun 2013; 35:66-70. [DOI: 10.1002/marc.201300700] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/16/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Jung Yoon Choi
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 120-750 Korea
| | - Jin Young Kim
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 120-750 Korea
| | - Hyo Jung Moon
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 120-750 Korea
| | - Min Hee Park
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 120-750 Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 120-750 Korea
| |
Collapse
|
14
|
Bartusik D, Tomanek B. Detection of (19)F-labeled biopharmaceuticals in cell cultures with magnetic resonance. Adv Drug Deliv Rev 2013; 65:1056-64. [PMID: 23603212 DOI: 10.1016/j.addr.2013.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 03/18/2013] [Accepted: 04/09/2013] [Indexed: 02/06/2023]
Abstract
Magnetic resonance (MR) studies of the therapeutic efficacy of fluorinated drugs have recently become possible due to improvements in detection including the application of very strong magnetic fields up to 9.4Tesla (T). These advances allow tracking, identification, and quantification of (19)F-labeled biopharmaceuticals using (19)F MR imaging ((19)F MRI) and spectroscopy ((19)F MRS). Both techniques are noninvasive, are nondestructive, and enable serial measurements. They also allow for controlled and systematic studies of cellular metabolism in cancerous tissue in vivo (small animals and humans) and in vitro (body fluids, cells culture, tissue extracts and isolated tissues). Here we provide an overview of the (19)F MRI and (19)F MRS techniques used for tracking (19)F labeled anticancer chemotherapeutics and antibodies which allow quantification of drug uptake in cancer cells in vitro.
Collapse
|
15
|
Zhang Y, Ho YP, Chiu YL, Chan HF, Chlebina B, Schuhmann T, You L, Leong KW. A programmable microenvironment for cellular studies via microfluidics-generated double emulsions. Biomaterials 2013; 34:4564-72. [PMID: 23522800 DOI: 10.1016/j.biomaterials.2013.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
Abstract
High throughput cellular studies require small sample volume to reduce costs and enhance sensitivity. Microfluidics-generated water-in-oil (W/O) single emulsion droplet systems, in particular, provide uniform, well defined and discrete microenvironment for cell culture, screening, and sorting. However, these single emulsion droplets are incapable of continuous supply of nutrient molecule and are not compatible with aqueous phase-based analysis. A solution is to entrap W/O droplets in another aqueous phase, forming water-in-oil-in-water (W/O/W) double emulsions. The external aqueous phase efficiently prevents desiccation and reduces the amount of organic component, and yet retaining the advantages of compartmentalization. The internal environment can also be programmed dynamically without the need of rupturing the droplets. In this study, we explore the potential application of W/O/W double emulsion droplets for cell cultivation, genetic activation and study of more complicated biological events such as bacteria quorum-sensing as an example. This study demonstrates the advantages and potential application of double emulsion for the study of complex biological processes.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Krafft MP. Large organized surface domains self-assembled from nonpolar amphiphiles. Acc Chem Res 2012; 45:514-24. [PMID: 22185721 DOI: 10.1021/ar200178a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For years, researchers had presumed that Langmuir monolayers of small C(n)F(2n+1)C(m)H(2m+1) (FnHm) diblock molecules (such as F8H16) consisted of continuous, featureless films. Recently we have discovered that they instead form ordered arrays of unusually large (~30-60 nm), discrete self-assembled surface domains or hemimicelles both at the surface of water and on solid substrates. These surface micelles differ in several essential ways from all previously reported or predicted molecular surface aggregates. They self-assemble spontaneously, even at zero surface pressure, depending solely on a critical surface concentration. They are very large (~100 times the length of the diblock) and involve thousands of molecules (orders of magnitude more than classical micelles). At the same time, the surface micelles are highly monodisperse and self-organize in close-packed hexagonal patterns (two-dimensional crystals). Their size is essentially independent from pressure, and they do not coalesce and are unexpectedly sturdy for soft matter (persisting even beyond surface film collapse). We and other researchers have observed large surface micelles for numerous diblocks, using Langmuir-Blodgett (LB) transfer, spin-coating and dip-coating techniques, or expulsion from mixed monolayers, and on diverse supports, establishing that hemimicelle formation and ordering are intrinsic properties of (perfluoroalkyl)alkanes. Notably, they involve "incomplete" surfactants with limited amphiphilic character, which further illustrates the outstanding capacity for perfluoroalkyl chains to promote self-assembly and interfacial film structuring. Using X-ray reflectivity, we determined a perfluoroalkyl-chain-up orientation. Theoretical investigations assigned self-assembly and hemimicelle stability to electrostatic dipole-dipole interactions at the interface between Fn- and Hm-sublayers. Grazing-incidence small-angle X-ray scattering (GISAXS) data collected directly on the surface of water unambiguously demonstrated the presence of surface micelles in monolayers of diblocks prior to LB transfer for atomic force microscopy imaging. We characterized an almost perfect two-dimensional crystal, with 12 assignable diffraction peaks, which established that self-assembly and regular nanopatterning were not caused by transfer or induced by the solid support. These experiments also provide the first direct identification of surface micelles on water, and the first identification of such large-size domains using GISAXS. Revisiting Langmuir film compression behavior after we realized that it actually was a compression of nanometric objects led to further unanticipated observations. These films could be compressed far beyond the documented film "collapse", eventually leading to the buildup of two superimposed, less-organized bilayers of diblocks on top of the initially formed monolayer of hemimicelles. Remarkably, the latter withstood the final, irreversible collapse of the composite films. "Gemini" tetrablocks, di(FnHm), with two Fn-chains and two Hm-chains, provided two superposed layers of discrete micelles, apparently the first example of thin films made of stacked discrete self-assembled nanoobjects. Decoration of solid surfaces with domains of predetermined size of these small "nonpolar" molecules is straightforward. Initial examples of applications include deposition of metal dots and catalytic oxidation of CO, and nanopatterning of SiO(2) films.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- Systèmes Organisés Fluorés à Finalités Thérapeutiques (SOFFT), Institut Charles Sadron (CNRS UPR 22), Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
18
|
Abstract
Surfactants are an essential part of the droplet-based microfluidic technology. They are involved in the stabilization of droplet interfaces, in the biocompatibility of the system and in the process of molecular exchange between droplets. The recent progress in the applications of droplet-based microfluidics has been made possible by the development of new molecules and their characterizations. In this review, the role of the surfactant in droplet-based microfluidics is discussed with an emphasis on the new molecules developed specifically to overcome the limitations of 'standard' surfactants. Emulsion properties and interfacial rheology of surfactant-laden layers strongly determine the overall capabilities of the technology. Dynamic properties of droplets, interfaces and emulsions are therefore very important to be characterized, understood and controlled. In this respect, microfluidic systems themselves appear to be very powerful tools for the study of surfactant dynamics at the time- and length-scale relevant to the corresponding microfluidic applications. More generally, microfluidic systems are becoming a new type of experimental platform for the study of the dynamics of interfaces in complex systems.
Collapse
Affiliation(s)
- Jean-Christophe Baret
- Droplets, Membranes and Interfaces, MPI for Dynamics and Self-organization, Am Fassberg 17, 37077 Goettingen, Germany.
| |
Collapse
|
19
|
Krafft MP. Strasbourg's SOFFT team—Soft functional systems self-assembled from perfluoroalkylated molecular components. J Fluor Chem 2012. [DOI: 10.1016/j.jfluchem.2011.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Rossi S, Szíjjártó C, Gerber F, Waton G, Krafft MP. Fluorous materials in microbubble engineering science and technology—Design and development of new bubble preparation and sizing technologies. J Fluor Chem 2011. [DOI: 10.1016/j.jfluchem.2011.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Couture O, Faivre M, Pannacci N, Babataheri A, Servois V, Tabeling P, Tanter M. Ultrasound internal tattooing. Med Phys 2011; 38:1116-23. [PMID: 21452748 DOI: 10.1118/1.3548068] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The ability of remotely tagging tissues in a controlled and three-dimensional manner during preoperative imaging could greatly help surgeons to identify targets for resection. The authors' objective is to selectively and noninvasively deposit markers under image guidance for such internal tattooing. METHODS This study describes the production of new ultrasound-inducible droplets carrying large payloads of fluorescent markers and the in vivo proof of concept of their remote and controlled deposition via focused ultrasound. The droplets are monodispersed multiple emulsions produced in a microfluidic system, consisting of aqueous fluorescein in perfluorocarbon in water. Their conversion (either by vaporization or cavitation) is performed remotely using a clinical ultrasonic imaging probe. RESULTS When submitted to 5 MHz imaging pulses, the droplets vaporize in vitro at 1.4 MPa peak-negative pressure and eject their content. After several seconds, a brightly fluorescent spot (0.5 mm diameter) is observed at the focus of the transducer. Experiments in the chorioallantoique membrane of chicken eggs and chicken embryo demonstrate that the spot is stable and is easily seen by naked eye. CONCLUSIONS These ultrasound-inducible multiple emulsions could be used to deliver large amounts of contrast agents, chemotherapy, and genetic materials in vivo using a conventional ultrasound scanner.
Collapse
|
22
|
Abate AR, Krummel AT, Lee D, Marquez M, Holtze C, Weitz DA. Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability. LAB ON A CHIP 2008; 8:2157-60. [PMID: 19023480 DOI: 10.1039/b813405g] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
For many applications in microfluidics, the wettability of the devices must be spatially controlled. We introduce a photoreactive sol-gel coating that enables high-contrast spatial patterning of microfluidic device wettability.
Collapse
Affiliation(s)
- Adam R Abate
- School of Engineering and Applied Sciences/Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
23
|
Novotný J, Kovaříková P, Novotný M, Janůšová B, Hrabálek A, Vávrová K. Dimethylamino Acid Esters as Biodegradable and Reversible Transdermal Permeation Enhancers: Effects of Linking Chain Length, Chirality and Polyfluorination. Pharm Res 2008; 26:811-21. [DOI: 10.1007/s11095-008-9780-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
|
24
|
Lehmler HJ, Xu L, Vyas SM, Ojogun VA, Knutson BL, Ludewig G. Synthesis, physicochemical properties and in vitro cytotoxicity of nicotinic acid ester prodrugs intended for pulmonary delivery using perfluorooctyl bromide as vehicle. Int J Pharm 2007; 353:35-44. [PMID: 18164563 DOI: 10.1016/j.ijpharm.2007.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 10/15/2007] [Accepted: 11/07/2007] [Indexed: 12/01/2022]
Abstract
This study explores perfluorooctyl bromide (PFOB) as a potential vehicle for the pulmonary delivery of a series of prodrugs of nicotinic acid using cell culture studies. The prodrugs investigated have PFOB-water (logK(p)=0.78 to >2.2), perfluoromethylcyclohexane-toluene (logK(p)=-2.62 to 0.13) and octanol-water (logK(p)=0.90-10.2) partition coefficients spanning several orders of magnitude. In confluent NCI-H358 human lung cancer cells, the toxicity of prodrugs administered in culture medium or PFOB depends on the medium of administration, with EC20's above 8 mM and 2.5 mM for culture medium and PFOB, respectively. Short-chain nicotinates administered both in PFOB and medium increase cellular NAD/NADP levels at 1mM nicotinate concentrations. Long-chain nicotinates, which could not be administered in medium due to their poor aqueous solubility, increased NAD/NADP levels if administered in PFOB at concentrations > or =10 mM. These findings suggest that even highly lipophilic prodrugs can partition out of the PFOB phase into cells, where nicotinic acid is released and converted to NAD. Thus, PFOB may be a novel and biocompatible vehicle for the delivery of lipophilic prodrugs of nicotinic acid and other drugs directly to the lung of laboratory animals and humans.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, College of Public Health, Iowa City, IA 52242-5000, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
After decades of research activities and product improvements in the field of artificial oxygen carriers based on either haemoglobin modifications or perfluorocarbon emulsions, these products have reached a critical stage of their development. Varieties of haemoglobin-based oxygen carriers and perfluorocarbon emulsions are under current clinical investigation. Although the clinical availability of artificial oxygen carriers may result in profound changes of fluid resuscitation from haemorrhage, the transfusion of human blood components as an integral part of medical trauma management will not be replaced. However, a rapid and effective restoration of tissue oxygenation by the use of artificial oxygen carriers in the treatment of severe haemorrhage may bridge time delays until stored and cross-matched human packed red cells are available. Whether artificial oxygen carriers could provide additional clinical benefits by sustaining tissue oxygenation even under conditions of a disturbed macro- or microcirculation is the subject of current investigations. Therefore, the application of safe and effective artificial oxygen carriers would not only be restricted to the treatment of severe haemorrhage, but additional therapeutic indications of artificial oxygen carriers in emergency medicine, trauma anaesthesia and other medical specialities would emerge.
Collapse
Affiliation(s)
- K F Waschke
- Department of Anaesthesiology and Critical Care Medicine, Faculty of Clinical Medicine Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany.
| | | |
Collapse
|
26
|
Mumper RJ, Cui Z, Oyewumi MO. Nanotemplate Engineering of Cell Specific Nanoparticles. J DISPER SCI TECHNOL 2007. [DOI: 10.1081/dis-120021814] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Russell J. Mumper
- a Division of Pharmaceutical Sciences , College of Pharmacy, University of Kentucky , Lexington , Kentucky , 40536‐0082 , USA
| | - Zhengrong Cui
- a Division of Pharmaceutical Sciences , College of Pharmacy, University of Kentucky , Lexington , Kentucky , 40536‐0082 , USA
| | - Moses O. Oyewumi
- a Division of Pharmaceutical Sciences , College of Pharmacy, University of Kentucky , Lexington , Kentucky , 40536‐0082 , USA
| |
Collapse
|
27
|
Rogueda P. Novel hydrofluoroalkane suspension formulations for respiratory drug delivery. Expert Opin Drug Deliv 2005; 2:625-38. [PMID: 16296790 DOI: 10.1517/17425247.2.4.625] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Due to the poor solvent properties of hydrofluoroalkanes, suspension is often the only formulation option for respiratory drug delivery. Research in this area has focussed mainly on two main themes over the past 5 years: new design of stabilisers and particle engineering. Among the most important advances, the introduction of secondary particulate systems and the establishment of porous particles as a viable delivery system must be mentioned. Other noteworthy developments include new classes of stabilisers and surface tailoring approaches. Work has been underpinned by new theoretical insights, via the introduction of atomic force microscopy to measure particle interactions, and the development of the surface tension component approach to predict them. Future areas of development include the formulation of nanoparticles and of non-inhalation therapies in non-pressurised hydrofluoroalkanes. All these aspects are reviewed in this article.
Collapse
|
28
|
Cui Z, Fountain W, Clark M, Jay M, Mumper RJ. Novel ethanol-in-fluorocarbon microemulsions for topical genetic immunization. Pharm Res 2003; 20:16-23. [PMID: 12608531 PMCID: PMC7101539 DOI: 10.1023/a:1022234305600] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Traditionally, vaccines have been administered by needle injection. Topical immunization through the intact skin with either protein- or DNA-based vaccines has attracted much attention recently. We sought to enhance the immune responses induced by DNA-based vaccines after topical application by developing novel ethanol-in-fluorocarbon (E/F) microemulsion systems to aid in the delivery of plasmid DNA (pDNA). METHODS Ten different fluorosurfactants were selected or synthesized and screened by pseudo-phase-diagram construction for their ability to form E/F microemulsions. Plasmid DNA was successfully incorporated into E/F microemulsions using several different fluorosurfactants and perfluorooctyl bromide as the continuous fluorocarbon phase. For several reasons, Zonyl FSN-100 (an ethoxylated nonionic fluorosurfactant) was selected for further studies. In vivo studies were performed in mice to assess pDNA expression in skin and immunologic responses after topical application of this system using a luciferase-encoding plasmid (CMV-luciferase) and a CMV-beta-galactosidase-encoding plasmid, respectively. RESULTS Plasmid DNA incorporated into E/F microemulsion using FSN-100 as the surfactant was found to be stable. After topical application of this E/F microemulsion system, significant enhancements in luciferase expression and antibody and T-helper type-1 biased immune responses were observed relative to those of "naked" pDNA in saline or ethanol. For example, with the E/F microemulsion system, the specific serum IgG and IgA titers were increased by 45-fold and over 1000-fold, respectively. CONCLUSION A novel fluorocarbon-based microemulsion system for potential DNA vaccine delivery was developed.
Collapse
Affiliation(s)
- Zhengrong Cui
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0082
| | - William Fountain
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0082
| | - Michael Clark
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0082
| | - Michael Jay
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0082
| | - Russell J. Mumper
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0082
| |
Collapse
|
29
|
Mathurin JC, de Ceaurriz J, Audran M, Krafft MP. Detection of perfluorocarbons in blood by headspace solid-phase microextraction combined with gas chromatography/mass spectrometry. Biomed Chromatogr 2001; 15:443-51. [PMID: 11746240 DOI: 10.1002/bmc.79] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new method of detection of perfluorocarbon molecules (PFCs) in blood sample has been established. After an extraction and pre-concentration step performed by headspace solid-phase microextraction (HS-SPME), the PFCs are detected by gas chromatography-mass spectrometry (GC/MS) with an ion trap mass spectrometer in MS and MS/MS modes. The influence of different parameters on the SPME process is discussed. The limit of detection and the linearity of the procedure have been determined for two PFCs.
Collapse
Affiliation(s)
- J C Mathurin
- Laboratoire National de Dépistage du Dopage, Châtenay Malabry, France.
| | | | | | | |
Collapse
|
30
|
Dragutan I, Dragutan V, Caragheorgheopol A, Zarkadis AK, Fischer H, Hoffmann H. Nitroxide spin probes for magnetic resonance characterization of ordered systems. Colloids Surf A Physicochem Eng Asp 2001. [DOI: 10.1016/s0927-7757(01)00503-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
|
32
|
Duong TQ, Iadecola C, Kim SG. Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow. Magn Reson Med 2001; 45:61-70. [PMID: 11146487 DOI: 10.1002/1522-2594(200101)45:1<61::aid-mrm1010>3.0.co;2-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The assessment of cerebral interstitial oxygen tension (piO(2)) can provide valuable information regarding cerebrovascular physiology and brain function. Compartment-specific cerebral piO(2) was measured by (19)F NMR following the infusion of an oxygen-sensitive perfluorocarbon directly into the interstitial and ventricular space of the in vivo rat brain. (19)F T(1) measurements were made and cerebral piO(2) were obtained through in vitro calibrations. The effects of graded hyperoxia, hypercapnia, and hypoxia on piO(2) and cerebral blood flow (CBF) were investigated. Under normoxia (arterial pO(2) approximately 120 mm Hg), piO(2) was approximately 30 mm Hg and jugular venous pO(2) was approximately 50 mm Hg. During hyperoxia (arterial pO(2) = 90-300 mm Hg), piO(2) increased linearly with the arterial pO(2). Following hypercapnia (arterial pCO(2) = 20-60 mm Hg), the piO(2) increased sigmoidally with increasing CBF. With hypoxia (arterial pO(2) = 30-40 mm Hg), CBF increased approximately 56% and piO(2) decreased to approximately 15 mm Hg. The hypoxia-induced CBF increase was effective to some extent in compensating for the reduced piO(2). This methodology may prove useful for investigating cerebral piO(2) under pathologically or functionally altered conditions. Magn Reson Med 45:61-70, 2001.
Collapse
Affiliation(s)
- T Q Duong
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota School of Medicine, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
33
|
Abstract
Microemulsions are clear, stable, isotropic mixtures of oil, water and surfactant, frequently in combination with a cosurfactant. These systems are currently of interest to the pharmaceutical scientist because of their considerable potential to act as drug delivery vehicles by incorporating a wide range of drug molecules. In order to appreciate the potential of microemulsions as delivery vehicles, this review gives an overview of the formation and phase behaviour and characterization of microemulsions. The use of microemulsions and closely related microemulsion-based systems as drug delivery vehicles is reviewed, with particular emphasis being placed on recent developments and future directions.
Collapse
Affiliation(s)
- M J Lawrence
- Department of Pharmacy, King's College London, Franklin Wilkins Building, 150 Stamford Street, SE1 9NN, London, UK.
| | | |
Collapse
|
34
|
Lowe KC. Second-generation perfluorocarbon emulsion blood substitutes. ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND IMMOBILIZATION BIOTECHNOLOGY 2000; 28:25-38. [PMID: 10676575 DOI: 10.3109/10731190009119783] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A novel series of perfluorocarbon (PFC) emulsions, based on perfluorodecalin (C10F18) and stabilised with up to 2.5% (w/v) of lecithin have been produced for evaluation as injectable, temporary respiratory gas-carrying blood substitutes. Some formulations contained 1.0% (w/v) of perfluorodimorpholinopropane (C11F22N2O2) to retard droplet growth through molecular diffusion (Ostwald Ripening). Other emulsions contained novel, amphiphilic fluorinated surfactants, such as, for example, the monocarbamate, C8F17C2H4NHC(O)(CH2CH2O)2Me (designated compound P6), at 0.1% (w/v) to enhance stability. Emulsions were prepared by homogenisation, were steam sterilisable and were stable for > 300 days (25 degrees C). Injection of rats (7.5 ml kg-1 b.w.) with emulsions produced significant (P < 0.05), transient increases in liver and spleen weights. One emulsion inhibited phorbol 12-myristate 13-acetate (PMA)-stimulated, Luminol-enhanced, chemiluminescence of human polymorphonuclear leucocytes (PMNL) in vitro, suggesting possible applications in ischaemic tissues for suppressing PMNL-mediated inflammation. The P6 fluoro-surfactant inhibited spontaneous platelet aggregation in hirudin-anticoagulated human blood in vitro, suggesting possible applications as an anti-thrombotic agent.
Collapse
Affiliation(s)
- K C Lowe
- School of Biological Sciences (Life Science), University of Nottingham, U.K
| |
Collapse
|
35
|
Abstract
Blood transfusion is a remarkably safe, routine clinical procedure. However, the need for sophisticated blood processing, storage and cross-matching, coupled with increasing concerns about the safety of blood products, has fuelled the search for safe and efficacious substitutes. Candidate materials based on modified haemoglobin (including recombinant molecules) or highly inert, respiratory gas-dissolving perfluorinated liquids (perfluorochemicals) have been developed. The latter are immiscible in aqueous systems and must, therefore, be injected as emulsions. Second-generation perfluorochemical emulsions are available and in clinical trials as temporary intravascular oxygen carriers during surgery, thereby reducing patient exposure to donor blood. One commercial product is currently under Phase III clinical evaluation, with regulatory approval expected within 1 2 years. Other biomedical applications for perfluorochemicals and their emulsions include their use as pump-priming fluids for cardiopulmonary bypass, lung ventilation fluids, anti-cancer agents, organ perfusates and cell culture media supplements, diagnostic imaging agents and ophthalmologic tools. Novel applications for perfluorochemicals as immunomodulating agents are also being explored.
Collapse
Affiliation(s)
- K C Lowe
- School of Biological Sciences, University of Nottingham, University Park, UK
| |
Collapse
|
36
|
Top ten considerations in the development of parenteral emulsions. PHARMACEUTICAL SCIENCE & TECHNOLOGY TODAY 1999; 4:134-143. [PMID: 10322370 DOI: 10.1016/s1461-5347(99)00141-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of parenteral emulsions continues to play an important role in the formulation and delivery of many drugs. In addition to solubilization and stabilization applications, appropriately designed parenteral emulsions are effective delivery systems for sustained release and targeting of drugs. Control of the strict requirements of globule size and surface charge is important in the design and ultimate stability of the formulation. This review highlights the important issues and suggests strategies to assist the scientist in the development, manufacture and stability of this essential dosage form.
Collapse
|
37
|
Reverse water-in-fluorocarbon emulsions as a drug delivery system: an in vitro study. Colloids Surf A Physicochem Eng Asp 1999. [DOI: 10.1016/s0927-7757(98)00629-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Roper TD, Friedrich PE, Gees T, Lackey WJ, Mader C, Vierling P, Santaella C. An Efficient and Scalable Synthesis of Perfluorinated Phosphatidylcholines. Org Process Res Dev 1998. [DOI: 10.1021/op970123c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas D. Roper
- Chemical Development Division, Glaxo Wellcome Inc., Five Moore Drive, Research Triangle Park, North Carolina 27709
| | - Paul E. Friedrich
- Chemical Development Division, Glaxo Wellcome Inc., Five Moore Drive, Research Triangle Park, North Carolina 27709
| | - Thomas Gees
- Chemical Development Division, Glaxo Wellcome Inc., Five Moore Drive, Research Triangle Park, North Carolina 27709
| | - William J. Lackey
- Chemical Development Division, Glaxo Wellcome Inc., Five Moore Drive, Research Triangle Park, North Carolina 27709
| | - Catherine Mader
- Chemical Development Division, Glaxo Wellcome Inc., Five Moore Drive, Research Triangle Park, North Carolina 27709
| | - Pierre Vierling
- Chemical Development Division, Glaxo Wellcome Inc., Five Moore Drive, Research Triangle Park, North Carolina 27709
| | - Catherine Santaella
- Chemical Development Division, Glaxo Wellcome Inc., Five Moore Drive, Research Triangle Park, North Carolina 27709
| |
Collapse
|
39
|
|
40
|
Krafft MP, Riess JG. Highly fluorinated amphiphiles and colloidal systems, and their applications in the biomedical field. A contribution. Biochimie 1998; 80:489-514. [PMID: 9782389 DOI: 10.1016/s0300-9084(00)80016-4] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fluorocarbons and fluorocarbon moieties are uniquely characterized by very strong intramolecular bonds and very weak intermolecular interactions. This results in a combination of exceptional thermal, chemical and biological inertness, low surface tension, high fluidity, excellent spreading characteristics, low solubility in water, and high gas dissolving capacities, which are the basis for innovative applications in the biomedical field. Perfluoroalkyl chains are larger and more rigid than their hydrogenated counterparts. They are considerably more hydrophobic, and are lipophobic as well. A large variety of well-defined, modular fluorinated surfactants whose polar head groups consist of polyols, sugars, sugar phosphates, amino acids, amine oxides, phosphocholine, phosphatidylcholine, etc, has recently been synthesized. Fluorinated surfactants are significantly more surface active than their hydrocarbon counterparts, both in terms of effectiveness and of efficiency. Despite this, they are less hemolytic and less detergent. Fluorosurfactants appear unable to extract membrane proteins. Fluorinated chains confer to surfactants a powerful driving force for collecting and organizing at interfaces. As compared to non-fluorinated analogs, fluorosurfactants have also a much stronger capacity to self-aggregate into discrete molecular assemblies when dispersed in water and other solvents. Even very short, single-chain fluorinated amphiphiles can form highly stable, heat-sterilizable vesicles, without the need for supplementary associative interactions. Sturdy microtubules were obtained from non-chiral, non-hydrogen bonding single-chain fluorosurfactants. Fluorinated amphiphiles can be used to engineer a variety of colloidal systems and manipulate their morphology, structure and properties. Stable fluorinated films, membranes and vesicles can also be prepared from combinations of standard surfactants with fluorocarbon/hydrocarbon diblock molecules. In bilayer membranes made from fluorinated amphiphiles the fluorinated tails segregate to form an internal teflon-like hydrophobic and lipophobic film that increases the stability of the membrane and reduces its permeability. This fluorinated film can also influence the behavior of fluorinated vesicles in a biological milieu. For example, it can affect the in vivo recognition and fate of particles, or the enzymatic hydrolysis of phospholipid components. Major applications of fluorocarbons currently in advanced clinical trials include injectable emulsions for delivering oxygen to tissues at risk of hypoxia; a neat fluorocarbon for treatment of acute respiratory failure by liquid ventilation; and gaseous fluorocarbon-stabilized microbubbles for use as contrast agents for ultrasound imaging. Fluorosurfactants also allow the preparation of a range of stable direct and reverse emulsions, microemulsions, multiple emulsions, and gels, some of which may include fluorocarbon and hydrocarbon and aqueous phases simultaneously. Highly fluorinated systems have potential for the delivery of drugs, prodrugs, vaccines, genes, markers, contrast agents and other materials.
Collapse
Affiliation(s)
- M P Krafft
- Institut Charles-Sadron (UPR-CNRS 22), Strasbourg, France
| | | |
Collapse
|
41
|
Szlávik Z, Csámpai A, Pierre Krafft M, Riess JG, Rábai J. The preparation of methyl 9-iodo-perfluorononanoate: an access to reverse fluorinated amphiphiles. Tetrahedron Lett 1997. [DOI: 10.1016/s0040-4039(97)10344-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|