1
|
Long K, Vaughn Z, McDaniels MD, Joyasawal S, Przepiorski A, Parasky E, Sander V, Close D, Johnston PA, Davidson AJ, de Caestecker M, Hukriede NA, Huryn DM. Validation of HDAC8 Inhibitors as Drug Discovery Starting Points to Treat Acute Kidney Injury. ACS Pharmacol Transl Sci 2022; 5:207-215. [PMID: 35434532 PMCID: PMC9003639 DOI: 10.1021/acsptsci.1c00243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Indexed: 12/25/2022]
Abstract
Acute kidney injury (AKI), a sudden loss of kidney function, is a common and serious condition for which there are no approved specific therapies. While there are multiple approaches to treat the underlying causes of AKI, no targets have been clinically validated. Here, we assessed a series of potent, selective competitive inhibitors of histone deacetylase 8 (HDAC8), a promising therapeutic target in an AKI setting. Using biochemical assays, zebrafish AKI phenotypic assays, and human kidney organoid assays, we show that selective HDAC8 inhibitors can lead to efficacy in increasingly stringent models. One of these, PCI-34051, was efficacious in a rodent model of AKI, further supporting the potential for HDAC8 inhibitors and, in particular, this scaffold as a therapeutic approach to AKI.
Collapse
Affiliation(s)
- Keith Long
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zoe Vaughn
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Michael David McDaniels
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sipak Joyasawal
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Aneta Przepiorski
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Emily Parasky
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Veronika Sander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand 1010
| | - David Close
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand 1010
| | - Mark de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Neil A Hukriede
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Donna M Huryn
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
2
|
Rashidipour N, Karami-Mohajeri S, Mandegary A, Mohammadinejad R, Wong A, Mohit M, Salehi J, Ashrafizadeh M, Najafi A, Abiri A. Where ferroptosis inhibitors and paraquat detoxification mechanisms intersect, exploring possible treatment strategies. Toxicology 2020; 433-434:152407. [PMID: 32061663 DOI: 10.1016/j.tox.2020.152407] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Paraquat (PQ) is a fast-acting and effective herbicide that is used throughout the world to eliminate weeds. Over the past years, PQ was considered one of the most popular poisoning substances for suicide, and PQ poisoning accounts for about one-third of suicides around the world. Poisoning with PQ may cause multiorgan failure, pulmonary fibrosis, and ultimately death. Exposure to PQ results in the accumulation of PQ in the lungs, causing severe damage and, eventually, fibrosis. Until now, no effective antidote has been found to treat poisoning with PQ. In general, the toxicity of PQ is due to the formation of high energy oxygen free radicals and the peroxidation of unsaturated lipids in the cell. Ferroptosis is the result of the loss of glutathione peroxidase 4 (GPX4) activity that transforms iron-dependent lipid hydroperoxides to lipid alcohols, which are inert in the biological environment. Impaired iron metabolism and lipid peroxidation are increasingly known as the driving agents of ferroptosis. The contribution of ferroptosis to the development of cell death during poisoning with PQ has not yet been addressed. There is growing evidence about the relationship between PQ poisoning and ferroptosis. This raises the possibility of using ferroptosis inhibitors for the treatment of PQ poisoning. In this hypothesis-driven review article, we elaborated how ferroptosis inhibitors might circumvent the toxicity induced by PQ and may be potentially useful for the treatment of PQ toxicity.
Collapse
Affiliation(s)
- Niloofar Rashidipour
- Department of Anesthesiology, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran; Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Somayyeh Karami-Mohajeri
- Department of Toxicology and Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Department of Toxicology and Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Anselm Wong
- Victorian Poisons Information Centre, Emergency Department and Austin Toxicology Unit, Austin Health, Victoria, Australia; Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Victoria, Australia; Centre for Integrated Critical Care, Department of Medicine and Radiology, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Melika Mohit
- Department of Laboratory Sciences, Sirjan Faculty of Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Jafar Salehi
- Department of Anesthesiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Najafi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Samuni U, Maimon E, Goldstein S. A kinetic study of the oxidation of hydroxamic acids by compounds I and II of horseradish peroxidase: Effect of transition metal ions. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1493200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Uri Samuni
- Chemistry & Biochemistry Department, Queens College, City University of New York, Flushing, NY, USA
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Eric Maimon
- Nuclear Research Centre Negev, Beer Sheva, Israel
| | - Sara Goldstein
- Institute of Chemistry, The Accelerator Laboratory, the Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Maimon E, Samuni A, Goldstein S. Nitrogen Dioxide Reaction with Nitroxide Radical Derived from Hydroxamic Acids: The Intermediacy of Acyl Nitroso and Nitroxyl (HNO). J Phys Chem A 2018; 122:3747-3753. [PMID: 29608853 DOI: 10.1021/acs.jpca.8b02300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxamic acids (RC(O)NHOH) form a class of compounds that display interesting chemical and biological properties The chemistry of RC(O)NHOH) is associated with one- and two-electron oxidations forming the respective nitroxide radical (RC(O)NHO•) and acyl nitroso (RC(O)N═O), respectively, which are relatively unstable species. In the present study, the kinetics and mechanism of the •NO2 reaction with nitroxide radicals derived from acetohydroxamic acid, suberohydroxamic acid, benzohydroxamic acid, and suberoylanilide hydroxamic acid have been studied in alkaline solutions. Ionizing radiation was used to generate about equal yields of these radicals, demonstrating that the oxidation of the transient nitroxide radical by •NO2 produces HNO and nitrite at about equal yields. The rate constant of •NO2 reaction with the nitroxide radical derived from acetohydroxamic acid has been determined to be (2.5 ± 0.5) × 109 M-1 s-1. This reaction forms a transient intermediate absorbing at 314 nm, which decays via a first-order reaction whose rate increases upon increasing the pH or the hydroxamic acid concentration. Transient intermediates absorbing around 314 nm are also formed during the oxidation of hydroxamic acids by H2O2 catalyzed by horseradish peroxidase. It is shown that HNO is formed during the decomposition of these intermediates, and therefore, they are assigned to acyl nitroso compounds. This study provides for the first time a direct spectrophotometric detection of acyl nitroso compounds in aqueous solutions allowing the study of their chemistry and reaction kinetics.
Collapse
Affiliation(s)
- Eric Maimon
- Nuclear Research Centre Negev , Beer Sheva , Israel
| | - Amram Samuni
- Institute of Medical Research Israel-Canada , Medical School, The Hebrew University of Jerusalem , Jerusalem 91120 , Israel
| | - Sara Goldstein
- Institute of Chemistry, The Accelerator Laboratory , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
5
|
Abstract
The nitrosocarbonyls (R-CONO) are highly reactive species and remarkable intermediates toward different synthetic targets. This review will cover a research area whose impact in current organic synthesis is constantly increasing in the chemical community. This review represents the first and comprehensive picture on the generation and trapping of nitrosocarbonyls and is solidly built on more than 380 papers. Six different classes of key starting materials such as hydroxamic acids, N-hydroxy carbamates, N-hydroxyureas, nitrile oxides, and 1,2,4-oxadiazole-4-oxides were highlighted. The content of the review surveys all the methods to generate the nitrosocarbonyls through different approaches (oxidative, thermal, photochemical, catalytic, aerobic, and the less common ones) in the light of efficiency, yields, and mildness. The most successful trapping agents employed to catch these fleeting intermediates are reviewed, exploiting their superior dienophilic, enophilic, and electrophilic power. The work is completed by paragraphs dedicated to the detection of the intermediates, theoretical studies, and insights about the challenges and future directions for the field.
Collapse
Affiliation(s)
- Misal Giuseppe Memeo
- Dipartimento di Chimica, Università degli Studi di Pavia , Viale Taramelli 12, 27100 Pavia, Italy
| | - Paolo Quadrelli
- Dipartimento di Chimica, Università degli Studi di Pavia , Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
6
|
Mocci R, Luca LD, Delogu F, Porcheddu A. An Environmentally Sustainable Mechanochemical Route to Hydroxamic Acid Derivatives. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600350] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rita Mocci
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche; SS 554 bivio per Sestu 09042 Monserrato (Ca Italy
| | - Lidia De Luca
- Università degli Studi di Sassari, Dipartimento di Chimica e Farmacia; via Vienna 2 07100 Sassari Italy
| | - Francesco Delogu
- Università degli Studi di Cagliari, Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali; via Marengo 2 09123 Cagliari Italy
| | - Andrea Porcheddu
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche; SS 554 bivio per Sestu 09042 Monserrato (Ca Italy
| |
Collapse
|
7
|
Gutiérrez MM, Almaraz AE, Bari SE, Olabe JA, Amorebieta VT. The HNO donor ability of hydroxamic acids upon oxidation with cyanoferrates(III). J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1068938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- María M. Gutiérrez
- Facultad de Ciencias Exactas y Naturales, Departamento de Química, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Alejandra E. Almaraz
- Facultad de Ciencias Exactas y Naturales, Departamento de Química, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Sara E. Bari
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE (UBA, CONICET), Buenos Aires, Argentina
| | - José A. Olabe
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE (UBA, CONICET), Buenos Aires, Argentina
| | - Valentín T. Amorebieta
- Facultad de Ciencias Exactas y Naturales, Departamento de Química, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
8
|
Goldstein S, Samuni A. Oxidation Mechanism of Hydroxamic Acids Forming HNO and NO. ADVANCES IN INORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.adioch.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Yadav R, Goldstein S, Nasef MO, Lee W, Samuni U. Synergistic activity of acetohydroxamic acid on prokaryotes under oxidative stress: the role of reactive nitrogen species. Free Radic Biol Med 2014; 77:291-7. [PMID: 25261226 DOI: 10.1016/j.freeradbiomed.2014.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022]
Abstract
One-electron oxidation of acetohydroxamic acid (aceto-HX) initially gives rise to nitroxyl (HNO), which can be further oxidized to nitric oxide (NO) or react with potential biological targets such as thiols and metallo-proteins. The distinction between the effects of NO and HNO in vivo is masked by the reversible redox exchange between the two congeners and by the Janus-faced behavior of NO and HNO. The present study examines the ability of aceto-HX to serve as an HNO donor or an NO donor when added to Escherichia coli and Bacillus subtilis subjected to oxidative stress by comparing its effects to those of NO and commonly used NO and HNO donors. The results demonstrate that: (i) the effects of NO and HNO on the viability of prokaryotes exposed to H2O2 depend on the type of the bacterial cell; (ii) NO synergistically enhances H2O2-induced killing of E. coli, but protects B. subtilis depending on the extent of cell killing by H2O2; (iii) the HNO donor Angeli׳s salt alone has no effect on the viability of the cells; (iv) Angeli׳s salt synergistically enhances H2O2-induced killing of B. subtilis, but not of E. coli; (v) aceto-HX alone (1-4 mM) has no effect on the viability of the cells; (vi) aceto-HX enhances the killing of both cells induced by H2O2 and metmyoglobin, which may be attributed in the case of B. subtilis to the formation of HNO and to further oxidation of HNO to NO in the case of E. coli; (vii) the synergistic activity of aceto-HX on the killing of both cells induced by H2O2 alone does not involve reactive nitrogen species. The effect of aceto-HX on prokaryotes under oxidative stress is opposite to that of other hydroxamic acids on mammalian cells.
Collapse
Affiliation(s)
- Reeta Yadav
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Sara Goldstein
- Chemistry Institute, the Accelerator Laboratory, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mohamed O Nasef
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Wendy Lee
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Uri Samuni
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
10
|
ZHAO YANXIA, YU DANDAN, WU HONGGE, LIU HONGLI, ZHOU HONGXIA, GU RUNXIA, ZHANG RUIGUANG, ZHANG SHENG, WU GANG. Anticancer activity of SAHA, a potent histone deacetylase inhibitor, in NCI-H460 human large-cell lung carcinoma cells in vitro and in vivo. Int J Oncol 2013; 44:451-8. [DOI: 10.3892/ijo.2013.2193] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/07/2013] [Indexed: 11/05/2022] Open
|
11
|
Fernando R, Shirley JM, Torres E, Jacobs HK, Gopalan AS. Preparation of bifunctional isocyanate hydroxamate linkers: Synthesis of carbamate and urea tethered polyhydroxamic acid chelators. Tetrahedron Lett 2012; 53:6367-6371. [PMID: 23162172 PMCID: PMC3498463 DOI: 10.1016/j.tetlet.2012.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two novel bifunctional N-methylhydroxamate-isocyanate linkers 20 and 21 were prepared in good yield and high purity from the corresponding amine salts using a biphasic reaction with phosgene. The facile ring opening reaction of N-Boc lactams using the anion of O-benzylhydroxylamine gave the protected amino hydroxamates 6a and 6c in good yields. The selective methylation of the hydroxamate nitrogen in the presence of the N-Boc group in these intermediates could be readily accomplished. The utility of the linkers was clearly demonstrated by the synthesis of the carbamate-tethered trishydroxamic acid 27 and the urea-tethered 29.
Collapse
Affiliation(s)
- Rasika Fernando
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| | - Jonathan M. Shirley
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| | - Emilio Torres
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| | - Hollie K. Jacobs
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| | - Aravamudan S. Gopalan
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| |
Collapse
|
12
|
Samuni Y, Samuni U, Goldstein S. The mechanism underlying nitroxyl and nitric oxide formation from hydroxamic acids. Biochim Biophys Acta Gen Subj 2012; 1820:1560-6. [PMID: 22634736 DOI: 10.1016/j.bbagen.2012.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/19/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND The pharmacological effects of hydroxamic acids (RC(O)NHOH, HX) are partially attributed to their ability to serve as HNO and/or NO donors under oxidative stress. Given the development and use of HXs as therapeutic agents, elucidation of the oxidation mechanism is needed for more educated selection of HX-based drugs. METHODS Acetohydroxamic and glycine-hydroxamic acids were oxidized at pH 7.0 by a continuous flux of radiolytically generated (·)OH or by metmyoglobin and H(2)O(2) reactions system. Gas chromatography and spectroscopic methods were used to monitor the accumulation of N(2)O, N(2), nitrite and hydroxylamine. RESULTS Oxidation of HXs by (·)OH under anoxia yields N(2)O, but not nitrite, N(2) or hydroxylamine. Upon the addition of H(2)O(2) to solutions containing HX and metmyoglobin, which is instantaneously and continuously converted into compound II, nitrite and, to a lesser extent, N(2)O are accumulated under both anoxia and normoxia. CONCLUSIONS Oxidation of HXs under anoxia by a continuous flux of (·)OH, which solely oxidizes the hydroxamate moiety to RC(O)NHO(·), forms HNO. This observation implies that bimolecular decomposition of RC(O)NHO(·) competes efficiently with unimolecular decomposition processes such as internal disproportionation, hydrolysis or homolysis. Oxidation by metmyoglobin/H(2)O(2) involves relatively mild oxidants (compounds I and II). Compound I reacts with HX forming RC(O)NHO(·) and compound II, which oxidizes HX, RC(O)NHO(·), HNO and NO. The latter reaction is the main source of nitrite. GENERAL SIGNIFICANCE HXs under oxidative stress release HNO, but can be considered as NO-donors provided that HNO oxidation is more efficient than its reaction with other biological targets.
Collapse
Affiliation(s)
- Yuval Samuni
- Oral and Maxillofacial Surgery, The Brazilai Medical Center, Ashkelon, Israel
| | | | | |
Collapse
|
13
|
Andrei D, Salmon DJ, Donzelli S, Wahab A, Klose JR, Citro ML, Saavedra JE, Wink DA, Miranda KM, Keefer LK. Dual mechanisms of HNO generation by a nitroxyl prodrug of the diazeniumdiolate (NONOate) class. J Am Chem Soc 2010; 132:16526-32. [PMID: 21033665 PMCID: PMC2984372 DOI: 10.1021/ja106552p] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Indexed: 12/28/2022]
Abstract
Here we describe a novel caged form of the highly reactive bioeffector molecule, nitroxyl (HNO). Reacting the labile nitric oxide (NO)- and HNO-generating salt of structure iPrHN-N(O)═NO(-)Na(+) (1, IPA/NO) with BrCH(2)OAc produced a stable derivative of structure iPrHN-N(O)═NO-CH(2)OAc (2, AcOM-IPA/NO), which hydrolyzed an order of magnitude more slowly than 1 at pH 7.4 and 37 °C. Hydrolysis of 2 to generate HNO proceeded by at least two mechanisms. In the presence of esterase, straightforward dissociation to acetate, formaldehyde, and 1 was the dominant path. In the absence of enzyme, free 1 was not observed as an intermediate and the ratio of NO to HNO among the products approached zero. To account for this surprising result, we propose a mechanism in which base-induced removal of the N-H proton of 2 leads to acetyl group migration from oxygen to the neighboring nitrogen, followed by cleavage of the resulting rearrangement product to isopropanediazoate ion and the known HNO precursor, CH(3)-C(O)-NO. The trappable yield of HNO from 2 was significantly enhanced over 1 at physiological pH, in part because the slower rate of hydrolysis for 2 generated a correspondingly lower steady-state concentration of HNO, thus, minimizing self-consumption and enhancing trapping by biological targets such as metmyoglobin and glutathione. Consistent with the chemical trapping efficiency data, micromolar concentrations of prodrug 2 displayed significantly more potent sarcomere shortening effects relative to 1 on ventricular myocytes isolated from wild-type mouse hearts, suggesting that 2 may be a promising lead compound for the development of heart failure therapies.
Collapse
|