1
|
Martín Gómez MA, Caba Molina M, León Fradejas M, Alonso Titos J, Del Pozo Alvarez R. Focal segmental glomerulosclerosis associated with undescribed mutation in the LMX1B gene. Eur J Med Genet 2024; 72:104980. [PMID: 39490407 DOI: 10.1016/j.ejmg.2024.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
A 50-year-old woman presented with nephrotic proteinuria and preserved glomerular filtration rate. A renal biopsy showed focal segmental glomerulosclerosis (FSGS) and glomerular basement membrane thinning. Her brother has a long history of chronic kidney disease, formerly diagnosed with minimal change disease, and eventually received a kidney allograft, developing high-grade proteinuria and decline in kidney function. FSGS was found by biopsy. Lastly, one paternal uncle suffered from the same condition, but he declined a biopsy. A genetic test identified a novel missense mutation in LMX1B, c.349G > A:p(Gly117Ser). Thus, the present series of cases shows a familial LMX1B-associated nephropathy presenting with FSGS.
Collapse
Affiliation(s)
| | | | | | - Juana Alonso Titos
- Nephrology Department, Hospital Regional Universitario de Málaga, Málaga, Spain
| | | |
Collapse
|
2
|
Li X, Fan J, Fu R, Peng M, He J, Chen Q, Wang S, Chen C. Case report: A novel R246L mutation in the LMX1B homeodomain causes isolated nephropathy in a large Chinese family. Medicine (Baltimore) 2024; 103:e37442. [PMID: 38457557 PMCID: PMC10919518 DOI: 10.1097/md.0000000000037442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/09/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Genetic factors contribute to chronic kidney disease (CKD) and end-stage renal disease (ESRD). Advances in genetic testing have enabled the identification of hereditary kidney diseases, including those caused by LMX1B mutations. LMX1B mutations can lead to nail-patella syndrome (NPS) or nail-patella-like renal disease (NPLRD) with only renal manifestations. CASE PRESENTATION The proband was a 13-year-old female who was diagnosed with nephrotic syndrome at the age of 6. Then she began intermittent hormone and drug therapy. When she was 13 years old, she was admitted to our hospital due to sudden chest tightness, which progressed to end-stage kidney disease (ESRD), requiring kidney replacement therapy. Whole-Exome Sequencing (WES) results suggest the presence of LMX1B gene mutation, c.737G > T, p.Arg246Leu. Tracing her family history, we found that her father, grandmother, uncle and 2 cousins all had hematuria, or proteinuria. In addition to the grandmother, a total of 9 members of the family performed WES. The members with kidney involved all carry the mutated gene. Healthy members did not have the mutated gene. It is characterized by co-segregation of genotype and phenotype. We followed the family for 9 year, the father developed ESRD at the age of 50 and started hemodialysis treatment. The rest patients had normal renal function. No extra-renal manifestations associated with NPS were found in any member of the family. CONCLUSIONS This study has successfully identified missense mutation, c.737G > T (p.Arg246Leu) in the homeodomain, which appears to be responsible for isolated nephropathy in the studied family. The arginine to leucine change at codon 246 likely disrupts the DNA-binding homeodomain of LMX1B. Previous research has documented 2 types of mutations at codon R246, namely R246Q and R246P, which are known to cause NPLRD. The newly discovered mutation, R246L, is likely to be another novel mutation associated with NPLRD, thus expanding the range of mutations at the crucial renal-critical codon 246 that contribute to the development of NPLRD. Furthermore, our findings suggest that any missense mutation occurring at the 246th amino acid position within the homeodomain of the LMX1B gene has the potential to lead to NPLRD.
Collapse
Affiliation(s)
- Xian Li
- Xinxiang Medical Univeisity, Xinxiang, China
- Puyang Oilfield General Hospital, Puyang, China
| | - Jiaojiao Fan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Fu
- Puyang Oilfield General Hospital, Puyang, China
| | - Ming Peng
- Beijing Chigene Translational Medicine Research Center Co., Ltd, Beijing, China
| | - Jujie He
- Puyang Oilfield General Hospital, Puyang, China
| | | | | | - Chong Chen
- Puyang Oilfield General Hospital, Puyang, China
| |
Collapse
|
3
|
LMX1B mRNA expression and its gene body CpG methylation are valuable prognostic biomarkers for laryngeal squamous cell carcinoma. Biomed Pharmacother 2019; 117:109174. [PMID: 31387183 DOI: 10.1016/j.biopha.2019.109174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/15/2019] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
This study aimed to explore the prognostic value of LMX1B mRNA expression and the methylation of its CpG sites in patients with laryngeal squamous cell carcinoma (LSCC). An in-silicon analysis was performed using data from the cancer genome atlas (TCGA)-Head and Neck Squamous Carcinoma (HNSC). After screening, 112 LSCC and 10 adjacent normal tissues were identified as eligible samples for analysis. Results showed that LMX1B expression was significantly upregulated in the cancer tissues (p < 0.01) and was an independent prognostic indicator in terms of OS (HR: 1.233, 95%CI: 1.082-1.405, p = 0.002) and RFS (HR: 1.200, 95%CI: 1.002-1.438, p = 0.048). By examining the methylation profile of 55 CpG sites in LMX1B locus, we found that the promoter methylation status was irrelevant to LMX1B expression. In comparison, LMX1B expression was generally positively correlated with gene body methylation. Among the gene body CpG sites, cg13600622 methylation showed a better predictive value than LMX1B expression in terms of OS (HR: 12.363, 95%CI: 1.076-142.033, p = 0.043), while cg14204784 methylation was a better marker of shorter RFS (HR: 12.363, 95%CI: 1.076-142.033, p = 0.043). Among the known downstream genes of LMX1B, only NR4A2 expression showed a moderately negative correlation (Pearson's r = -0.54) with it in LSCC tissues. However, this correlation was inconsistent with previous publications those reported a positive correlation between them. Based on these findings, we infer that upregulated LMX1B mRNA expression had an independent prognostic value in LSCC patients. Increased gene body methylation might be an important mechanism of its upregulation. Among the gene body CpG sites, cg13600622 and cg14204784 methylation level might be better prognostic markers than LMX1B mRNA expression in terms of OS and RFS respectively.
Collapse
|
4
|
Liu Y, Dai E, Yang J. Quercetin suppresses glomerulosclerosis and TGF‑β signaling in a rat model. Mol Med Rep 2019; 19:4589-4596. [PMID: 30942399 PMCID: PMC6522826 DOI: 10.3892/mmr.2019.10118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
The transforming growth factor-β (TGF-β) signaling pathway is an important regulatory pathway in renal fibrosis and is abnormally activated in glomerulosclerosis. Quercetin is a common Chinese herbal medicine and has been reported to inhibit TGF-β signaling pathway activation. In the present study a glomerulosclerosis rat model was constructed and mice were treated with different concentrations of quercetin. Biochemical parameters, pathological indices and expression levels of TGF-β signaling pathway-associated proteins were detected using immunohistochemistry and western blotting. It was demonstrated that quercetin significantly improved physiological indices and altered the expression levels of TGF-β signaling pathway-associated proteins in rats with glomerulosclerosis. In conclusion, quercetin can regulate the TGF-β signaling pathway and reduce the progression of glomerulosclerosis.
Collapse
Affiliation(s)
- Yifan Liu
- Cooperation of Chinese and Western Medicine Department, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Enlai Dai
- Cooperation of Chinese and Western Medicine Department, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Jing Yang
- Department of Children Glomerular Disease, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
5
|
Zhou TB, Ou C, Jiang ZP, Xiong MR, Zhang F. Potential signal pathway between all-trans retinoic acid and LMX1B in hypoxia-induced renal tubular epithelial cell injury. J Recept Signal Transduct Res 2015; 36:53-6. [PMID: 26096167 DOI: 10.3109/10799893.2015.1018434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All-trans retinoic acid (ATRA), an active metabolite of vitamin A, exerts various effects on physiological processes such as cell growth, differentiation, apoptosis and inflammation. LMX1B, a developmental LIM-homeodomain transcription factor, is widely expressed in vertebrate embryos, and it takes part in the development of diverse structures such as limbs, kidneys, eyes, brains, etc. Renal tubular epithelial cell culture was performed, and mRNA and protein expression of some factors were detected. We recently demonstrated that ATRA up-regulated the LMX1B, and down-regulated the transforming growth factor-β1, collagen IV and fibronectin in a hypoxia/reoxygenation (H-R) injury system in renal tubular epithelial cells (RTEC). In conclusion, ATRA acts as a positive regulator of LMX1B in H-R RTEC.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- a Department of Nephrology , The Sixth Affiliated Hospital, Sun Yat-Sen University , Guangzhou , P.R. China
| | - Chao Ou
- b Department of Experimental Pathology , The Affiliated Tumor Hospital of Guangxi Medical University , NanNing , P.R. China
| | - Zong-Pei Jiang
- a Department of Nephrology , The Sixth Affiliated Hospital, Sun Yat-Sen University , Guangzhou , P.R. China
| | - Meng-Ran Xiong
- a Department of Nephrology , The Sixth Affiliated Hospital, Sun Yat-Sen University , Guangzhou , P.R. China .,c Department of Critical Care Medicine , and
| | - Feng Zhang
- a Department of Nephrology , The Sixth Affiliated Hospital, Sun Yat-Sen University , Guangzhou , P.R. China .,d Department of Respiration , The Sixth Affiliated Hospital, Sun Yat-Sen University , Guangzhou , P.R. China
| |
Collapse
|
6
|
Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Role of toll-like receptors in myocardial infarction. J Recept Signal Transduct Res 2014; 35:420-2. [PMID: 25515816 DOI: 10.3109/10799893.2014.993649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toll-like receptors (TLRs) play a pivotal role in both innate and adaptive immunity, and TLRs recognize invading pathogens through molecular pattern recognition, and ultimately lead to the activation of transcription factors and inflammatory responses. Myocardial infarction leads to changes in the remodeling of the left ventricle of the heart, and the degree and type of remodeling provides important diagnostic information for the therapeutic management of ischemic heart disease. Innate immune takes a most important role in myocardial infarction. There are some studies reporting that TLRs play an important role in the myocardial infarction. The literatures were searched extensively and this review was performed to review the role of TLRs in myocardial infarction.
Collapse
Affiliation(s)
- Yu Sun
- a Department of Cardio-Thoracic Surgery , The First Affiliated Hospital of GuangXi Medical University , NanNing , China
| | - Wen-Zhou Liu
- a Department of Cardio-Thoracic Surgery , The First Affiliated Hospital of GuangXi Medical University , NanNing , China
| | - Tao Liu
- a Department of Cardio-Thoracic Surgery , The First Affiliated Hospital of GuangXi Medical University , NanNing , China
| | - Xu Feng
- a Department of Cardio-Thoracic Surgery , The First Affiliated Hospital of GuangXi Medical University , NanNing , China
| | - Nuo Yang
- a Department of Cardio-Thoracic Surgery , The First Affiliated Hospital of GuangXi Medical University , NanNing , China
| | - Hua-Fu Zhou
- a Department of Cardio-Thoracic Surgery , The First Affiliated Hospital of GuangXi Medical University , NanNing , China
| |
Collapse
|
7
|
Mao S, Zhang A, Huang S. The signaling pathway of uromodulin and its role in kidney diseases. J Recept Signal Transduct Res 2014; 34:440-4. [PMID: 24849497 DOI: 10.3109/10799893.2014.920029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The uromodulin (UMOD) is a glycoprotein expressed exclusively by renal tubular cells lining the thick ascending limb of the loop of Henle. UMOD acts as a regulatory protein in health and in various conditions. For kidney diseases, its role remains elusive. On one hand, UMOD plays a role in binding and excretion of various potentially injurious products from the tubular fluid. On the other hand, chronic kidney disease is associated with higher serum levels of UMOD. Signaling pathways might be very important in the pathogenesis of kidney diseases. We performed this review to provide a relatively complete signaling pathway flowchart for UMOD to the investigators who were interested in the role of UMOD in the pathogenesis of kidney diseases. Here, we reviewed the signal transduction pathway of UMOD and its role in the pathogenesis of kidney diseases.
Collapse
Affiliation(s)
- Song Mao
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University , Nanjing , China
| | | | | |
Collapse
|
8
|
Lei FY, Zhou TB, Qin YH, Chen XP, Li ZY. Potential signal pathway of all-trans retinoic acid for MMP-2 and MMP-9 expression in injury podocyte induced by adriamycin. J Recept Signal Transduct Res 2014; 34:378-85. [PMID: 24694005 DOI: 10.3109/10799893.2014.904873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
All-trans-retinoic acid (ATRA) can regulate some specific genes expression in various tissue and cells via nuclear retinoic acid receptors (RARs), including three subtypes: retinoic acid receptor-alpha (RAR-α), retinoic acid receptor-beta (RAR-β) and retinoic acid receptor-gamma (RAR-γ). Podocyte injury plays a pivotal role in the progression of glomerulosclerosis (GS). This study was performed to study the potential signal pathway of ATRA in the expression of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9) in injury podocyte. Cells were divided into three groups: group of negative control (NC), group of injury podocyte induced by adriamycin (ADR) (AI) and group of ADR inducing podocyte injury model treated with ATRA (AA). The cells morphology changes were detected using microscope and scanning electron microscopy. MMP-2 and MMP-9 enzymic activity was detected using the gelatin zymography method. Protein and mRNA expressions of MMP-2, MMP-9, RAR-α, RAR-β and RAR-γ were measured by western-blot and real-time RT-PCR. Enzymatic activity of MMP-2 and MMP-9 in group AA was significantly enhanced compared to AI group after ATRA-treated 24 h (p < 0.05). The protein and mRNA expressions of MMP-2/MMP-9 in group AA were significantly increased than those in group AI at both 12 and 24 h time points (p < 0.05). Compared to group AI, RAR-α and RAR-γ protein/mRNA expressions of group AA were significantly increased at both 12 and 24 h time points (p < 0.05). There was no difference for the expression of RAR-β between group AI and group AA (p > 0.05). RAR-α protein level was positively correlated with MMP-2 or MMP-9 protein expression (p < 0.05), and RAR-γ protein level was also positively correlated with MMP-2 or MMP-9 protein expression (p < 0.05). In conclusion, ATRA may increase expression of MMP-2 and MMP-9 by the potential signal pathway of RAR-α and RAR-γ in injury podocyte induced by adriamycin, but not RAR-β.
Collapse
Affiliation(s)
- Feng-Ying Lei
- Department of Pediatrics, The First Affiliated Hospital of GuangXi Medical University , NanNing , China and
| | | | | | | | | |
Collapse
|
9
|
Zhou TB. Role of high mobility group box 1 and its signaling pathways in renal diseases. J Recept Signal Transduct Res 2014; 34:348-50. [PMID: 24673522 DOI: 10.3109/10799893.2014.904875] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The high mobility group box 1 (HMGB1) protein, a member of the high mobility group nuclear protein family and an endogenous ligand for TLR2/4 and RAGE (receptor for advanced glycation end products), is one of the most evolutionarily conserved proteins and it has recently emerged as an extracellular signaling factor with key roles in cell differentiation, proliferation and disease pathogenesis. The present data indicate that HMGB1 is one of most important proinflammatory cytokines, and plays an important role in renal diseases. The literatures were searched extensively and this review was performed to sum up the role of HMGB1 in renal diseases.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
10
|
Lin W, Chen J, Zhu B, Xu X, Dong Z. Role of toll-like receptors gene polymorphism in hepatocellular carcinoma. J Recept Signal Transduct Res 2014; 34:345-7. [PMID: 24641696 DOI: 10.3109/10799893.2014.903419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toll-like receptors (TLRs), evolutionarily conserved innate, play important roles in the development of autoimmunity. TLRs proteins are localized on the cell surface or in endosomes and play critical roles in innate immune responses against different pathogens. Aberrant stimulation of the innate immune system through intracellular TLRs may lead to hyperactive immune responses and contribute to the pathogenesis of hepatocellular carcinoma (HCC). HCC is the seventh most common cancer and the third leading cause of cancer deaths worldwide, and innate immune takes a most important role in HCC. There was no review to sum up the role of TLRs gene polymorphism in HCC. This review was performed to sum up the role of TLRs gene polymorphism in HCC.
Collapse
Affiliation(s)
- Wei Lin
- Department of Surgery, Affiliated Hospital of PuTian University , Putian , PR China
| | | | | | | | | |
Collapse
|
11
|
Yang LS, Wu WS, Zhang F, Jiang Y, Fan Y, Fang HX, Long J. Role of toll-like receptors in lung cancer. J Recept Signal Transduct Res 2014; 34:342-4. [PMID: 24641697 DOI: 10.3109/10799893.2014.903418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lung cancer is a leading cause of death world-wide and the long-term survival rate for patients with lung cancer is one of the lowest for any cancer. Toll-like receptors (TLRs), evolutionarily conserved innate, are expressed in a wide variety of tissues and cell types, and they play key role in the innate immune system. TLRs have been found to be expressed by some kinds of tumor cells. However, what is the biological function of TLRs on tumor cells and whether human lung cancer cells can express TLRs remain to be fully understood. This review was performed to sum up the role of TLRs in lung cancer.
Collapse
Affiliation(s)
- Liu-Shan Yang
- Department of Cardio-Thoracic Surgery, The Affiliated Ruikang Hospital of Guangxi University of traditional Chinese Medicine , NanNing , China
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Toll-like receptors (TLRs) are pattern-recognition receptors that recognize microbial/vial-derived components that trigger innate immune response, which indicate these molecules play a role in host defense against infection. The infection often precedes numerous disorders including glomerular diseases (glomerulonephritis (GN)). It is reported that TLRs are also involved in the risk and progression of GN, and TLRs may be potential therapeutic targets for GN. To date, a number of studies have found that TLRs are involved in the pathogenesis of GN. There is a paucity of reviews in the literature discussing signaling pathways and gene expression for TLRs in GN. This review was performed to provide a relatively complete signaling pathway flowchart for TLRs to the investigators who were interested in the roles of TLRs in the pathogenesis of GN. In the past decades, some studies were also performed to explore the association of TLRs gene expression with the risk of GN. However, the role of TLRs in the pathogenesis of GN remains controversial. Here, the signal transduction pathways of TLRs and its role of gene expression in the pathogenesis of GN were reviewed.
Collapse
Affiliation(s)
- Song Mao
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University , Nanjing , China
| | | |
Collapse
|
13
|
Zhou TB. Role of toll-like receptors gene polymorphism in renal transplantation. J Recept Signal Transduct Res 2013; 34:12-4. [PMID: 24308358 DOI: 10.3109/10799893.2013.863917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Zhou TB, Jiang ZP. Role of poly (ADP-ribose)-polymerase and its signaling pathway with renin-angiotensin aldosterone system in renal diseases. J Recept Signal Transduct Res 2013; 34:143-8. [PMID: 24303937 DOI: 10.3109/10799893.2013.865748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP), a ubiquitous, chromatin-bound enzyme, plays a crucial role in many processes, including DNA repair, cell death, metabolism, and inflammatory responses, by activating DNA repair pathways responsible for cellular survival. Renin-angiotensin-aldosterone system (RAAS) genes encode renin, angiotensinogen, angiotensin-converting enzyme, angiotensin type-1 receptor and aldosterone synthase gene. RAAS is a hormone system which acts on multiple physiologic pathways primarily by regulating blood pressure, electrolyte and fluid homeostasis in mammals, but also by local autocrine and paracrine actions. The current status quo of scientific evidence shows that there might be a signaling pathway between PARP and RAAS. Herein, we review the role of PARP and its signaling pathways with RAAS in renal diseases.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | | |
Collapse
|
15
|
Zhou TB, Drummen GPC, Jiang ZP, Long YB, Qin YH. Association of peroxisome proliferator-activated receptors/retinoic acid receptors with renal diseases. J Recept Signal Transduct Res 2013; 33:349-52. [PMID: 24050824 DOI: 10.3109/10799893.2013.838786] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ), belongs to the nuclear receptor superfamily, and is a nuclear transcription receptor involving in the regulation of several biochemical pathways, such as cell growth, differentiation, and apoptosis. The nuclear retinoic acid receptors (RARs) are transcriptional transregulators that control the expression of specific subsets of genes in a ligand-dependent manner, and include three subtypes (RARα, RARβ, and RARγ). These control the expression of specific gene subsets subsequent to ligand binding and to strictly control phosphorylation processes. The current status of knowledge indicates that there might be inter- or overlapping actions between PPARγ and RARs, and there might be an association of PPARγ/RARs with renal diseases. Various agonists of both receptor families seem to prevent or retard the progression of renal disease. Herein, we review if causal relationships can be established between PPARγ/RARs and renal diseases and its manifestations.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | | | | | | | | |
Collapse
|
16
|
Mao S, Huang S. The signaling pathway of NADPH oxidase and its role in glomerular diseases. J Recept Signal Transduct Res 2013; 34:6-11. [PMID: 24156279 DOI: 10.3109/10799893.2013.848892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox), a major source of reactive oxygen species, is a critical mediator of redox signaling. It is well-documented that oxidative stress is associated with the development of glomerular diseases (GN). Hence, the Nox was also thought to be involved in the pathogenesis of GN. However, the expression of Nox in various GN was not consistent, the mechanisms by which the activity of the Nox enzymes in regulating renal cells remains unclear. Signaling pathways might be very important in the pathogenesis of GN. We performed this review to provide a relatively complete signaling pathways flowchart for Nox to the investigators who were interested in the role of Nox in the pathogenesis of GN. Here, we reviewed the signal transduction pathway of Nox and its role in the pathogenesis of GN.
Collapse
Affiliation(s)
- Song Mao
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University , Nanjing , People's Republic of China
| | | |
Collapse
|
17
|
Liang J, Wang Z, Liu G, Zhan J, Jiang L, Jiang Z. Association of dialysate calcium concentration with fetuin a level and carotid intima-media thickness in peritoneal dialysis patients. Ren Fail 2013; 36:65-8. [DOI: 10.3109/0886022x.2013.832309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Mao S, Huang S. The signaling pathway of hypoxia inducible factor and its role in renal diseases. J Recept Signal Transduct Res 2013; 33:344-8. [PMID: 23971630 DOI: 10.3109/10799893.2013.830130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is well-documented that hypoxia inducible factor (HIF) is a key mediator of tissue and cellular adaptation to hypoxia. HIF-target genes are also involved in cellular apoptosis and profibrotic mechanisms. The role of HIF in diseases is not consistent. It is a risk factor for tumor progression, whereas it plays a protective role against ischemic hypofusion. For renal diseases, it is not always a risk or protective factor. Many factors are involved in the pathogenesis of renal diseases. It is reported that HIF not only increases hypoxia tolerance, but also regulates a lot of signaling pathways. In the past decades, a number of studies were also conducted to explore the association between HIF and the risk of renal diseases. However, the role of HIF in the development of renal diseases was not entirely clear. In this study, the signal transduction pathways of HIF and its role in the pathogenesis of renal diseases were reviewed.
Collapse
Affiliation(s)
- Song Mao
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University , Nanjing, Jiangsu , China
| | | |
Collapse
|
19
|
Zhou TB. Signaling pathways of apoE and its role of gene expression in glomerulus diseases. J Recept Signal Transduct Res 2013; 33:73-8. [PMID: 23384034 DOI: 10.3109/10799893.2013.765466] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The roles of apolipoprotein E (apoE) in regulating plasma lipids and lipoproteins levels have been investigated for over several decades. However, in different tissues/cells, the role of apoE was different, such as that it was a risk factor for cancer, but some reports stated that apoE was a protective factor for renal diseases. At the moment, most of the studies find that apoE not only acts as a ligand for metabolism of lipids, but also plays as a factor to regulate lots of signaling pathways. There was rare review to sum up the signaling pathways for apoE, and there was also rare review to widely review the gene expression of apoE in glomerulus diseases. This review was performed to provide a relatively complete signaling pathways flowchart for apoE to the investigators who were interested in the roles of apoE in the pathogenesis of glomerulus diseases. In the past decades, some studies were also performed to explore the association of apoE gene expression with the risk of glomerulus diseases. However, the role of apoE in the pathogenesis of glomerulus diseases was controversial. Here, the signal transduction pathways of apoE and its role of gene expression in the pathogenesis of glomerulus diseases were reviewed.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Pediatric Nephrology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
| |
Collapse
|