1
|
Santos da Silva T, da Silva-Júnior LN, Horvath-Pereira BDO, Valbão MCM, Garcia MHH, Lopes JB, Reis CHB, Barreto RDSN, Buchaim DV, Buchaim RL, Miglino MA. The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas. Biomimetics (Basel) 2024; 9:598. [PMID: 39451804 PMCID: PMC11505355 DOI: 10.3390/biomimetics9100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic condition primarily managed with insulin replacement, leading to significant treatment costs. Complications include vasculopathy, cardiovascular diseases, nephropathy, neuropathy, and reticulopathy. Pancreatic islet transplantation is an option but its success does not depend solely on adequate vascularization. The main limitations to clinical islet transplantation are the scarcity of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. Despite extensive research, T1DM remains a major global health issue. In 2015, diabetes affected approximately 415 million people, with projected expenditures of USD 1.7 trillion by 2030. Pancreas transplantation faces challenges due to limited organ availability and complex vascularization. T1DM is caused by the autoimmune destruction of insulin-producing pancreatic cells. Advances in biomaterials, particularly the extracellular matrix (ECM), show promise in tissue reconstruction and transplantation, offering structural and regulatory functions critical for cell migration, differentiation, and adhesion. Tissue engineering aims to create bioartificial pancreases integrating insulin-producing cells and suitable frameworks. This involves decellularization and recellularization techniques to develop biological scaffolds. The challenges include replicating the pancreas's intricate architecture and maintaining cell viability and functionality. Emerging technologies, such as 3D printing and advanced biomaterials, have shown potential in constructing bioartificial organs. ECM components, including collagens and glycoproteins, play essential roles in cell adhesion, migration, and differentiation. Clinical applications focus on developing functional scaffolds for transplantation, with ongoing research addressing immunological responses and long-term efficacy. Pancreatic bioengineering represents a promising avenue for T1DM treatment, requiring further research to ensure successful implementation.
Collapse
Affiliation(s)
- Thamires Santos da Silva
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Leandro Norberto da Silva-Júnior
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Bianca de Oliveira Horvath-Pereira
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Maria Carolina Miglino Valbão
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | | | - Juliana Barbosa Lopes
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- UNIMAR Beneficent Hospital (HBU), Medical School, University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Rodrigo da Silva Nunes Barreto
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Maria Angelica Miglino
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| |
Collapse
|
2
|
Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev 2022; 184:114169. [PMID: 35217114 DOI: 10.1016/j.addr.2022.114169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Human cells are both advanced pharmaceutical drugs and 'drug deliverers'. However, functional control prior to or after cell implantation remains challenging. Micro-patterning cells through geometrically defined adhesion sites allows controlling morphogenesis, polarity, cellular mechanics, proliferation, migration, differentiation, stemness, cell-cell interactions, collective cell behavior, and likely immuno-modulatory properties. Consequently, generating micro-patterned therapeutic cells is a promising idea that has not yet been realized and few if any steps have been undertaken in this direction. This review highlights potential therapeutic applications, summarizes comprehensively the many cell functions that have been successfully controlled through micro-patterning, details the established micro-pattern designs, introduces the available fabrication technologies to the non-specialized reader, and suggests a quality evaluation score. Such a broad review is not yet available but would facilitate the manufacturing of therapeutically patterned cell populations using micro-patterned cell-instructive biomaterials for improved functional control as drug delivery systems in the context of cells as pharmaceutical products.
Collapse
Affiliation(s)
- Hui Che
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, China
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| |
Collapse
|
3
|
Adil MS, Narayanan SP, Somanath PR. Cell-cell junctions: structure and regulation in physiology and pathology. Tissue Barriers 2020; 9:1848212. [PMID: 33300427 DOI: 10.1080/21688370.2020.1848212] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epithelial and endothelial cell-cell contacts are established and maintained by several intercellular junctional complexes. These structurally and biochemically differentiated regions on the plasma membrane primarily include tight junctions (TJs), and anchoring junctions. While the adherens junctions (AJs) provide essential adhesive and mechanical properties, TJs hold the cells together and form a near leak-proof intercellular seal by the fusion of adjacent cell membranes. AJs and TJs play essential roles in vascular permeability. Considering their involvement in several key cellular functions such as barrier formation, proliferation, migration, survival, and differentiation, further research is warranted on the composition and signaling pathways regulating cell-cell junctions to develop novel therapeutics for diseases such as organ injuries. The current review article presents our current state of knowledge on various cell-cell junctions, their molecular composition, and mechanisms regulating their expression and function in endothelial and epithelial cells.
Collapse
Affiliation(s)
- Mir S Adil
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| |
Collapse
|
4
|
Protein phosphatase 1 in tumorigenesis: is it worth a closer look? Biochim Biophys Acta Rev Cancer 2020; 1874:188433. [PMID: 32956763 DOI: 10.1016/j.bbcan.2020.188433] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/26/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
Cancer cells take advantage of signaling cascades to meet their requirements for sustained growth and survival. Cell signaling is tightly controlled by reversible protein phosphorylation mechanisms, which require the counterbalanced action of protein kinases and protein phosphatases. Imbalances on this system are associated with cancer development and progression. Protein phosphatase 1 (PP1) is one of the most relevant protein phosphatases in eukaryotic cells. Despite the widely recognized involvement of PP1 in key biological processes, both in health and disease, its relevance in cancer has been largely neglected. Here, we provide compelling evidence that support major roles for PP1 in tumorigenesis.
Collapse
|
5
|
Miyata Y, Ohta S, Tanaka A, Kashima A, Suganuma H, Uno T, Sato H, Ida H, Kimura T, Jinno M, Hirai K, Homma T, Yamamoto M, Watanabe Y, Suzuki S, Sagara H. The Effect of Bronchoconstriction by Methacholine Inhalation in a Murine Model of Asthma. Int Arch Allergy Immunol 2020; 181:897-907. [PMID: 32791506 DOI: 10.1159/000509606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/23/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Bronchoconstriction was recently shown to cause airway remodeling and induce allergic airway inflammation in asthma. However, the mechanisms how mechanical stress via bronchoconstriction could induce airway inflammation and remodeling remain unclear. OBJECTIVE We investigated the effect of bronchoconstriction induced by methacholine inhalation in a murine model of asthma. METHODS BALB/c female mice were sensitized and challenged with ovalbumin (OVA), followed by treatment with methacholine by a nebulizer twice a day for 7 days. Twenty-four hours after the last methacholine treatment, the bronchoalveolar lavage fluid (BALF) and lung tissues were collected. The BALF was analyzed for total and differential cell counts and cytokine levels. The lung tissues were analyzed for goblet cell metaplasia, thickness of the smooth muscle, and lung fibrosis. The expression of cytokines in the lung was also examined. RESULTS OVA sensitization and challenge induced infiltration of total cells, macrophages, and eosinophils in the BALF along with goblet cell metaplasia and increased airway smooth muscle hypertrophy. Seven days after the last OVA challenge, untreated mice achieved reduction in airway inflammation, while methacholine maintained the number of BALF total cells, macrophages, and eosinophils. The percentage of goblet cells and the thickness of airway smooth muscle were also maintained by methacholine. Moreover, the treatment of methacholine induced the expression of transforming growth factor (TGF)-β in the lung. This result indicates that the production of TGF-β is involved in induction of airway remodeling caused by bronchoconstriction with methacholine. CONCLUSIONS Repeated bronchoconstriction caused by methacholine inhalation elicited allergic airway inflammation and airway remodeling.
Collapse
Affiliation(s)
- Yoshito Miyata
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - Shin Ohta
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan,
| | - Akihiko Tanaka
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - Ayaka Kashima
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - Hiromitsu Suganuma
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - Tomoki Uno
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - Haruna Sato
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - Hitomi Ida
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - Tomoyuki Kimura
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - Megumi Jinno
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - Kuniaki Hirai
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - Tetsuya Homma
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - Mayumi Yamamoto
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - Yoshio Watanabe
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - Shintaro Suzuki
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - Hironori Sagara
- Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Zhang GL, Pan LL, Huang T, Wang JH. The transcriptome difference between colorectal tumor and normal tissues revealed by single-cell sequencing. J Cancer 2019; 10:5883-5890. [PMID: 31737124 PMCID: PMC6843882 DOI: 10.7150/jca.32267] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
The previous cancer studies were difficult to reproduce since the tumor tissues were analyzed directly. But the tumor tissues were actually a mixture of different cancer cells. The transcriptome of single-cell was much robust than the transcriptome of a mixed tissue. The single-cell transcriptome had much smaller variance. In this study, we analyzed the single-cell transcriptome of 272 colorectal cancer (CRC) epithelial cells and 160 normal epithelial cells and identified 342 discriminative transcripts using advanced machine learning methods. The most discriminative transcripts were LGALS4, PHGR1, C15orf48, HEPACAM2, PERP, FABP1, FCGBP, MT1G, TSPAN1 and CKB. We further clustered the 342 transcripts into two categories. The upregulated transcripts in CRC epithelial cells were significantly enriched in Ribosome, Protein processing in endoplasmic reticulum, Antigen processing and presentation and p53 signaling pathway. The downregulated transcripts in CRC epithelial cells were significantly enriched in Mineral absorption, Aldosterone-regulated sodium reabsorption and Oxidative phosphorylation pathways. The biological analysis of the discriminative transcripts revealed the possible mechanism of colorectal cancer.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Le-Lin Pan
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin-Hai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
7
|
Li M, Wang J, Huang Q, Li C. Proteomic analysis highlights the immune responses of the hepatopancreas against Hematodinium infection in Portunus trituberculatus. J Proteomics 2019; 197:92-105. [DOI: 10.1016/j.jprot.2018.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/15/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
|
8
|
Almansour K, Taverner A, Eggleston IM, Mrsny RJ. Mechanistic studies of a cell-permeant peptide designed to enhance myosin light chain phosphorylation in polarized intestinal epithelia. J Control Release 2018; 279:208-219. [PMID: 29614254 DOI: 10.1016/j.jconrel.2018.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
Tight junction (TJ) structures restrict the movement of solutes between adjacent epithelial cells to maintain homeostatic conditions. A peptide, termed PIP 640, with the capacity to regulate the transient opening of intestinal TJ structures through an endogenous mechanism involving the induction of myosin light chain (MLC) phosphorylation at serine 19 (MLC-pS19) has provided a promising new method to enhance the in vivo oral bioavailability of peptide therapeutics. PIP 640 is a decapeptide composed of all D-amino acids (rrdykvevrr-NH2) that contains a central sequence designed to emulates a specific domain of C-kinase potentiated protein phosphatase-1 inhibitor-17 kDa (CPI-17) surrounded by positively-charged amino acids that provide a cell penetrating peptide (CPP)-like character. Here, we examine compositional requirements of PIP 640 with regard to its actions on MLC phosphorylation, its intracellular localization to TJ structures, and its interactions with MLC phosphatase (MLCP) elements that correlate with enhanced solute uptake. These studies showed that a glutamic acid and tyrosine within this peptide are critical for PIP 640 to retain its ability to increase MLC-pS19 levels and enhance the permeability of macromolecular solutes of the size range of therapeutic peptides without detectable cytotoxicity. On the other hand, exchange of the aspartic acid for alanine and then arginine resulted in an increasingly greater bias toward protein phosphatase-1 (PP1) relative to MLCP inhibition, an outcome that resulted in increased paracellular permeability for solutes in the size range of therapeutic peptides, but with a significant increase in cytotoxicity. Together, these data further our understanding of the composition requirements of PIP 640 with respect to the desired goal of transiently altering the intestinal epithelial cell paracellular barrier properties through an endogenous mechanism, providing a novel approach to enhance the oral bioavailability of poorly absorbed therapeutic agents of < ~ 5 kDa.
Collapse
Affiliation(s)
- Khaled Almansour
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - Alistair Taverner
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - Ian M Eggleston
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - Randall J Mrsny
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
9
|
Pan L, Zhao Y, Farouk MH, Bao N, Wang T, Qin G. Integrins Were Involved in Soybean Agglutinin Induced Cell Apoptosis in IPEC-J2. Int J Mol Sci 2018; 19:E587. [PMID: 29462933 PMCID: PMC5855809 DOI: 10.3390/ijms19020587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/02/2018] [Accepted: 02/09/2018] [Indexed: 12/30/2022] Open
Abstract
Soybean agglutinin (SBA), is a non-fiber carbohydrate related protein and a major anti-nutritional factor. Integrins, transmembrane glycoproteins, are involved in many biological processes. Although recent work suggested that integrins are involved in SBA-induced cell-cycle alterations, no comprehensive study has reported whether integrins are involved in SBA-induced cell apoptosis (SCA) in IPEC-J2. The relationship between SBA and integrins are still unclear. We aimed to elucidate the effects of SBA on IPEC-J2 cell proliferation and cell apoptosis; to study the roles of integrins in IPEC-J2 normal cell apoptosis (NCA) and SCA; and to illustrate the relationship and connection type between SBA and integrins. Thus, IPEC-J2 cells were treated with SBA at the levels of 0, 0.125, 0.25, 0.5, 1.0 or 2.0 mg/mL to determine cell proliferation and cell apoptosis. The cells were divided into control, SBA treated groups, integrin inhibitor groups, and SBA + integrin inhibitor groups to determine the integrin function in SCA. The results showed that SBA significantly (p < 0.05) lowered cell proliferation and induced cell apoptosis in IPEC-J2 (p < 0.05). Inhibition of any integrin type induced the cell apoptosis (p < 0.05) and these integrins were involved in SCA (p < 0.05). Even SBA had no physical connection with integrins, an association was detected between SBA and α-actinin-2 ACTN2 (integrin-binding protein). Additionally, SBA reduced the mRNA expression of integrins by down regulating the gene expression level of ACTN2. We concluded an evidence for the anti-nutritional mechanism of SBA by ACTN2 with integrins. Further trials are needed to prove whether ACTN2 is the only protein for connecting SBA with integrin.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Mohamed Hamdy Farouk
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Tao Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
10
|
Fraxinus: A Plant with Versatile Pharmacological and Biological Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4269868. [PMID: 29279716 PMCID: PMC5723943 DOI: 10.1155/2017/4269868] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/24/2017] [Accepted: 11/07/2017] [Indexed: 01/11/2023]
Abstract
Fraxinus, a member of the Oleaceae family, commonly known as ash tree is found in northeast Asia, north America, east and western France, China, northern areas of Pakistan, India, and Afghanistan. Chemical constituents of Fraxinus plant include various secoiridoids, phenylethanoids, flavonoids, coumarins, and lignans; therefore, it is considered as a plant with versatile biological and pharmacological activities. Its tremendous range of pharmacotherapeutic properties has been well documented including anticancer, anti-inflammatory, antioxidant, antimicrobial, and neuroprotective. In addition, its bioactive phytochemicals and secondary metabolites can be effectively used in cosmetic industry and as a competent antiaging agent. Fraxinus presents pharmacological effectiveness by targeting the novel targets in several pathological conditions, which provide a spacious therapeutic time window. Our aim is to update the scientific research community with recent endeavors with specifically highlighting the mechanism of action in different diseases. This potentially efficacious pharmacological drug candidate should be used for new drug discovery in future. This review suggests that this plant has extremely important medicinal utilization but further supporting studies and scientific experimentations are mandatory to determine its specific intracellular targets and site of action to completely figure out its pharmacological applications.
Collapse
|
11
|
Carré A, Stoupa A, Kariyawasam D, Gueriouz M, Ramond C, Monus T, Léger J, Gaujoux S, Sebag F, Glaser N, Zenaty D, Nitschke P, Bole-Feysot C, Hubert L, Lyonnet S, Scharfmann R, Munnich A, Besmond C, Taylor W, Polak M. Mutations in BOREALIN cause thyroid dysgenesis. Hum Mol Genet 2017; 26:599-610. [PMID: 28025328 DOI: 10.1093/hmg/ddw419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022] Open
Abstract
Congenital hypothyroidism is the most common neonatal endocrine disorder and is primarily caused by developmental abnormalities otherwise known as thyroid dysgenesis (TD). We performed whole exome sequencing (WES) in a consanguineous family with TD and subsequently sequenced a cohort of 134 probands with TD to identify genetic factors predisposing to the disease. We identified the novel missense mutations p.S148F, p.R114Q and p.L177W in the BOREALIN gene in TD-affected families. Borealin is a major component of the Chromosomal Passenger Complex (CPC) with well-known functions in mitosis. Further analysis of the missense mutations showed no apparent effects on mitosis. In contrast, expression of the mutants in human thyrocytes resulted in defects in adhesion and migration with corresponding changes in gene expression suggesting others functions for this mitotic protein. These results were well correlated with the same gene expression pattern analysed in the thyroid tissue of the patient with BOREALIN-p.R114W. These studies open new avenues in the genetics of TD in humans.
Collapse
Affiliation(s)
- Aurore Carré
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,IMAGINE Institute affiliate, Paris, France
| | - Athanasia Stoupa
- IMAGINE Institute affiliate, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Dulanjalee Kariyawasam
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Cyrille Ramond
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Taylor Monus
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Juliane Léger
- Pediatric Endocrinology Unit, Hôpital Universitaire Robert Debré, AP-HP, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance
| | - Sébastien Gaujoux
- Department of Digestive and Endocrine Surgery, Cochin Hospital, AP-HP, Université Paris Descartes, Paris, France
| | - Frédéric Sebag
- Department of General, Endocrine and Metabolic Surgery, Hopital de la Conception, Marseille, France
| | - Nicolas Glaser
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Delphine Zenaty
- Pediatric Endocrinology Unit, Hôpital Universitaire Robert Debré, AP-HP, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance
| | - Patrick Nitschke
- Bioinformatics Platform, Paris Descartes University, IMAGINE Institute, Paris, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, Paris Descartes Sorbonne Paris Cite University, Imagine Institute, Paris, France
| | - Laurence Hubert
- INSERM U1163, IMAGINE Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stanislas Lyonnet
- INSERM U1163, IMAGINE Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Genetics, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Raphaël Scharfmann
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Arnold Munnich
- INSERM U1163, IMAGINE Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Genetics, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Claude Besmond
- INSERM U1163, IMAGINE Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - William Taylor
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Michel Polak
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,IMAGINE Institute affiliate, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance
| |
Collapse
|