1
|
He M, Zhou T, Niu Y, Feng W, Gu X, Xu W, Zhang S, Wang Z, Zhang Y, Wang C, Dong L, Liu M, Dong N, Wu Q. The protease corin regulates electrolyte homeostasis in eccrine sweat glands. PLoS Biol 2021; 19:e3001090. [PMID: 33591965 PMCID: PMC7909636 DOI: 10.1371/journal.pbio.3001090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/26/2021] [Accepted: 01/04/2021] [Indexed: 01/02/2023] Open
Abstract
Sweating is a basic skin function in body temperature control. In sweat glands, salt excretion and reabsorption are regulated to avoid electrolyte imbalance. To date, the mechanism underlying such regulation is not fully understood. Corin is a transmembrane protease that activates atrial natriuretic peptide (ANP), a cardiac hormone essential for normal blood volume and pressure. Here, we report an unexpected role of corin in sweat glands to promote sweat and salt excretion in regulating electrolyte homeostasis. In human and mouse eccrine sweat glands, corin and ANP are expressed in the luminal epithelial cells. In corin-deficient mice on normal- and high-salt diets, sweat and salt excretion is reduced. This phenotype is associated with enhanced epithelial sodium channel (ENaC) activity that mediates Na+ and water reabsorption. Treatment of amiloride, an ENaC inhibitor, normalizes sweat and salt excretion in corin-deficient mice. Moreover, treatment of aldosterone decreases sweat and salt excretion in wild-type (WT), but not corin-deficient, mice. These results reveal an important regulatory function of corin in eccrine sweat glands to promote sweat and salt excretion.
Collapse
Affiliation(s)
- Meiling He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- Department of Nephrology, the People’s Hospital of Suzhou New District, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yayan Niu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wansheng Feng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiabing Gu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenting Xu
- International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai, China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiting Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yue Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Can Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Liang Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| |
Collapse
|
2
|
Blednov YA, Borghese CM, Dugan MP, Pradhan S, Thodati TM, Kichili NR, Harris RA, Messing RO. Apremilast regulates acute effects of ethanol and other GABAergic drugs via protein kinase A-dependent signaling. Neuropharmacology 2020; 178:108220. [PMID: 32736086 DOI: 10.1016/j.neuropharm.2020.108220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
Phosphodiesterase type 4 (PDE4) inhibitors prevent hydrolysis of cyclic adenosine monophosphate and increase protein kinase A (PKA)-mediated phosphorylation. PDE4 inhibitors also regulate responses to ethanol and GABAergic drugs. We investigated mechanisms by which the PDE4 inhibitor, apremilast, regulates acute effects of ethanol and GABAergic drugs in male and female mice. Apremilast prolonged the sedative-hypnotic effects of gaboxadol, zolpidem, and propofol but did not alter etomidate effects, and unexpectedly shortened the sedative-hypnotic effects of diazepam. Apremilast prolonged rotarod ataxia induced by zolpidem, propofol, and loreclezole, shortened recovery from diazepam, but had no effect on ataxia induced by gaboxadol or etomidate. The PKA inhibitor H-89 blocked apremilast's ability to prolong the sedative-hypnotic effects of ethanol, gaboxadol, and propofol and to prolong ethanol- and propofol-induced ataxia. H-89 also blocked apremilast's ability to shorten the sedative-hypnotic and ataxic effects of diazepam. The β1-specific antagonist, salicylidene salicylhydrazide (SCS), produced faster recovery from ethanol- and diazepam-induced ataxia, but did not alter propofol- or etomidate-induced ataxia. SCS shortened the sedative-hypnotic effects of ethanol and diazepam but not of propofol. In Xenopus oocytes, a phosphomimetic (aspartate) mutation at the PKA phosphorylation site in β1 subunits decreased the maximal GABA current in receptors containing α1 or α3, but not α2 subunits. In contrast, phosphomimetic mutations at PKA sites in β3 subunits increased the maximal GABA current in receptors containing α1 or α2, but not α3 subunits. The GABA potency and allosteric modulation by ethanol, propofol, etomidate, zolpidem, flunitrazepam, or diazepam were not altered by these mutations. We propose a model whereby apremilast increases PKA-mediated phosphorylation of β1-and β3-containing GABAA receptors and selectively alters acute tolerance to ethanol and GABAergic drugs.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Cecilia M Borghese
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael P Dugan
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Swetak Pradhan
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Thanvi M Thodati
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nikhita R Kichili
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Chen T, Lin R, Avula L, Sarker R, Yang J, Cha B, Tse CM, McNamara G, Seidler U, Waldman S, Snook A, Bijvelds MJC, de Jonge HR, Li X, Donowitz M. NHERF3 is necessary for Escherichia coli heat-stable enterotoxin-induced inhibition of NHE3: differences in signaling in mouse small intestine and Caco-2 cells. Am J Physiol Cell Physiol 2019; 317:C737-C748. [PMID: 31365292 DOI: 10.1152/ajpcell.00351.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood death from diarrhea and the leading cause of Traveler's diarrhea. E. coli heat-stable enterotoxin (ST) is a major virulence factor of ETEC and inhibits the brush border Na/H exchanger NHE3 in producing diarrhea. NHE3 regulation involves multiprotein signaling complexes that form on its COOH terminus. In this study, the hypothesis was tested that ST signals via members of the Na/H exchanger regulatory factor (NHERF) family of scaffolding proteins, NHERF2, which had been previously shown to have a role, and now with concentration on a role for NHERF3. Two models were used: mouse small intestine and Caco-2/BBe cells. In both models, ST rapidly increased intracellular cGMP, inhibited NHE3 activity, and caused a quantitatively similar decrease in apical expression of NHE3. The transport effects were NHERF3 and NHERF2 dependent. Also, mutation of the COOH-terminal amino acids of NHERF3 supported that NHERF3-NHERF2 heterodimerization was likely to account for this dual dependence. The ST increase in cGMP in both models was partially dependent on NHERF3. The intracellular signaling pathways by which ST-cGMP inhibits NHE3 were different in mouse jejunum (activation of cGMP kinase II, cGKII) and Caco-2 cells, which do not express cGKII (elevation of intracellular Ca2+ concentration [Ca2+]i). The ST elevation of [Ca2+]i was from intracellular stores and was dependent on NHERF3-NHERF2. This study shows that intracellular signaling in the same diarrheal model in multiple cell types may be different; this has implications for therapeutic strategies, which often assume that models have similar signaling mechanisms.
Collapse
Affiliation(s)
- Tiane Chen
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ruxian Lin
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leela Avula
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rafiquel Sarker
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jianbo Yang
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Boyoung Cha
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chung Ming Tse
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - George McNamara
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Scott Waldman
- Division of Clinical Pharmacology, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Snook
- Division of Clinical Pharmacology, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Xuhang Li
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Donowitz
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Amarachintha S, Harmel-Laws E, Steinbrecher KA. Guanylate cyclase C reduces invasion of intestinal epithelial cells by bacterial pathogens. Sci Rep 2018; 8:1521. [PMID: 29367634 PMCID: PMC5784150 DOI: 10.1038/s41598-018-19868-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022] Open
Abstract
The guanylate cyclase C (GC-C) receptor regulates electrolyte and water secretion into the gut following activation by the E. coli enterotoxin STa, or by weaker endogenous agonists guanylin and uroguanylin. Our previous work has demonstrated that GC-C plays an important role in controlling initial infection as well as carrying load of non-invasive bacterial pathogens in the gut. Here, we use Salmonella enterica serovar Typhimurium to determine whether GC-C signaling is important in host defense against pathogens that actively invade enterocytes. In vitro studies indicated that GC-C signaling significantly reduces Salmonella invasion into Caco2-BBE monolayers. Relative to controls, GC-C knockout mice develop severe systemic illness following oral Salmonella infection, characterized by disrupted intestinal mucus layer, elevated cytokines and organ CFUs, and reduced animal survival. In Salmonella-infected wildtype mice, oral gavage of GC-C agonist peptide reduced host/pathogen physical interaction and diminished bacterial translocation to mesenteric lymph nodes. These studies suggest that early life susceptibility to STa-secreting enterotoxigenic E. coli may be counter-balanced by a critical role of GC-C in protecting the mucosa from non-STa producing, invasive bacterial pathogens.
Collapse
Affiliation(s)
- Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Eleana Harmel-Laws
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Kris A Steinbrecher
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA.
| |
Collapse
|
5
|
Liu X, Qian ZY, Xie F, Fan W, Nelson JW, Xiao X, Kaul S, Barnes AP, Alkayed NJ. Functional screening for G protein-coupled receptor targets of 14,15-epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat 2017; 132:31-40. [PMID: 27649858 PMCID: PMC6424572 DOI: 10.1016/j.prostaglandins.2016.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/01/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) are potent vasodilators that play important roles in cardiovascular physiology and disease, yet the molecular mechanisms underlying the biological actions of EETs are not fully understood. Multiple lines of evidence suggest that the actions of EETs are in part mediated via G protein-coupled receptor (GPCR) signaling, but the identity of such a receptor has remained elusive. We sought to identify 14,15-EET-responsive GPCRs. A set of 105 clones were expressed in Xenopus oocyte and screened for their ability to activate cAMP-dependent chloride current. Several receptors responded to micromolar concentrations of 14,15-EET, with the top five being prostaglandin receptor subtypes (PTGER2, PTGER4, PTGFR, PTGDR, PTGER3IV). Overall, our results indicate that multiple low-affinity 14,15-EET GPCRs are capable of increasing cAMP levels following 14,15-EET stimulation, highlighting the potential for cross-talk between prostanoid and other ecosanoid GPCRs. Our data also indicate that none of the 105 GPCRs screened met our criteria for a high-affinity receptor for 14,15-EET.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Cyclic AMP/metabolism
- Cystic Fibrosis Transmembrane Conductance Regulator/metabolism
- Drug Evaluation, Preclinical
- Extracellular Signal-Regulated MAP Kinases/metabolism
- HEK293 Cells
- Humans
- Intracellular Space/drug effects
- Intracellular Space/metabolism
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiology
- Mice
- Oocytes/metabolism
- Phosphorylation/drug effects
- Protein Transport/drug effects
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Prostaglandin/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Vasoconstriction/drug effects
- Xenopus
- beta-Arrestins/metabolism
Collapse
Affiliation(s)
- Xuehong Liu
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Zu-Yuan Qian
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Fuchun Xie
- Departments of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Wei Fan
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Jonathan W Nelson
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Xiangshu Xiao
- Departments of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, United States; The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Sanjiv Kaul
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Anthony P Barnes
- Departments of Pediatrics, Oregon Health & Science University, Portland, OR, United States; The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| | - Nabil J Alkayed
- Departments of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States; Departments of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, United States; The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
6
|
Wong MKS, Pipil S, Kato A, Takei Y. Duplicated CFTR isoforms in eels diverged in regulatory structures and osmoregulatory functions. Comp Biochem Physiol A Mol Integr Physiol 2016; 199:130-141. [PMID: 27322796 DOI: 10.1016/j.cbpa.2016.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 12/20/2022]
Abstract
Two cystic fibrosis transmembrane conductance regulator (CFTR) isoforms, CFTRa and CFTRb, were cloned in Japanese eel and their structures and functions were studied in different osmoregulatory tissues in freshwater (FW) and seawater (SW) eels. Molecular phylogenetic results suggested that the CFTR duplication in eels occurred independently of the duplication event in salmonid. CFTRa was expressed in the intestine and kidney and downregulated in both tissues in SW eels, while CFTRb was specifically expressed in the gill and greatly upregulated in SW eels. Structurally, the CFTR isoforms are similar in most functional domains except the regulatory R domain, where the R domain of CFTRa is similar to that of human CFTR but the R domain of CFTRb is unique in having high intrinsic negative charges and fewer phosphorylation sites, suggesting divergence of isoforms in terms of gating properties and hormonal regulation. Immunohistochemical results showed that CFTR was localized on the apical regions of SW ionocytes, suggesting a Cl(-) secretory role as in other teleosts. In intestine and kidney, however, immunoreactive CFTR was mostly found in the cytosolic vesicles in FW eels, indicating that Cl(-) channel activity could be low at basal conditions, but could be rapidly increased by membrane insertion of the stored channels. Guanylin (GN), a known hormone that increases CFTR activity in mammalian intestine, failed to redistribute CFTR and to affect its expression in eel intestine. The results suggested that GN-independent CFTR regulation is present in eel intestine and kidney.
Collapse
Affiliation(s)
| | - Supriya Pipil
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Akira Kato
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshio Takei
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| |
Collapse
|
7
|
Hu P, Xia X, Xuan Q, Huang BY, Liu SY, Zhang DD, Jiang GM, Xu Y, Qin YH. Neutral endopeptidase and natriuretic peptide receptors participate in the regulation of C-type natriuretic peptide expression in renal interstitial fibrosis. J Recept Signal Transduct Res 2016; 37:71-83. [PMID: 27278005 DOI: 10.3109/10799893.2016.1155068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Peng Hu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xun Xia
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Qiang Xuan
- Department of Urology, Anhui Provincial Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Bao Yu Huang
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Si Yan Liu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Dong Dong Zhang
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Guang Mei Jiang
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yao Xu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yuan Han Qin
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|