1
|
Morindone from Morinda citrifolia as a potential antiproliferative agent against colorectal cancer cell lines. PLoS One 2022; 17:e0270970. [PMID: 35819953 PMCID: PMC9275698 DOI: 10.1371/journal.pone.0270970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
There is an increasing demand in developing new, effective, and affordable anti-cancer against colon and rectal. In this study, our aim is to identify the potential anthraquinone compounds from the root bark of Morinda citrifolia to be tested in vitro against colorectal cancer cell lines. Eight potential anthraquinone compounds were successfully isolated, purified and tested for both in-silico and in-vitro analyses. Based on the in-silico prediction, two anthraquinones, morindone and rubiadin, exhibit a comparable binding affinity towards multitargets of β-catenin, MDM2-p53 and KRAS. Subsequently, we constructed a 2D interaction analysis based on the above results and it suggests that the predicted anthraquinones from Morinda citrifolia offer an attractive starting point for potential antiproliferative agents against colorectal cancer. In vitro analyses further indicated that morindone and damnacanthal have significant cytotoxicity effect and selectivity activity against colorectal cancer cell lines.
Collapse
|
2
|
Green Biosynthesis, Antioxidant, Antibacterial, and Anticancer Activities of Silver Nanoparticles of Luffa acutangula Leaf Extract. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5125681. [PMID: 34631882 PMCID: PMC8494549 DOI: 10.1155/2021/5125681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023]
Abstract
Studies on green biosynthesis of newly engineered nanoparticles for their prominent medicinal applications are being the torch-bearing concerns of the state-of-the-art research strategies. In this concern, we have engineered the biosynthesized Luffa acutangula silver nanoparticles of flavonoid O-glycosides in the anisotropic form isolated from aqueous leave extracts of Luffa acutangula, a popular traditional and ayurvedic plant in south-east Asian countries. These were structurally confirmed by Ultraviolet-visible (UV-Vis), Fourier transform infrared spectroscopy accessed with attenuated total reflection (FTIR-ATR) spectral analyses followed by the scanning electron microscopic (SEM) and the X-ray diffraction (XRD) crystallographic studies and found them with the face-centered cubic (fcc) structure. Medicinally, we have explored their significant antioxidant (DPPH and ABTS assays), antibacterial (disc diffusion assay on E. coli, S. aureus, B. subtilis, S. fecilis, and S. boydii), and anticancer (MTT assay on MCF-7, MDA-MB-231, U87, and DBTRG cell lines) potentialities which augmented the present investigation. The molecular docking analysis of title compounds against 3NM8 (DPPH) and 1DNU (ABTS) proteins for antioxidant activity; 5FGK (Gram-Positive Bacteria) and 1AB4 (Gram-Negative Bacteria) proteins for antibacterial activity; and 4GBD (MCF-7), 5FI2 (MDA-MB-231), 1D5R (U87), and 5TIJ (DBTRG) proteins for anticancer activity has affirmed the promising ligand-protein binding interactions among the hydroxy groups of the title compounds and aspartic acid of the concerned enzymatic proteins. The binding energy varying from -9.1645 to -7.7955 for Cosmosioside (1, Apigenin-7-glucoside) and from -9.2690 to -7.8306 for Cynaroside (2, Luteolin-7-glucoside) implies the isolated compounds as potential bioactive compounds. In addition, the performed studies like QSAR, ADMET, bioactivity properties, drug scores, and toxicity risks confirmed them as potential drug candidates and aspartic acid receptor antagonists. This research auxiliary augmented the existing array of phytological nanomedicines with new drug candidates that are credible with multiple bioactivities.
Collapse
|
3
|
Lin S, Zhang Y, Wang Z, Zhang S, Li Y, Fan Y, Li D, Li S, Bai Y. Preparation of novel anthraquinone-based aspirin derivatives with anti-cancer activity. Eur J Pharmacol 2021; 900:174020. [PMID: 33741381 DOI: 10.1016/j.ejphar.2021.174020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Gastric cancer is one of the most common and deadly cancers among men and women and is the third leading cause of cancer mortality worldwide. Thus, discovering and developing novel therapeutics for gastric cancer has become a global priority. In this study, we synthesized two novel anthraquinone-based aspirin derivatives, Asp-X3 and Asp-X3-CH3, with therapeutic potential for gastric cancer. The structures of the two compounds were determined by 1D, 2D-NMR, and High-Resolution Mass (HRSM). Asp-X3 and Asp-X3-CH3 could inhibit the growth of gastric cancer cells (SGC7901), yielding IC50 values 10-fold lower than that of Aspirin. Asp-X3 and Asp-X3-CH3 were less toxic to gastric mucosal cells, yielding IC50 values that were about 2-fold higher than the corresponding IC50 values determined with SGC7901 cells. Asp-X3-CH3 and Asp-X3 also induced SGC7901 cells to undergo apoptosis, yielding apoptotic rates that were about twice the rate induced by Aspirin. Asp-X3-CH3 did not cause significant loss of COX-1 expression in gastric mucosal cells, whereas Asp-X3 and Aspirin both caused significant loss of COX-1 expression as demonstrated by Western blot, consistent with their effects on the content of PGE2 in these cells as determined by ELISA assay. However, both Asp-X3-CH3 and Asp-X3 exerted a similar effect on the level of COX-2 in gastric cancer cells, causing as much as 90% and 95% reduction in COX-2 expression, respectively. Taken together, the results suggested that Asp-X3-CH3 and Asp-X3 were potentially better agents than Aspirin for the inhibition of gastric cancer cell growth, but Asp-X3-CH3 was more effective.
Collapse
Affiliation(s)
- Shan Lin
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Daqing, 163319, China
| | - Yue Zhang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Daqing, 163319, China
| | - Zeyu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Shuang Zhang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Daqing, 163319, China
| | - Yingjie Li
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Daqing, 163319, China
| | - Yuhua Fan
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Daqing, 163319, China
| | - Dan Li
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Daqing, 163319, China
| | - Sen Li
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Daqing, 163319, China.
| | - Yuhua Bai
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Daqing, 163319, China.
| |
Collapse
|
4
|
Frias HV, Alves CDS, Flório JC, Bondan EF, Bonamin LV, Coelho CP, Bernardi MM, Suffredini IB. Vertical exposition to Luffa operculata extract deregulates behavior and hypothalamus neurotransmitters in juvenile rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113265. [PMID: 32858198 DOI: 10.1016/j.jep.2020.113265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/15/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luffa operculata (L.) Cogn (Cucurbitaceae) is a traditional plant popularly used in the abortion induction, against sinusitis and is toxic. AIM OF THE STUDY To verify the influence of the aqueous extract obtained from the dry fruit of L. operculata (BNE) on the male rats vertically exposed to a subabortive dose of BNE, by evaluating alterations in behavior and neurochemical features in hypothalamus, striatum and frontal cortex, at a juvenile age, after receiving a stress challenge given by the use of the "New York subway stress" technique (NYS). MATERIALS AND METHODS Pregnant female rats (F0 generation) received 1.0 mg/kg BNE, or distilled water (100 mL/kg), by gavage, between gestation days GD17 and GD21. The pups were weaned at PND21 and were kept up to PND60 (juvenile age) in controlled environmental conditions. Four groups were obtained: control (CG), experimental (EG), stress control (SCG) and stress experimental (SEG) After being stressed, the animals were behavioral screened for in the open field (OF) and in light-dark box (LDB) apparatuses. They were euthanized, and the liver, kidneys and brain were removed for both macroscopic and microscopic analyses, and for quantification of vanillylmandelic acid (VMA), norepinephrine (NE), dopamine (DA) and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC) and the serotonin (5-HT) and its metabolite 5-hydroxyindolylacetic acid (5-HIAA) were accessed in the hypothalamus, frontal cortex and striatum. RESULTS AND DISCUSSION although most of the behavior changes were due to the stress challenge, the rats spent more time in the dark side of the LDB and were less likely to explore the light side, indicating that the treatment with BNE induced to fear. Interferences of BNE over behavior were due to impairment of VMA, NE, 5-HT and DA and increasing of DOPAC in the hypothalamus, and an increase of 5-HIAA in the frontal cortex, indicating alterations in the hypothalamic-hypophysis-adrenal axis (HHAA). No macroscopic or histopathological changes were observed in the liver, kidneys, or brain, although GFAP was diminished in the SCG, as expected for stressed rats. CONCLUSION the vertical exposition of juvenile rats to BNE led to the manifestation of fear and to a down regulation of the hypothalamic-hypophysis-adrenal axis.
Collapse
Affiliation(s)
- Humberto V Frias
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | - Cinthia Dos S Alves
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | - Jorge C Flório
- Departamento de Patologia - VPT, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Brazil
| | - Eduardo F Bondan
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | - Leoni V Bonamin
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | | | - Maria M Bernardi
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | - Ivana B Suffredini
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil; Núcleo de Pesquisas em Biodiversidade, Laboratório de Extração, Universidade Paulista - UNIP, Brazil.
| |
Collapse
|
5
|
Sadeghi S, Esmaeili S, Pourbagheri-Sigaroodi A, Safaroghli-Azar A, Bashash D. PI3K Abrogation Using Pan-PI3K Inhibitor BKM120 Gives Rise to a Significant Anticancer Effect on AML-Derived KG-1 Cells by Inducing Apoptosis and G2/M Arrest. Turk J Haematol 2020; 37:167-176. [PMID: 32160736 PMCID: PMC7463220 DOI: 10.4274/tjh.galenos.2020.2019.0440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective: The association between PI3K overexpression and the acquisition of chemoresistance has attracted tremendous attention to this axis as an appealing target to revolutionize the conventional treatment strategies of human cancers. In the present study, we aimed to survey the inhibitory impact of the pan-PI3K inhibitor BKM120 on both cellular and molecular aspects of acute myeloid leukemia (AML)-derived KG-1 and U937 cells. Materials and Methods: We designed various assays to survey the antitumor impacts and molecular mechanisms underlying the action of BKM120 for the treatment of AML, and we performed experiments to check the effect of BKM120 in combination with idarubicin. Results: We found that PI3K inhibition diminished cell viability and metabolic activity and exerted a concentration-dependent growth-suppressive effect on the cells. Moreover, we suggested that the ability of BKM120 to induce its antiproliferative properties was mediated through the induction of p21-mediated G2/M cell-cycle arrest. Investigating the effect of inhibitor on the molecular features revealed not only that BKM120 reduced the expression of NF-κB antiapoptotic targets, but also that NF-κB suppression using bortezomib profoundly enhanced the cytotoxicity of the inhibitor, highlighting that the antileukemic effects of BKM120 are mediated, at least partly, through the modulation of the NF-κB pathway. Interestingly, we found that the single agent of BKM120 was unable to significantly alter the expression level of c-Myc; however, the capability of BKM120 to reduce the survival rate of AML cells was potentiated upon c-Myc inhibition using 10058-F4, suggestive of the plausible contribution of c-Myc in leukemic cell response to the PI3K inhibitor. Conclusion: Taken together, the results of this study reveal the efficacy of BKM120 as a therapeutic approach for AML; however, further investigations should be undertaken to determine the expediency of this inhibitor.
Collapse
Affiliation(s)
- Soroush Sadeghi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Esmaeili
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Feng S, Wang Z, Zhang M, Zhu X, Ren Z. HG30, a tetrahydroanthraquinone compound isolated from the roots of Prismatomeris connate, induces apoptosis in human non-small cell lung cancer cells. Biomed Pharmacother 2018; 100:124-131. [PMID: 29427923 DOI: 10.1016/j.biopha.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 01/23/2023] Open
Abstract
HG30, a tetrahydroanthraquinone compound isolated from the roots of Prismatomeris connate, was previously shown to inhibit the proliferation of A549 cells. The aim of this study was to evaluate the antitumor activity of HG30 in two non-small cell lung cancer cell lines, A549 and H1299, and to explore potential underlying mechanisms. In cell viability and colony formation assays, HG30 treatment suppressed the proliferation and number of colonies formed by A549 and H1299 cells. Western blot analysis further demonstrated that induction of apoptosis by HG30 in A549 and H1299 cells involves both caspase-dependent apoptosis pathways, including mitochondria- and death receptor-mediated pathways, and an apoptosis-inducing factor (AIF) -associated caspase-independent apoptosis pathway. Specifically, HG30 treatment affected Bcl-2 family proteins and inhibitor of apoptosis protein (IAP) family proteins by down-regulating of Mcl-1, survivin and XIAP and up-regulation of Bid, and Bim.
Collapse
Affiliation(s)
- Shixiu Feng
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China.
| | - Zhenzhen Wang
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China; College of Chemistry and Pharmaceutical Sciences, Northwest A & F University, Yangling 712100, China.
| | - Min Zhang
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China.
| | - Xiaohui Zhu
- Department of Pathophysiology, Guangdong Medical University, Zhanjiang 524023, China.
| | - Zhanjun Ren
- College of Animal Science, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
7
|
Ma D, Li J, Wang J, Sun Z, Wang K. Clinical implications of vasohibin-1 in esophageal carcinoma cells: Inhibition of cell growth and migration. Mol Med Rep 2017; 16:1479-1485. [PMID: 29067450 DOI: 10.3892/mmr.2017.6726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/23/2017] [Indexed: 11/05/2022] Open
Abstract
As one of the first-established negative feedback regulators of angiogenesis, mesenchymal vasohibin-1 (VASH1) serves important roles in the progression and prognosis of various types of tumor. However, the clinical implications of VASH1 in esophageal carcinoma (EC) cells have not been reported and the direct effects of VASH1 on EC cells remain unknown. In the present study, the expression of VASH1 in EC cells was observed using immunohistochemistry and western blotting; a χ2 test was used to analyze the correlation of VASH1 with clinical parameters, and it was observed that VASH1 was negatively-correlated with tumor size (r=‑0.399; P<0.01) and invasion depth (r=‑0.318; P<0.01). Survival analysis demonstrated that VASH1 was positively‑correlated with increased overall survival (P=0.039) and disease free survival (P=0.012). The direct effects of VASH1 on EC cells were analyzed by altering VASH1 expression, and it was observed that downregulation of VASH1 increased proliferation, clone formation and the migratory ability of EC9706 cells, whereas upregulation of VASH1 inhibited proliferation, clone formation and the migratory ability of EC1 cells. The results of the present study demonstrated that VASH1 in EC cells was negatively‑correlated with progression and poor prognosis of patients with EC. VASH1 was able to directly inhibit the growth and migration of EC cells.
Collapse
Affiliation(s)
- Deliang Ma
- Department of Oncology, Yishui Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Jingye Li
- Department of Oncology, Yishui Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Jinbao Wang
- Department of General Surgery, Yishui Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Zhigang Sun
- Central Laboratory, Yishui Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Kai Wang
- Department of Breast Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
8
|
Tang B, Tang F, Wang Z, Qi G, Liang X, Li B, Yuan S, Liu J, Yu S, He S. Upregulation of Akt/NF-κB-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: suppression by carnosic acid nanoparticle. Int J Nanomedicine 2016; 11:6401-6420. [PMID: 27942213 PMCID: PMC5138024 DOI: 10.2147/ijn.s101285] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary liver cancer is globally the sixth most frequent cancer, and the second leading cause of cancer death and its incidence is increasing in many countries, becoming a serious threat to human health. Many researches focused on the treatment and prevention of liver cancer. However, due to the underlying molecular mechanism of liver cancer still not fully understood, the studies and development of treatments were forced to be delayed. Akt has been suggested to play an essential role in the progression of inflammation response and apoptosis. Hence, in this study, Akt-knockout mice and cells of liver cancer were used as a model to investigate the molecular mechanism of Akt-associated inflammatory and apoptotic signaling pathway linked with NF-κB and Bcl-2-associated death promoter (Bad) for the progression of liver cancer. Carnosic acid (CA), as a phenolic diterpene with anticancer, antibacterial, antidiabetic, as well as neuroprotective properties, is produced by many species from Lamiaceae family. Administration of CA nanoparticles was sufficient to lead to considerable inhibition of liver cancer progression. The results indicated that, compared to the normal liver cells, the expression of Akt was significantly higher in liver cancer cell lines. Also, we found that Akt-knockout cancer cell lines modulated inflammation response and apoptosis via inhibiting NF-κB activation and inducing apoptotic reaction. Our results indicated that the downstream signals, including cytokines regulated by NF-κB and caspase-3-activated apoptosis affected by Bad, were re-modulated for knockout of Akt. And CA nanoparticles, acting as Akt-knockout, could inhibit inflammation and accelerate apoptosis in liver cancer by altering NF-κB activation and activating caspase-3 through Bad pathway. These findings demonstrated that the nanoparticulate drug CA performed its effective role owing to its ability to reduce inflammatory action and enhance apoptosis for the overexpression of NF-κB and Bad via Akt signaling pathway, playing a direct role in liver cancer progression. Thus, nanoparticle CA might be an important and potential choice for the clinical treatment in the future.
Collapse
Affiliation(s)
- Bo Tang
- Department of Hepatobiliary Surgery, Guilin Medical University Affiliated Hospital; Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University
| | - Fang Tang
- Department of Hepatobiliary Surgery, Guilin Medical University Affiliated Hospital; Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University
| | - Zhenran Wang
- Department of Hepatobiliary Surgery, Guilin Medical University Affiliated Hospital; Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University
| | - Guangying Qi
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Xingsi Liang
- Department of Hepatobiliary Surgery, Guilin Medical University Affiliated Hospital; Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University
| | - Bo Li
- Department of Hepatobiliary Surgery, Guilin Medical University Affiliated Hospital; Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University
| | - Shengguang Yuan
- Department of Hepatobiliary Surgery, Guilin Medical University Affiliated Hospital; Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University
| | - Jie Liu
- Department of Hepatobiliary Surgery, Guilin Medical University Affiliated Hospital; Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University
| | - Shuiping Yu
- Department of Hepatobiliary Surgery, Guilin Medical University Affiliated Hospital; Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University
| | - Songqing He
- Department of Hepatobiliary Surgery, Guilin Medical University Affiliated Hospital; Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University
| |
Collapse
|