1
|
Li Y, Guo M, Guo G, Ma Q. Transdermal drug delivery mediated by acoustic vortex beam. ULTRASONICS 2024; 140:107304. [PMID: 38537516 DOI: 10.1016/j.ultras.2024.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 05/04/2024]
Abstract
Ultrasound-mediated transdermal drug delivery exhibits various advantages such as biocompatibility, controllability and safety, which attracts plenty of interests within biomedical field. Current researches mostly emphasizes the acoustic cavitation generated by planar or focused waves while neglecting other physics that occur during transportation. Our experimental study illustrates the presence of an acoustic vortex (AV) beam that exhibits a lower acoustic intensity and typically means a lower dose of inertial cavitation, yet achieves a more efficient delivery. Such a result calls for the fundamental mechanism of ultrasound-mediated transdermal transfer using the AV beam. In this work, according to our knowledge, the AV beam is firstly introduced to ultrasound-mediated transdermal medication delivery. The transversal acoustic radiation force (T-ARF), which is the primary characteristic carried by the acoustic vortex beam, and its contribution to the transport enhancement are investigated. It is shown that a focused AV (FAV) beam with a maximal acoustic pressure of 200 kPa induces a pN-level T-ARF, which promotes the enlargement of pores on the stratum corneum and thereby enhances the permeability, as compared with a zero-order (non-vortex) counterpart. This contribution of the T-ARF is validated by the experimental transport on the cellulose membrane, which exhibits a significantly increased membrane porosity and delivery efficiency. The favorable results introduce the new degree of freedom into the ultrasound-mediated transdermal drug transport based on AV beam, and thereby promotes the development of a combined control strategy for more precise and efficient transdermal drug delivery in conjunction with the administration of acoustic cavitation.
Collapse
Affiliation(s)
- Yuzhi Li
- School of Computer and Electronic Information/ School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Mingcong Guo
- School of Computer and Electronic Information/ School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Gepu Guo
- School of Computer and Electronic Information/ School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Qingyu Ma
- School of Computer and Electronic Information/ School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Phonophoresis through Nonsteroidal Anti-Inflammatory Drugs for Knee Osteoarthritis Treatment: Systematic Review and Meta-Analysis. Biomedicines 2022; 10:biomedicines10123254. [PMID: 36552010 PMCID: PMC9775989 DOI: 10.3390/biomedicines10123254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Knee osteoarthritis (OA) is the most common joint disease. The administration of nonsteroidal anti-inflammatory drugs (NSAIDs) by phonophoresis is a therapeutic alternative to relieve pain in inflammatory pathologies. The main aim was to analyze the efficacy of the application of NSAIDs by phonophoresis in knee OA. A systematic review and meta-analysis of controlled clinical trials were performed between January and March 2021 in the following databases: Web of Science, Scopus, PubMed, Cinahl, SciELO, and PEDro. The PEDro scale was used to evaluate the level of evidence of the selected studies. The RevMan 5.4 statistical software was used to obtain the meta-analysis. Eight studies were included, of which five were included in the meta-analysis, involving 195 participants. The NSAIDs used through phonophoresis were ibuprofen, piroxicam, diclofenac sodium, diclofenac diethylammonium, ketoprofen, and methyl salicylate. The overall result for pain showed not-conclusive results, but a trend toward significance was found in favor of the phonophoresis group compared to the control group (standardized mean difference (SMD) = -0.92; 95% confidence interval: -1.87-0.02). Favorable results were obtained for physical function (SMD = -1.34; 95% CI: -2.00-0.68). Based on the selected studies, the application of NSAIDs by phonophoresis is effective in relieving the symptoms of knee OA. Future long-term studies are recommended.
Collapse
|
3
|
Li Z, Fang X, Yu D. Transdermal Drug Delivery Systems and Their Use in Obesity Treatment. Int J Mol Sci 2021; 22:12754. [PMID: 34884558 PMCID: PMC8657870 DOI: 10.3390/ijms222312754] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Transdermal drug delivery (TDD) has recently emerged as an effective alternative to oral and injection administration because of its less invasiveness, low rejection rate, and excellent ease of administration. TDD has made an important contribution to medical practice such as diabetes, hemorrhoids, arthritis, migraine, and schizophrenia treatment, but has yet to fully achieve its potential in the treatment of obesity. Obesity has reached epidemic proportions globally and posed a significant threat to human health. Various approaches, including oral and injection administration have widely been used in clinical setting for obesity treatment. However, these traditional options remain ineffective and inconvenient, and carry risks of adverse effects. Therefore, alternative and advanced drug delivery strategies with higher efficacy and less toxicity such as TDD are urgently required for obesity treatment. This review summarizes current TDD technology, and the main anti-obesity drug delivery system. This review also provides insights into various anti-obesity drugs under study with a focus on the recent developments of TDD system for enhanced anti-obesity drug delivery. Although most of presented studies stay in animal stage, the application of TDD in anti-obesity drugs would have a significant impact on bringing safe and effective therapies to obese patients in the future.
Collapse
Affiliation(s)
| | | | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Z.L.); (X.F.)
| |
Collapse
|
4
|
da Cruz CBL, Sousa Filho LF, Lima DA, de Gois JI, de Oliveira ED. Effect of Phonophoresis and Copaiba Oil on Oxidative Stress Biomarkers after Skeletal Muscle Injury in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2657-2663. [PMID: 34243989 DOI: 10.1016/j.ultrasmedbio.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 04/03/2021] [Accepted: 04/11/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to analyze the effectiveness of phonophoresis with copaiba oil gel, in comparison to therapeutic pulsed ultrasound alone or topical application of copaiba oil gel, on oxidative stress after a traumatic muscle injury. Forty male Wistar rats were divided into five groups: control, muscle injury, therapeutic pulsed ultrasound (TPU), copaiba oil gel (CO) and TPU plus CO. TPU and CO application occurred at 2, 12, 24, 48, 72 and 96 h after injury. The gastrocnemius muscle was injured by mechanical trauma. Malondialdehyde (a lipoperoxidation marker) and superoxide dismutase and catalase (antioxidant enzymes) were assessed 98 h after muscle injury. All were elevated in the muscle injury group. There was a significant difference among treatment groups favoring TPU plus CO for reducing malondialdehyde levels, but all treatments reduced superoxide dismutase and catalase activity, with no between-groups difference. In conclusion, phonophoresis-the application of TPU plus CO-was superior to TPU or CO alone for reducing lipoperoxidation. Phonophoresis, TPU alone and CO were all effective in decreasing antioxidant enzyme activity after a traumatic skeletal muscle injury.
Collapse
Affiliation(s)
| | - Luis Fernando Sousa Filho
- Department of Physiotherapy, Federal University of Sergipe, São Cristovão, Brazil; Graduate Program in Physical Education, Federal University of Sergipe, São Cristovão, Brazil
| | - Diego Alves Lima
- Department of Physiotherapy, Federal University of Sergipe, São Cristovão, Brazil
| | - Joyce Izabel de Gois
- Department of Physiotherapy, Federal University of Sergipe, São Cristovão, Brazil
| | | |
Collapse
|
5
|
Masterson J, Kluge B, Burdette A, Sr GL. Sustained acoustic medicine; sonophoresis for nonsteroidal anti-inflammatory drug delivery in arthritis. Ther Deliv 2020; 11:363-372. [PMID: 32657251 PMCID: PMC7373207 DOI: 10.4155/tde-2020-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Arthritis pain is primarily managed by nonsteroidal anti-inflammatory drugs (NSAIDs), such as diclofenac. Topical diclofenac gel is limited in efficacy due to its limited penetration through the skin. This study investigates the use of a multihour, wearable, localized, sonophoresis transdermal drug delivery device for the penetration enhancement of diclofenac through the skin. Materials & methods: A commercially available, sustained acoustic medicine (sam®) ultrasound device providing 4 h, 1.3 W, 132 mW/cm2, 3 MHz ultrasound treatment was evaluated for increasing the drug delivery of diclofenac gel through a human skin model and was compared with standard of care topical control diclofenac gel. Results: Sonophoresis of the diclofenac gel for 4 h increases diclofenac delivery by 3.8× (p < 0.01), and penetration by 32% (p < 0.01). Conclusion: Sustained acoustic medicine can be used as a transdermal drug-delivery device for nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jack Masterson
- Next Apprenticeship Program, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Brett Kluge
- Next Apprenticeship Program, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Aaron Burdette
- Next Apprenticeship Program, University of Cincinnati, Cincinnati, OH 45221, USA
| | | |
Collapse
|
6
|
Daftardar S, Neupane R, Boddu Sai HS, Renukuntla J, Tiwari AK. Advances in Ultrasound Mediated Transdermal Drug Delivery. Curr Pharm Des 2020; 25:413-423. [PMID: 30747058 DOI: 10.2174/1381612825666190211163948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/04/2019] [Indexed: 11/22/2022]
Abstract
Low frequency ultrasound-assisted drug delivery has been widely investigated as a non-invasive method to enhance the transdermal penetration of drugs. Using this technique, a brief application of ultrasound is used to permeabilize skin for a prolonged time. In this review, an overview on ultrasound is detailed to help explain the parameters that could be modulated to obtain the desired ultrasound parameters for enhanced transdermal drug delivery. The mechanisms of enhancement and the latest developments in the area of ultrasound-assisted transdermal drug delivery are discussed. Special emphasis is placed on the effects of ultrasound when used in combination with microneedles, electroporation and iontophoresis, and penetration enhancers. Further, this review summarizes the effect of ultrasound on skin integrity and the regulatory requirements for commercialization of the ultrasound based transdermal delivery instruments.
Collapse
Affiliation(s)
- Saloni Daftardar
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo Health Science Campus, Toledo, OH 43614, United States
| | - Rabin Neupane
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo Health Science Campus, Toledo, OH 43614, United States
| | - H S Boddu Sai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Jwala Renukuntla
- School of Pharmacy, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, United States
| |
Collapse
|
7
|
Xia MQ, Tian CL, Liu L, Hu RF, Gui SY, Chu XQ. Transdermal Administration of Ibuprofen-Loaded Gel: Preparation, Pharmacokinetic Profile, and Tissue Distribution. AAPS PharmSciTech 2020; 21:84. [PMID: 31989358 DOI: 10.1208/s12249-020-1627-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to compare the pharmacokinetics and tissue distribution of ibuprofen (IBU) gel in female rats after transdermal administration through the skin of the abdomen and back. IBU was used as the model drug to prepare carbomer gel. After the abdominal and back administration, the concentration of IBU in rat plasma was detected by high-performance liquid chromatography (HPLC). Besides, the contents of IBU in the uterus, heart, liver, spleen, lung, and kidney were detected, respectively, to clarify the distribution characteristics in vivo. Through abdominal route, the AUC0- ∞ (area under the concentration-time curve from time zero to infinity) of uterus was 424.75 μg/g h, which is 3.60 times higher than that of plasma, and was significantly higher than that of other tissues (P < 0.0001). Tmax (peak time) of uterus and plasma was 4 h and 2 h, respectively. Upon transdermal application of IBU to the back, the AUC0-∞ of uterus was 75.47 μg/g h, which is 12.63 times lower than that of plasma, while Tmax of uterus and plasma was not lower than 20 h. These results indicated that IBU entered the blood circulation through abdominal administration in a small amount and mainly of the drug entered the uterus, while IBU entered the blood circulation and redistributed to tissues after absorption through the dorsal skin slowly. IBU could effectively reach the uterus and have a certain targeting through abdominal administration, which provides a prospect for clinical transdermal administration in the treatment of dysmenorrhea.
Collapse
|
8
|
Coskun Benlidayi I, Gokcen N, Basaran S. Comparative short-term effectiveness of ibuprofen gel and cream phonophoresis in patients with knee osteoarthritis. Rheumatol Int 2018; 38:1927-1932. [PMID: 30003324 DOI: 10.1007/s00296-018-4099-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022]
Abstract
The objective of the present study was to compare the effectiveness of gel and cream ibuprofen phonophoresis in patients with knee osteoarthritis. A single-blinded, randomized, comparative design was applied. Patients diagnosed with knee osteoarthritis according to the American College of Rheumatology criteria were included in the study. After obtaining written informed consent, patients were randomized into ibuprofen gel and cream phonophoresis groups. Each patient was treated five sessions per week for 2 weeks (ten sessions). Main outcome measures were 100 mm visual analogue scale (VAS) for pain and the disease-specific questionnaire; Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Sixty-one knee osteoarthritis patients with a mean age of 57.9 ± 9.7 years were included in the study. Baseline VAS and WOMAC scores were similar between gel (n = 30) and cream (n = 31) phonophoresis groups (p > 0.05 for both). Following the treatment, both groups showed improvement compared to baseline measures including VAS pain and WOMAC scores. In the gel phonophoresis group, the improvement in VAS score was higher than that observed in the cream phonophoresis group (p < 0.001). Similarly, the improvement in WOMAC total score was also higher in the gel phonophoresis group (p < 0.001). Ibuprofen phonophoresis is clinically effective in patients with knee osteoarthritis. Phonophoresis using the gel form of ibuprofen is associated with more clinical improvement than that using the cream form of the same molecule.
Collapse
Affiliation(s)
- Ilke Coskun Benlidayi
- Department of Physical Medicine and Rehabilitation, Cukurova University Faculty of Medicine, Adana, Turkey.
| | - Neslihan Gokcen
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Sibel Basaran
- Department of Physical Medicine and Rehabilitation, Cukurova University Faculty of Medicine, Adana, Turkey
| |
Collapse
|
9
|
Clijsen R, Baeyens JP, Barel AO, Clarys P. In vivo determination of the diclofenac skin reservoir: comparison between passive, occlusive, and iontophoretic application. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:835-40. [PMID: 25709408 PMCID: PMC4335612 DOI: 10.2147/dddt.s76002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aim There is scarce information concerning the pharmacodynamic behavior of topical substances used in the physiotherapy setting. The aim of the present study was to estimate the formation and emptying of the diclofenac (DF) skin reservoir after passive, semiocclusive, and electrically assisted applications of DF. Subjects and methods Five different groups of healthy volunteers (ntotal=60, 23 male and 37 female), participated in this study. A 1% DF (Voltaren Emulgel) formulation (12 mg) was applied on the volar forearms on randomized defined circular skin areas of 7 cm2. DF was applied for 20 minutes under three different conditions at the same time. The presence of DF in the skin results in a reduction of the methyl nicotinate (MN) response. To estimate the bioavailability of DF in the skin, MN responses at different times following initial DF application (1.5, 6, 24, 32, 48, 72, 96, and 120 hours) were analyzed. Results At 1.5 hours after the initial DF application, a significant decrease in MN response was detected for the occluded and iontophoretic delivery. Passive application resulted in a decrease of the MN response from 6 hours post-DF application. The inhibition remained up to 32 hours post-DF application for the iontophoretic delivery, 48 hours for the occluded application, and 72 hours for the passive delivery. At 96 and 120 hours post-DF application none of the MN responses was inhibited. Conclusion The formation and emptying of a DF skin reservoir was found to be dependent on the DF-application mode. Penetration-enhanced delivery resulted in a faster emptying of the reservoir.
Collapse
Affiliation(s)
- Ron Clijsen
- Department of Health Sciences, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland ; Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jean Pierre Baeyens
- Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - André Odilon Barel
- Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Clarys
- Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
10
|
Aldwaikat M, Alarjah M. Investigating the sonophoresis effect on the permeation of diclofenac sodium using 3D skin equivalent. ULTRASONICS SONOCHEMISTRY 2015; 22:580-587. [PMID: 24916997 DOI: 10.1016/j.ultsonch.2014.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
Ultrasound temporally increases skin permeability by altering stratum corneum SC function (sonophoresis). The objective of this study was to evaluate the effect of variable ultrasound conditions on the permeation of diclofenac sodium DS with range of physicochemical properties through EpiDerm™. Permeation studies were carried out in vitro using Franz diffusion cell. HPLC method was used for the determination of the concentration of diclofenac sodium in receiving compartment. Parameters like ultrasound frequency, application time, amplitude, and mode of sonication and distance of ultrasound horn from skin were investigated, and the conditions where the maximum enhancement rate obtained were determined. Application of ultrasound enhanced permeation of diclofenac sodium across EpiDerm™ by fivefolds. The most effective enhancing parameters were power sonication of 20kHz frequency, 20% amplitude at continuous mode for 5min.
Collapse
Affiliation(s)
- Mai Aldwaikat
- Faculty of Pharmacy, Umm Alqura University, Makkah, Saudi Arabia.
| | - Mohammed Alarjah
- Faculty of Pharmacy, Umm Alqura University, Makkah, Saudi Arabia.
| |
Collapse
|
11
|
Azagury A, Khoury L, Enden G, Kost J. Ultrasound mediated transdermal drug delivery. Adv Drug Deliv Rev 2014; 72:127-43. [PMID: 24463344 DOI: 10.1016/j.addr.2014.01.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/24/2013] [Accepted: 01/14/2014] [Indexed: 01/06/2023]
Abstract
Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injections. However, the stratum corneum serves as a barrier that limits the penetration of substances to the skin. Application of ultrasound (US) irradiation to the skin increases its permeability (sonophoresis) and enables the delivery of various substances into and through the skin. This review presents the main findings in the field of sonophoresis in transdermal drug delivery as well as transdermal monitoring and the mathematical models associated with this field. Particular attention is paid to the proposed enhancement mechanisms and future trends in the fields of cutaneous vaccination and gene therapy.
Collapse
Affiliation(s)
- Aharon Azagury
- Department of Chemical Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Luai Khoury
- Department of Biomedical Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Giora Enden
- Department of Biomedical Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Joseph Kost
- Department of Chemical Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel.
| |
Collapse
|
12
|
Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomedicine 2013; 8:1621-33. [PMID: 23637531 PMCID: PMC3635663 DOI: 10.2147/ijn.s43589] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Wenzhou Medical College, Wenzhou City, Zhejiang Province, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Pantelic I, Lukic M, Markovic B, Daniels R, Vesic S, Vuleta G, Savic S. Effect of small changes in natural origin-based emulsion systems on hydrocortisone skin absorption and performance: a comparison of twoin vivomethods. Pharm Dev Technol 2012; 19:55-64. [DOI: 10.3109/10837450.2012.751407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Effects of phonophoresis of piroxicam and ultrasound on symptomatic knee osteoarthritis. Arch Phys Med Rehabil 2012; 94:250-5. [PMID: 23063790 DOI: 10.1016/j.apmr.2012.09.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/25/2012] [Accepted: 09/29/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare the effects of phonophoresis of piroxicam (PhP) and ultrasound therapy (UT) in patients with mild to moderate, symptomatic knee osteoarthritis (OA). DESIGN A randomized, double-blind, controlled trial. SETTING Department of rehabilitation medicine, university hospital. PARTICIPANTS Patients with knee OA (N=46; mean age ± SD, 58.91±10.50y) who had visual analog scale (VAS) scores of 50 to 92mm (mean, 71.5mm) for knee pain intensity and Kellgren-Lawrence grades of I to III were randomly allocated into 2 groups: PhP and UT (23 in each group). INTERVENTIONS Both the PhP and UT groups were treated with an ultrasound program using the stroking technique, continuous mode, 1.0W/cm(2), 10 minutes per session, and 5 times per week for 2 weeks. Four grams of 0.5% piroxicam gel (20mg of piroxicam drug) was used in the PhP group, while the nondrug coupling gel was used in the UT group. MAIN OUTCOME MEASURES A 100-mm VAS for usual pain and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were evaluated before and after treatment in both groups using a double-blinded procedure. RESULTS The VAS and total WOMAC scores were significantly improved after treatment in both groups (P<.001). The PhP group showed more significant effects than the UT group, both in reducing the VAS pain score (P=.009) and in improving the WOMAC score, although it did not reach the level of significance (P=.143). CONCLUSIONS Our results indicated that PhP was significantly more effective than UT in reducing pain and tended to improve knee functioning in Kellgren-Lawrence grades I to III knee OA. PhP is suggested as a new, effective method for treatment of symptomatic knee OA.
Collapse
|
15
|
Polat BE, Hart D, Langer R, Blankschtein D. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 2011; 152:330-48. [PMID: 21238514 PMCID: PMC3436072 DOI: 10.1016/j.jconrel.2011.01.006] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
The use of ultrasound for the delivery of drugs to, or through, the skin is commonly known as sonophoresis or phonophoresis. The use of therapeutic and high frequencies of ultrasound (≥0.7MHz) for sonophoresis (HFS) dates back to as early as the 1950s, while low-frequency sonophoresis (LFS, 20-100kHz) has only been investigated significantly during the past two decades. Although HFS and LFS are similar because they both utilize ultrasound to increase the skin penetration of permeants, the mechanisms associated with each physical enhancer are different. Specifically, the location of cavitation and the extent to which each process can increase skin permeability are quite dissimilar. Although the applications of both technologies are different, they each have strengths that could allow them to improve current methods of local, regional, and systemic drug delivery. In this review, we will discuss the mechanisms associated with both HFS and LFS, specifically concentrating on the key mechanistic differences between these two skin treatment methods. Background on the relevant physics associated with ultrasound transmitted through aqueous media will also be discussed, along with implications of these phenomena on sonophoresis. Finally, a thorough review of the literature is included, dating back to the first published reports of sonophoresis, including a discussion of emerging trends in the field.
Collapse
Affiliation(s)
- Baris E. Polat
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|