1
|
Aweeda M, Adegboye F, Yang SF, Topf MC. Enhancing Surgical Vision: Augmented Reality in Otolaryngology-Head and Neck Surgery. JOURNAL OF MEDICAL EXTENDED REALITY 2024; 1:124-136. [PMID: 39091667 PMCID: PMC11290041 DOI: 10.1089/jmxr.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 08/04/2024]
Abstract
Augmented reality (AR) technology has become widely established in otolaryngology-head and neck surgery. Over the past 20 years, numerous AR systems have been investigated and validated across the subspecialties, both in cadaveric and in live surgical studies. AR displays projected through head-mounted devices, microscopes, and endoscopes, most commonly, have demonstrated utility in preoperative planning, intraoperative guidance, and improvement of surgical decision-making. Specifically, they have demonstrated feasibility in guiding tumor margin resections, identifying critical structures intraoperatively, and displaying patient-specific virtual models derived from preoperative imaging, with millimetric accuracy. This review summarizes both established and emerging AR technologies, detailing how their systems work, what features they offer, and their clinical impact across otolaryngology subspecialties. As AR technology continues to advance, its integration holds promise for enhancing surgical precision, simulation training, and ultimately, improving patient outcomes.
Collapse
Affiliation(s)
- Marina Aweeda
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Feyisayo Adegboye
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shiayin F. Yang
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael C. Topf
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Taleb A, Leclerc S, Hussein R, Lalande A, Bozorg-Grayeli A. Registration of preoperative temporal bone CT-scan to otoendoscopic video for augmented-reality based on convolutional neural networks. Eur Arch Otorhinolaryngol 2024; 281:2921-2930. [PMID: 38200355 DOI: 10.1007/s00405-023-08403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE Patient-to-image registration is a preliminary step required in surgical navigation based on preoperative images. Human intervention and fiducial markers hamper this task as they are time-consuming and introduce potential errors. We aimed to develop a fully automatic 2D registration system for augmented reality in ear surgery. METHODS CT-scans and corresponding oto-endoscopic videos were collected from 41 patients (58 ears) undergoing ear examination (vestibular schwannoma before surgery, profound hearing loss requiring cochlear implant, suspicion of perilymphatic fistula, contralateral ears in cases of unilateral chronic otitis media). Two to four images were selected from each case. For the training phase, data from patients (75% of the dataset) and 11 cadaveric specimens were used. Tympanic membranes and malleus handles were contoured on both video images and CT-scans by expert surgeons. The algorithm used a U-Net network for detecting the contours of the tympanic membrane and the malleus on both preoperative CT-scans and endoscopic video frames. Then, contours were processed and registered through an iterative closest point algorithm. Validation was performed on 4 cases and testing on 6 cases. Registration error was measured by overlaying both images and measuring the average and Hausdorff distances. RESULTS The proposed registration method yielded a precision compatible with ear surgery with a 2D mean overlay error of 0.65 ± 0.60 mm for the incus and 0.48 ± 0.32 mm for the round window. The average Hausdorff distance for these 2 targets was 0.98 ± 0.60 mm and 0.78 ± 0.34 mm respectively. An outlier case with higher errors (2.3 mm and 1.5 mm average Hausdorff distance for incus and round window respectively) was observed in relation to a high discrepancy between the projection angle of the reconstructed CT-scan and the video image. The maximum duration for the overall process was 18 s. CONCLUSIONS A fully automatic 2D registration method based on a convolutional neural network and applied to ear surgery was developed. The method did not rely on any external fiducial markers nor human intervention for landmark recognition. The method was fast and its precision was compatible with ear surgery.
Collapse
Affiliation(s)
- Ali Taleb
- ICMUB Laboratory UMR CNRS 6302, University of Burgundy Franche Comte, 21000, Dijon, France.
| | - Sarah Leclerc
- ICMUB Laboratory UMR CNRS 6302, University of Burgundy Franche Comte, 21000, Dijon, France
| | | | - Alain Lalande
- ICMUB Laboratory UMR CNRS 6302, University of Burgundy Franche Comte, 21000, Dijon, France
- Medical Imaging Department, Dijon University Hospital, 21000, Dijon, France
| | - Alexis Bozorg-Grayeli
- ICMUB Laboratory UMR CNRS 6302, University of Burgundy Franche Comte, 21000, Dijon, France
- ENT Department, Dijon University Hospital, 21000, Dijon, France
| |
Collapse
|
3
|
Yoo H, Sim T. Automated Machine Learning (AutoML)-based Surface Registration Methodology for Image-guided Surgical Navigation System. Med Phys 2022; 49:4845-4860. [PMID: 35543150 DOI: 10.1002/mp.15696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND While the surface registration technique has the advantage of being relatively safe and the operation time is short, it generally has the disadvantage of low accuracy. PURPOSE This research proposes automated machine learning (AutoML)-based surface registration to improve the accuracy of image-guided surgical navigation systems. METHODS The state-of-the-art surface registration concept is that first, using a neural network model, a new point-cloud that matches the facial information acquired by a passive probe of an optical tracking system (OTS) is extracted from the facial information obtained by computerized tomography (CT). Target registration error (TRE) representing the accuracy of surface registration is then calculated by applying the iterative closest point (ICP) algorithm to the newly extracted point-cloud and OTS information. In this process, the hyperparameters used in the neural network model and ICP algorithm are automatically optimized using Bayesian Optimization with Expected Improvement to yield improved registration accuracy. RESULTS Using the proposed surface registration methodology, the average TRE for the targets located in the sinus space and nasal cavity of the soft phantoms is (0.939 ± 0.375) mm, which shows 57.8 % improvement compared to the average TRE of (2.227 ± 0.193) mm calculated by the conventional surface registration method (p < 0.01). The performance of the proposed methodology is evaluated, and the average TREs computed by the proposed methodology and the conventional method are (0.767 ± 0.132) mm and (2.615 ± 0.378) mm, respectively. Additionally, for one healthy adult, the clinical applicability of the AutoML-based surface registration is also presented. CONCLUSION Our findings showed that the registration accuracy could be improved while maintaining the advantages of the surface registration technique. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hakje Yoo
- Korea University Research Institute for Medical Bigdata Science, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Taeyong Sim
- Department of Artificial Intelligence, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| |
Collapse
|
4
|
Schneider D, Anschuetz L, Mueller F, Hermann J, O'Toole Bom Braga G, Wagner F, Weder S, Mantokoudis G, Weber S, Caversaccio M. Freehand Stereotactic Image-Guidance Tailored to Neurotologic Surgery. Front Surg 2021; 8:742112. [PMID: 34692764 PMCID: PMC8529212 DOI: 10.3389/fsurg.2021.742112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Hypothesis: The use of freehand stereotactic image-guidance with a target registration error (TRE) of μTRE + 3σTRE < 0.5 mm for navigating surgical instruments during neurotologic surgery is safe and useful. Background: Neurotologic microsurgery requires work at the limits of human visual and tactile capabilities. Anatomy localization comes at the expense of invasiveness caused by exposing structures and using them as orientation landmarks. In the absence of more-precise and less-invasive anatomy localization alternatives, surgery poses considerable risks of iatrogenic injury and sub-optimal treatment. There exists an unmet clinical need for an accurate, precise, and minimally-invasive means for anatomy localization and instrument navigation during neurotologic surgery. Freehand stereotactic image-guidance constitutes a solution to this. While the technology is routinely used in medical fields such as neurosurgery and rhinology, to date, it is not used for neurotologic surgery due to insufficient accuracy of clinically available systems. Materials and Methods: A freehand stereotactic image-guidance system tailored to the needs of neurotologic surgery-most importantly sub-half-millimeter accuracy-was developed. Its TRE was assessed preclinically using a task-specific phantom. A pilot clinical trial targeting N = 20 study participants was conducted (ClinicalTrials.gov ID: NCT03852329) to validate the accuracy and usefulness of the developed system. Clinically, objective assessment of the TRE is impossible because establishing a sufficiently accurate ground-truth is impossible. A method was used to validate accuracy and usefulness based on intersubjectivity assessment of surgeon ratings of corresponding image-pairs from the microscope/endoscope and the image-guidance system. Results: During the preclinical accuracy assessment the TRE was measured as 0.120 ± 0.05 mm (max: 0.27 mm, μTRE + 3σTRE = 0.27 mm, N = 310). Due to the COVID-19 pandemic, the study was terminated early after N = 3 participants. During an endoscopic cholesteatoma removal, a microscopic facial nerve schwannoma removal, and a microscopic revision cochlear implantation, N = 75 accuracy and usefulness ratings were collected from five surgeons each grading 15 image-pairs. On a scale from 1 (worst rating) to 5 (best rating), the median (interquartile range) accuracy and usefulness ratings were assessed as 5 (4-5) and 4 (4-5) respectively. Conclusion: Navigating surgery in the tympanomastoid compartment and potentially in the lateral skull base with sufficiently accurate freehand stereotactic image-guidance (μTRE + 3σTRE < 0.5 mm) is feasible, safe, and useful. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03852329.
Collapse
Affiliation(s)
- Daniel Schneider
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Lukas Anschuetz
- Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Fabian Mueller
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Jan Hermann
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | | | - Franca Wagner
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Stefan Weder
- Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Georgios Mantokoudis
- Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Stefan Weber
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Marco Caversaccio
- Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
5
|
Schneider D, Hermann J, Mueller F, Braga GOB, Anschuetz L, Caversaccio M, Nolte L, Weber S, Klenzner T. Evolution and Stagnation of Image Guidance for Surgery in the Lateral Skull: A Systematic Review 1989-2020. Front Surg 2021; 7:604362. [PMID: 33505986 PMCID: PMC7831154 DOI: 10.3389/fsurg.2020.604362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: Despite three decades of pre-clinical and clinical research into image guidance solutions as a more accurate and less invasive alternative for instrument and anatomy localization, translation into routine clinical practice for surgery in the lateral skull has not yet happened. The aim of this review is to identify challenges that need to be solved in order to provide image guidance solutions that are safe and beneficial for use during lateral skull surgery and to synthesize factors that facilitate the development of such solutions. Methods: Literature search was conducted via PubMed using terms relating to image guidance and the lateral skull. Data extraction included the following variables: image guidance error, imaging resolution, image guidance system, tracking technology, registration method, study endpoints, clinical target application, and publication year. A subsequent search of FDA 510(k) database for identified image guidance systems and extraction of the year of approval, intended use, and indications for use was performed. The study objectives and endpoints were subdivided in three time phases and summarized. Furthermore, it was analyzed which factors correlated with the image guidance error. Factor values for which an error ≤0.5 mm (μerror + 3σerror) was measured in more than one study were identified and inspected for time trends. Results: A descriptive statistics-based summary of study objectives and findings separated in three time intervals is provided. The literature provides qualitative and quantitative evidence that image guidance systems must provide an accuracy ≤0.5 mm (μerror + 3σerror) for their safe and beneficial application during surgery in the lateral skull. Spatial tracking accuracy and precision and medical image resolution both correlate with the image guidance accuracy, and all of them improved over the years. Tracking technology with accuracy ≤0.05 mm, computed tomography imaging with slice thickness ≤0.2 mm, and registration based on bone-anchored titanium fiducials are components that provide a sufficient setting for the development of sufficiently accurate image guidance. Conclusion: Image guidance systems must reliably provide an accuracy ≤0.5 mm (μerror + 3σerror) for their safe and beneficial use during surgery in the lateral skull. Advances in tracking and imaging technology contribute to the improvement of accuracy, eventually enabling the development and wide-scale adoption of image guidance solutions that can be used safely and beneficially during lateral skull surgery.
Collapse
Affiliation(s)
- Daniel Schneider
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Jan Hermann
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Fabian Mueller
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | | | - Lukas Anschuetz
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Marco Caversaccio
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Lutz Nolte
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Stefan Weber
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Thomas Klenzner
- Department of Otorhinolaryngology, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Wang J, Liu H, Ke J, Hu L, Zhang S, Yang B, Sun S, Guo N, Ma F. Image-guided cochlear access by non-invasive registration: a cadaveric feasibility study. Sci Rep 2020; 10:18318. [PMID: 33110188 PMCID: PMC7591497 DOI: 10.1038/s41598-020-75530-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 11/09/2022] Open
Abstract
Image-guided cochlear implant surgery is expected to reduce volume of mastoidectomy, accelerate recovery, and improve safety. The purpose of this study was to investigate the safety and effectiveness of image-guided cochlear implant surgery by a non-invasive registration method, in a cadaveric study. We developed a visual positioning frame that can utilize the maxillary dentition as a registration tool and completed the tunnels experiment on 5 cadaver specimens (8 cases in total). The accuracy of the entry point and the target point were 0.471 ± 0.276 mm and 0.671 ± 0.268 mm, respectively. The shortest distance from the margin of the tunnel to the facial nerve and the ossicular chain were 0.790 ± 0.709 mm and 1.960 ± 0.630 mm, respectively. All facial nerves, tympanic membranes, and ossicular chains were completely preserved. Using this approach, high accuracy was achieved in this preliminary study, suggesting that the non-invasive registration method can meet the accuracy requirements for cochlear implant surgery. Based on the above accuracy, we speculate that our method can also be applied to neurosurgery, orbitofacial surgery, lateral skull base surgery, and anterior skull base surgery with satisfactory accuracy.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Hongsheng Liu
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Jia Ke
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Lei Hu
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Shaoxing Zhang
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Biao Yang
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Shilong Sun
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Na Guo
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Furong Ma
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
7
|
Matsumoto N, Yamashita M, Cho B, Komune N, Hashizume M. Asymmetrical surface scanning registration for image-guided otologic surgery: A phantom study. Auris Nasus Larynx 2020; 47:574-579. [PMID: 32037041 DOI: 10.1016/j.anl.2020.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/26/2019] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To develop a registration procedure to achieve a higher degree of registration accuracy in image-guided otological surgery, paying particular attention to the registration centroid. METHODS A head phantom was used to measure the target registration error (TRE) at measurement points at various depth from the surface of the head. The surface-matching registration was performed using a commercially available surgical navigation system. We registered the phantom using only one ear of either side (right 100% - left 0%, or right 0% - left 100%) or using both ears with variable ratios (right 75% - left 25%, right 50% - left 50%, or right 25% - left 75%). RESULTS The overall TRE was the smallest when registration was performed equally on both sides. However, the TRE at 20-50 mm from the surface was the smallest when the fiducial points for the registration were collected asymmetrically at a ratio of 75:25 and weighed heavier on the operating side, and this difference was statistically significant. CONCLUSION The accuracy of image-guided surgery can be improved by carefully planning the registration procedure without changing the procedure itself. Accurate image-guided surgery at the middle and inner ear was achieved using 75% of the point cloud for the operating side and 25% of that for the opposite side for the registration.
Collapse
Affiliation(s)
- Nozomu Matsumoto
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Makoto Yamashita
- Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Byunghyun Cho
- Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noritaka Komune
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Hashizume
- Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Noninvasive Registration Strategies and Advanced Image Guidance Technology for Submillimeter Surgical Navigation Accuracy in the Lateral Skull Base. Otol Neurotol 2018; 39:1326-1335. [DOI: 10.1097/mao.0000000000001993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Gohel B, Lim S, Kim MY, Kwon H, Kim K. Approximate Subject Specific Pseudo MRI from an Available MRI Dataset for MEG Source Imaging. Front Neuroinform 2017; 11:50. [PMID: 28848418 PMCID: PMC5550724 DOI: 10.3389/fninf.2017.00050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/25/2017] [Indexed: 11/29/2022] Open
Abstract
Computation of headmodel and sourcemodel from the subject's MRI scan is an essential step for source localization of magnetoencephalography (MEG) (or EEG) sensor signals. In the absence of a real MRI scan, pseudo MRI (i.e., associated headmodel and sourcemodel) is often approximated from an available standard MRI template or pool of MRI scans considering the subject's digitized head surface. In the present study, we approximated two types of pseudo MRI (i.e., associated headmodel and sourcemodel) using an available pool of MRI scans with the focus on MEG source imaging. The first was the first rank pseudo MRI; that is, the MRI scan in the dataset having the lowest objective registration error (ORE) after being registered (rigid body transformation with isotropic scaling) to the subject's digitized head surface. The second was the averaged rank pseudo MRI that is generated by averaging of headmodels and sourcemodels from multiple MRI scans respectively, after being registered to the subject's digitized head surface. Subject level analysis showed that the mean upper bound of source location error for the approximated sourcemodel in reference to the real one was 10 ± 3 mm for the averaged rank pseudo MRI, which was significantly lower than the first rank pseudo MRI approach. Functional group source response in the brain to visual stimulation in the form of event-related power (ERP) at the time latency of peak amplitude showed noticeably identical source distribution for first rank pseudo MRI, averaged rank pseudo MRI, and real MRI. The source localization error for functional peak response was significantly lower for averaged rank pseudo MRI compared to first rank pseudo MRI. We conclude that it is feasible to use approximated pseudo MRI, particularly the averaged rank pseudo MRI, as a substitute for real MRI without losing the generality of the functional group source response.
Collapse
Affiliation(s)
- Bakul Gohel
- Center for Biosignals, Korea Research Institute of Standards and ScienceDaejeon, South Korea
| | - Sanghyun Lim
- Center for Biosignals, Korea Research Institute of Standards and ScienceDaejeon, South Korea
| | - Min-Young Kim
- Center for Biosignals, Korea Research Institute of Standards and ScienceDaejeon, South Korea
| | - Hyukchan Kwon
- Center for Biosignals, Korea Research Institute of Standards and ScienceDaejeon, South Korea
| | - Kiwoong Kim
- Center for Biosignals, Korea Research Institute of Standards and ScienceDaejeon, South Korea
| |
Collapse
|
10
|
Komune N, Matsushima K, Matsuo S, Safavi-Abbasi S, Matsumoto N, Rhoton AL. The accuracy of an electromagnetic navigation system in lateral skull base approaches. Laryngoscope 2016; 127:450-459. [DOI: 10.1002/lary.25998] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/17/2016] [Accepted: 03/01/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Noritaka Komune
- Department of Otorhinolaryngology, Graduate School of Medical Sciences; Kyushu University; Japan
- Department of Neurosurgery; University of Florida, College of Medicine; Gainesville Florida U.S.A
| | - Ken Matsushima
- Department of Neurosurgery; University of Florida, College of Medicine; Gainesville Florida U.S.A
| | - Satoshi Matsuo
- Department of Neurosurgery; University of Florida, College of Medicine; Gainesville Florida U.S.A
| | - Sam Safavi-Abbasi
- ACALA Neurosurgical Specialists, PC; Flagstaff Neurosurgery; Flagstaff Arizona U.S.A
| | - Nozomu Matsumoto
- Department of Otorhinolaryngology, Graduate School of Medical Sciences; Kyushu University; Japan
| | - Albert L. Rhoton
- Department of Neurosurgery; University of Florida, College of Medicine; Gainesville Florida U.S.A
| |
Collapse
|
11
|
A projected landmark method for reduction of registration error in image-guided surgery systems. Int J Comput Assist Radiol Surg 2014; 10:541-54. [PMID: 24866060 DOI: 10.1007/s11548-014-1075-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Image-guided surgery systems are limited by registration error, so practical and effective methods to improve accuracy are necessary. A projection point-based method for reducing the surface registration error in image-guided surgery was developed and tested. METHODS Checkerboard patterns are projected on visible surfaces to create projected landmarks over a region of interest. Surface information thus becomes available in the form of point clouds of surface point coordinates with submillimeter resolution. The reconstructed 3D point cloud is registered using iterative closest point (ICP) approximation to a 3D point cloud extracted from preoperative CT images of the same region of interest. The projected landmark surface registration method was compared with two other methods using a facial surface phantom: (a) landmark registration using anatomical features, and (b) surface matching based on an additional 40 surface points. RESULTS The mean error for the projected landmark surface registration method was 0.64 mm, which was 47.4 and 35.3 % lower relative to mean errors of the anatomical landmark registration and the surface-matching methods, respectively. After applying the proposed method, using target registration error as a gold standard, the resulting mean error was 1.1 mm or a reduction of 61.2 % compared to the anatomical landmark registration. CONCLUSION Optical checkerboard pattern projection onto visible surfaces was used to acquire surface point clouds for image-guided surgery registration. A projected landmark method eliminated the effects of unwanted and overlapping points by acquiring the desired points at specific locations. The results were more accurate than conventional landmark or surface registration.
Collapse
|
12
|
Gerber N, Bell B, Gavaghan K, Weisstanner C, Caversaccio M, Weber S. Surgical planning tool for robotically assisted hearing aid implantation. Int J Comput Assist Radiol Surg 2013; 9:11-20. [DOI: 10.1007/s11548-013-0908-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
|
13
|
Gerber N, Gavaghan KA, Bell BJ, Williamson TM, Weisstanner C, Caversaccio MD, Weber S. High-accuracy patient-to-image registration for the facilitation of image-guided robotic microsurgery on the head. IEEE Trans Biomed Eng 2013; 60:960-8. [PMID: 23340586 DOI: 10.1109/tbme.2013.2241063] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Image-guided microsurgery requires accuracies an order of magnitude higher than today's navigation systems provide. A critical step toward the achievement of such low-error requirements is a highly accurate and verified patient-to-image registration. With the aim of reducing target registration error to a level that would facilitate the use of image-guided robotic microsurgery on the rigid anatomy of the head, we have developed a semiautomatic fiducial detection technique. Automatic force-controlled localization of fiducials on the patient is achieved through the implementation of a robotic-controlled tactile search within the head of a standard surgical screw. Precise detection of the corresponding fiducials in the image data is realized using an automated model-based matching algorithm on high-resolution, isometric cone beam CT images. Verification of the registration technique on phantoms demonstrated that through the elimination of user variability, clinically relevant target registration errors of approximately 0.1 mm could be achieved.
Collapse
Affiliation(s)
- Nicolas Gerber
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3012 Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
14
|
Reaungamornrat S, Otake Y, Uneri A, Schafer S, Mirota DJ, Nithiananthan S, Stayman JW, Kleinszig G, Khanna AJ, Taylor RH, Siewerdsen JH. An on-board surgical tracking and video augmentation system for C-arm image guidance. Int J Comput Assist Radiol Surg 2012; 7:647-65. [PMID: 22539008 DOI: 10.1007/s11548-012-0682-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/20/2012] [Indexed: 11/27/2022]
Abstract
PURPOSE Conventional tracker configurations for surgical navigation carry a variety of limitations, including limited geometric accuracy, line-of-sight obstruction, and mismatch of the view angle with the surgeon's-eye view. This paper presents the development and characterization of a novel tracker configuration (referred to as "Tracker-on-C") intended to address such limitations by incorporating the tracker directly on the gantry of a mobile C-arm for fluoroscopy and cone-beam CT (CBCT). METHODS A video-based tracker (MicronTracker, Claron Technology Inc., Toronto, ON, Canada) was mounted on the gantry of a prototype mobile isocentric C-arm next to the flat-panel detector. To maintain registration within a dynamically moving reference frame (due to rotation of the C-arm), a reference marker consisting of 6 faces (referred to as a "hex-face marker") was developed to give visibility across the full range of C-arm rotation. Three primary functionalities were investigated: surgical tracking, generation of digitally reconstructed radiographs (DRRs) from the perspective of a tracked tool or the current C-arm angle, and augmentation of the tracker video scene with image, DRR, and planning data. Target registration error (TRE) was measured in comparison with the same tracker implemented in a conventional in-room configuration. Graphics processing unit (GPU)-accelerated DRRs were generated in real time as an assistant to C-arm positioning (i.e., positioning the C-arm such that target anatomy is in the field-of-view (FOV)), radiographic search (i.e., a virtual X-ray projection preview of target anatomy without X-ray exposure), and localization (i.e., visualizing the location of the surgical target or planning data). Video augmentation included superimposing tracker data, the X-ray FOV, DRRs, planning data, preoperative images, and/or intraoperative CBCT onto the video scene. Geometric accuracy was quantitatively evaluated in each case, and qualitative assessment of clinical feasibility was analyzed by an experienced and fellowship-trained orthopedic spine surgeon within a clinically realistic surgical setup of the Tracker-on-C. RESULTS The Tracker-on-C configuration demonstrated improved TRE (0.87 ± 0.25) mm in comparison with a conventional in-room tracker setup (1.92 ± 0.71) mm (p < 0.0001) attributed primarily to improved depth resolution of the stereoscopic camera placed closer to the surgical field. The hex-face reference marker maintained registration across the 180° C-arm orbit (TRE = 0.70 ± 0.32 mm). DRRs generated from the perspective of the C-arm X-ray detector demonstrated sub- mm accuracy (0.37 ± 0.20 mm) in correspondence with the real X-ray image. Planning data and DRRs overlaid on the video scene exhibited accuracy of (0.59 ± 0.38) pixels and (0.66 ± 0.36) pixels, respectively. Preclinical assessment suggested potential utility of the Tracker-on-C in a spectrum of interventions, including improved line of sight, an assistant to C-arm positioning, and faster target localization, while reducing X-ray exposure time. CONCLUSIONS The proposed tracker configuration demonstrated sub- mm TRE from the dynamic reference frame of a rotational C-arm through the use of the multi-face reference marker. Real-time DRRs and video augmentation from a natural perspective over the operating table assisted C-arm setup, simplified radiographic search and localization, and reduced fluoroscopy time. Incorporation of the proposed tracker configuration with C-arm CBCT guidance has the potential to simplify intraoperative registration, improve geometric accuracy, enhance visualization, and reduce radiation exposure.
Collapse
Affiliation(s)
- S Reaungamornrat
- Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, Room #726, 720 Rutland Avenue, Baltimore, MD 21205-2109, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zheng G, Gerber N, Widmer D, Stieger C, Caversaccio M, Nolte LP, Weber S. Automated detection of fiducial screws from CT/DVT volume data for image-guided ENT surgery. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2010:2325-8. [PMID: 21096801 DOI: 10.1109/iembs.2010.5627459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper presents an automated solution for precise detection of fiducial screws from three-dimensional (3D) Computerized Tomography (CT)/Digital Volume Tomography (DVT) data for image-guided ENT surgery. Unlike previously published solutions, we regard the detection of the fiducial screws from the CT/DVT volume data as a pose estimation problem. We thus developed a model-based solution. Starting from a user-supplied initialization, our solution detects the fiducial screws by iteratively matching a computer aided design (CAD) model of the fiducial screw to features extracted from the CT/DVT data. We validated our solution on one conventional CT dataset and on five DVT volume datasets, resulting in a total detection of 24 fiducial screws. Our experimental results indicate that the proposed solution achieves much higher reproducibility and precision than the manual detection. Further comparison shows that the proposed solution produces better results on the DVT dataset than on the conventional CT dataset.
Collapse
Affiliation(s)
- Guoyan Zheng
- Institute for Surgical Technology and Biomechanics, University of Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Majdani O, Rau TS, Baron S, Eilers H, Baier C, Heimann B, Ortmaier T, Bartling S, Lenarz T, Leinung M. A robot-guided minimally invasive approach for cochlear implant surgery: preliminary results of a temporal bone study. Int J Comput Assist Radiol Surg 2009; 4:475-86. [PMID: 20033531 DOI: 10.1007/s11548-009-0360-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE The aim of this study was to create an access canal to the inner ear, by drilling, and perform the cochleostomy for cochlear implant surgery using robot guidance. METHODS A robot, a surgical drill and an Image-Guided Surgery (IGS) system were combined in a closed-loop setup. Ten temporal bones were scanned at the planning stages of the procedure. The robot guided the drill along the preplanned trajectory and created the approach. Postoperative scans were obtained. RESULTS The cochleostomy was performed completely in nine out of ten cases. This did not prove possible for one of the specimens, the target site selected being in too superficial a location in relation to the round window. No violation of the facial nerve took place, although the chorda tympani nerve was violated in one case and the stapes in two. It was obvious during preoperative planning that these structures would be violated, but this was accepted in order to maintain a safety margin from the facial nerve. No other unforeseen damage occurred. CONCLUSIONS This preliminary study suggests that robot-guided drilling of a minimally invasive approach to the cochlea might be feasible, but further improvements are necessary before any clinical application becomes possible. Where the width of the facial recess is less than 2.5 mm, the chorda tympani nerve and the ossicles are at risk.
Collapse
Affiliation(s)
- Omid Majdani
- Department of Otolaryngology Head and Neck Surgery, Clinic for Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, OE 6500, 30625, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Intraoperative use of cone-beam computed tomography in a cadaveric ossified cochlea model. Otolaryngol Head Neck Surg 2009; 140:697-702. [PMID: 19393414 DOI: 10.1016/j.otohns.2008.12.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 11/04/2008] [Accepted: 12/22/2008] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To describe a cadaveric temporal bone model of labyrinthitis ossificans and investigate the utility of intraoperative cone-beam computed tomography (CBCT) in the facilitating cochlear implantation. DESIGN Cadaveric temporal bone study. METHODS Five cadaveric heads had cement introduced into the 10 cochleas. CBCT and a conventional CT scan were compared to assess the extent of cochlear obliteration. The cement was drilled-out (under CBCT guidance, if required) and cochlear implant electrode arrays (from 3 different manufacturers) inserted. RESULTS CBCT images demonstrated temporal bone anatomy and the extent of cochlear obliteration as clearly as conventional CT in all cases. Intraoperative CBCT guided drilling and facilitated electrode placement in two of five heads (3 of 10 ears). Streak-artifact from the electrodes of two devices partially obscured image clarity. CONCLUSIONS The obliterated cochlear model reproduced a disease-ossified cochlear both radiographically and surgically. CBCT is useful for intraoperative imaging to facilitate electrode array placement in the obliterated or congenitally abnormal cochlea.
Collapse
|
18
|
Strauss G, Spitzer C, Dittrich E, Hofer M, Strauss M, Lüth T. [Modified procedure for patient registration for navigation control instruments in ENT surgery]. HNO 2009; 57:153-9. [PMID: 18712328 DOI: 10.1007/s00106-008-1816-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PROBLEM Surgical navigation and navigation-controlled instruments demand a robust and precise patient registration process. For navigation in the skull, a bite-splint-based registration method has been widely applied, which had to be manufactured by dental technicians. The additional cost and time could be avoided by directly using the manufactured imprint, which is prepared by the ENT surgeon in one step. MATERIAL AND METHODS This study examined the re-positioning accuracy for three silicon materials in a laboratory study with a 3D measuring device (Faro-arm) after several re-positioning cycles (simulating erosion) in comparison to the gold standard. RESULTS The mean deviation after two cycles was lower for all three materials compared to the gold standard. Only C-Silikon Optosil was better then the gold standard after all cycles and with a deviation of 0.17 mm it well below that of the conventional bite-splint (0.28 mm). The additional cost benefits of 10 euro per imprint compared to the bite-splint with >100 euro favor this material for clinical application. CONCLUSIONS As a consequence of this investigation Optosil was successfully used in 6 patients during the period from 01.09.2007 to 30.11.2007. The bite-splint was manufactured completely in the ENT department and could be used during the planning CT and surgery. The resulting accuracy corresponded to the experiences gained in previous surgery with a maximum deviation of 0.87 mm. The favorable ergonomic characteristics for patient and surgeon could be confirmed. As a result of this study this clinic now exclusively uses the procedure described in this article for bite-splint-based registration.
Collapse
Affiliation(s)
- G Strauss
- Klinik und Poliklinik für HNO-Heilkunde/Plastische Operationen, Universität Leipzig, Liebigstrasse 18a, 04103, Leipzig.
| | | | | | | | | | | |
Collapse
|
19
|
Matsumoto N, Hong J, Hashizume M, Komune S. A minimally invasive registration method using surface template-assisted marker positioning (STAMP) for image-guided otologic surgery. Otolaryngol Head Neck Surg 2009; 140:96-102. [PMID: 19130970 DOI: 10.1016/j.otohns.2008.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/01/2008] [Accepted: 10/01/2008] [Indexed: 11/17/2022]
Abstract
OBJECTIVE A new, minimally invasive registration method was developed for image-guided otologic surgery. We utilized laser-sintered template of the patient's bone surface to transfer the virtual markers to the patient's bone intraoperatively and eliminated the necessity for preoperative marker positioning or additional CT scan. STUDY DESIGN Simulation surgeries and clinical application. SUBJECTS AND METHODS We measured registration errors in 10 trials using replicas and six ear surgeries (two cochlear implant insertions, four translabyrinthine acoustic tumor removals). RESULTS The target registration errors varied among the surgical targets. Errors were less than 1 mm near the cochlear implant insertion target both in phantom study and in actual surgeries. CONCLUSION Our newly developed method reduced the preoperative procedures for patients but did not reduce the accuracy in cochlear implant surgery. Our method would be a useful image-guided surgery method in the field of otology, where both accuracy and noninvasiveness are required.
Collapse
Affiliation(s)
- Nozomu Matsumoto
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
20
|
Accuracy of image-guided surgical systems at the lateral skull base as clinically assessed using bone-anchored hearing aid posts as surgical targets. Otol Neurotol 2009; 29:1050-5. [PMID: 18836389 DOI: 10.1097/mao.0b013e3181859a08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Image-guided surgical (IGS) technology has been clinically available for more than a decade. To date, no acceptable standard exists for reporting the accuracy of IGS systems, especially for lateral skull base applications. We present a validation method that uses the post from bone-anchored hearing aid (BAHA) patients as a target. We then compare the accuracy of 2 IGS systems-one using laser skin-surface scanning (LSSS) and another using a noninvasive fiducial frame (FF) attached to patient via dental bite-block (DBB) for registration. STUDY DESIGN Prospective. SETTING Tertiary referral center. PATIENTS Six BAHA patients who had adequate dentition for creation of a DBB. INTERVENTION(S) For each patient, a dental impression was obtained, and a customized DBB was made to hold an FF. Temporal bone computed tomographic (CT) scans were obtained with the patient wearing the DBB, FF, and a customized marker on the BAHA post. In a mock operating room, CT scans were registered to operative anatomy using 2 methods: 1) LSSS and 2) FF. MAIN OUTCOME MEASURE(S) For each patient and each system, the position of the BAHA marker in the CT scan and in the mock operating room (using optical measurement technology) was compared, and the distances between them are reported to demonstrate accuracy. RESULTS Accuracy (mean +/- standard deviation) was 1.54 +/- 0.63 mm for DBB registration and 3.21 +/- 1.02 mm for LSSS registration. CONCLUSION An IGS system using FF registration is more accurate than one using LSSS (p = 0.03, 2-sided Student's t test). BAHA patients provide a unique patient population upon which IGS systems may be validated.
Collapse
|
21
|
Whalen C, Maclin EL, Fabiani M, Gratton G. Validation of a method for coregistering scalp recording locations with 3D structural MR images. Hum Brain Mapp 2008; 29:1288-301. [PMID: 17894391 PMCID: PMC6871211 DOI: 10.1002/hbm.20465] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/11/2007] [Accepted: 07/12/2007] [Indexed: 11/09/2022] Open
Abstract
A common problem in brain imaging is how to most appropriately coregister anatomical and functional data sets into a common space. For surface-based recordings such as the event related optical signal (EROS), near-infrared spectroscopy (NIRS), event-related potentials (ERPs), and magnetoencephalography (MEG), alignment is typically done using either (1) a landmark-based method involving placement of surface markers that can be detected in both modalities; or (2) surface-fitting alignment that samples many points on the surface of the head in the functional space and aligns those points to the surface of the anatomical image. Here we compare these two approaches and advocate a combination of the two in order to optimize coregistration of EROS and NIRS data with structural magnetic resonance images (sMRI). Digitized 3D sensor locations obtained with a Polhemus digitizer can be effectively coregistered with sMRI using fiducial alignment as an initial guess followed by a Marquardt-Levenberg least-squares rigid-body transform (df = 6) to match the surfaces. Additional scaling parameters (df = 3) and point-by-point surface constraints can also be employed to further improve fitting. These alignment procedures place the lower-bound residual error at 1.3 +/- 0.1 mm (micro +/- s) and the upper-bound target registration error at 4.4 +/- 0.6 mm (micro +/- s). The dependence of such errors on scalp segmentation, number of registration points, and initial guess is also investigated. By optimizing alignment techniques, anatomical localization of surface recordings can be improved in individual subjects.
Collapse
Affiliation(s)
- Christopher Whalen
- Beckman Institute, University of Illinois at Urbana‐Champaign, Urbana, Illinois
| | - Edward L. Maclin
- Beckman Institute, University of Illinois at Urbana‐Champaign, Urbana, Illinois
| | - Monica Fabiani
- Beckman Institute, University of Illinois at Urbana‐Champaign, Urbana, Illinois
- Psychology Department, University of Illinois at Urbana‐Champaign, Urbana, Illinois
| | - Gabriele Gratton
- Beckman Institute, University of Illinois at Urbana‐Champaign, Urbana, Illinois
- Psychology Department, University of Illinois at Urbana‐Champaign, Urbana, Illinois
| |
Collapse
|
22
|
Hong J, Matsumoto N, Ouchida R, Komune S, Hashizume M. Medical navigation system for otologic surgery based on hybrid registration and virtual intraoperative computed tomography. IEEE Trans Biomed Eng 2008; 56:426-32. [PMID: 19272886 DOI: 10.1109/tbme.2008.2008168] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An image-guided surgical system for otologic surgery was developed and clinically evaluated. With reliable hybrid registration, real-time patient movement compensation and virtual intraoperative computed tomography imaging have been originally proposed. In contrast to the commercially available systems that mainly use 2-D images for pointing probes, in this system, the surgical drill position is navigated and displayed in the 3-D space with real-time surface rendering. In a temporal bone model study, the navigation accuracy was 1.12 +/- 0.09 mm with regard to the target registration error. Initial clinical evaluation of the proposed method was performed in five cochlea implantation surgeries. Accurate insertion of the electrodes into the cochlea was achieved, and the facial nerve was protected from injury in all surgeries. The proposed method could be applied to various surgeries for accurate targeting and protection of critical organs.
Collapse
Affiliation(s)
- Jaesung Hong
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
23
|
Atuegwu NC, Galloway RL. Sensitivity analysis of fiducial placement on transorbital target registration error. Int J Comput Assist Radiol Surg 2008. [DOI: 10.1007/s11548-008-0150-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Labadie RF, Chodhury P, Cetinkaya E, Balachandran R, Haynes DS, Fenlon MR, Jusczyzck AS, Fitzpatrick JM. Minimally invasive, image-guided, facial-recess approach to the middle ear: demonstration of the concept of percutaneous cochlear access in vitro. Otol Neurotol 2005; 26:557-62. [PMID: 16015146 DOI: 10.1097/01.mao.0000178117.61537.5b] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Image-guided surgery will permit accurate access to the middle ear via the facial recess using a single drill hole from the lateral aspect of the mastoid cortex. BACKGROUND The widespread use of image-guided methods in otologic surgery has been limited by the need for a system that achieves the necessary level of accuracy with an easy-to-use, noninvasive fiducial marker system. We have developed and recently reported such a system (accuracy within the temporal bone = 0.76 +/- 0.23 mm; n = 234 measurements). With this system, image-guided otologic surgery is feasible. METHODS Skulls (n = 2) were fitted with a dental bite-block affixed fiducial frame and scanned by computed tomography using standard temporal-bone algorithms. The frame was removed and replaced with an infrared emitter used to track the skull during dissection. Tracking was accomplished using an infrared tracker and commercially available software. Using this system in conjunction with a tracked otologic drill, the middle ear was approached via the facial recess using a single drill hole from the lateral aspect of the mastoid cortex. The path of the drill was verified by subsequently performing a traditional temporal bone dissection, preserving the tunnel of bone through which the drill pass had been made. RESULTS An accurate approach to the middle ear via the facial recess was achieved without violating the canal of the facial nerve, the horizontal semicircular canal, or the external auditory canal. CONCLUSIONS Image-guided otologic surgery provides access to the cochlea via the facial recess in a minimally invasive, percutaneous fashion. While the present study was confined to in vitro demonstration, these exciting results warrant in vivo testing, which may lead to clinically applicable access.
Collapse
Affiliation(s)
- Robert F Labadie
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8605, USA.
| | | | | | | | | | | | | | | |
Collapse
|