1
|
Battista S, Fedele M, Secco L, Ingo AMD, Sgarra R, Manfioletti G. Binding to the Other Side: The AT-Hook DNA-Binding Domain Allows Nuclear Factors to Exploit the DNA Minor Groove. Int J Mol Sci 2024; 25:8863. [PMID: 39201549 PMCID: PMC11354804 DOI: 10.3390/ijms25168863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The "AT-hook" is a peculiar DNA-binding domain that interacts with DNA in the minor groove in correspondence to AT-rich sequences. This domain has been first described in the HMGA protein family of architectural factors and later in various transcription factors and chromatin proteins, often in association with major groove DNA-binding domains. In this review, using a literature search, we identified about one hundred AT-hook-containing proteins, mainly chromatin proteins and transcription factors. After considering the prototypes of AT-hook-containing proteins, the HMGA family, we review those that have been studied in more detail and that have been involved in various pathologies with a particular focus on cancer. This review shows that the AT-hook is a domain that gives proteins not only the ability to interact with DNA but also with RNA and proteins. This domain can have enzymatic activity and can influence the activity of the major groove DNA-binding domain and chromatin docking modules when present, and its activity can be modulated by post-translational modifications. Future research on the function of AT-hook-containing proteins will allow us to better decipher their function and contribution to the different pathologies and to eventually uncover their mutual influences.
Collapse
Affiliation(s)
- Sabrina Battista
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.B.); (M.F.)
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.B.); (M.F.)
| | - Luca Secco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| | | | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| | - Guidalberto Manfioletti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| |
Collapse
|
2
|
Ramírez-González A, Manzo-Merino J, Contreras-Ochoa CO, Bahena-Román M, Aguilar-Villaseñor JM, Lagunas-Martínez A, Rosenstein Y, Madrid Marina V, Torres-Poveda K. Functional Role of AKNA: A Scoping Review. Biomolecules 2021; 11:1709. [PMID: 34827707 PMCID: PMC8615511 DOI: 10.3390/biom11111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Human akna encodes an AT-hook transcription factor whose expression participates in various cellular processes. We conducted a scoping review on the literature regarding the functional role of AKNA according to the evidence found in human and in vivo and in vitro models, stringently following the "PRISMA-ScR" statement recommendations. METHODS We undertook an independent PubMed literature search using the following search terms, AKNA OR AKNA ADJ gene OR AKNA protein, human OR AKNA ADJ functions. Observational and experimental articles were considered. The selected studies were categorized using a pre-determined data extraction form. A narrative summary of the evidence was produced. RESULTS AKNA modulates the expression of CD40 and CD40L genes in immune system cells. It is a negative regulator of inflammatory processes as evidenced by knockout mouse models and observational studies for several autoimmune and inflammatory diseases. Furthermore, AKNA contributes to the de-regulation of the immune system in cancer, and it has been proposed as a susceptibility genetic factor and biomarker in CC, GC, and HNSCC. Finally, AKNA regulates neurogenesis by destabilizing the microtubules dynamics. CONCLUSION Our results provide evidence for the role of AKNA in various cellular processes, including immune response, inflammation, development, cancer, autoimmunity, and neurogenesis.
Collapse
Affiliation(s)
- Abrahán Ramírez-González
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - Joaquín Manzo-Merino
- Department of Basic Research, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
- Consejo Nacional de Ciencia y Tecnología (CONACyT)-Instituto Nacional de Cancerología, Mexico City 03940, Mexico
| | - Carla Olbia Contreras-Ochoa
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - Margarita Bahena-Román
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - José Manasés Aguilar-Villaseñor
- Centro Nacional para la Salud de la Infancia y la Adolescencia (CeNSIA)-Secretaría de Salud Federal, Mexico City 01480, Mexico;
| | - Alfredo Lagunas-Martínez
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City 62210, Mexico;
| | - Vicente Madrid Marina
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - Kirvis Torres-Poveda
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
- CONACyT-Instituto Nacional de Salud Pública, Cuernavaca 03940, Mexico
| |
Collapse
|
3
|
Li N, Yu K, Lin Z, Zeng D. Development and Validation of a Five-immune Gene Pair Signature in Endometrial Carcinoma. Comb Chem High Throughput Screen 2020; 24:233-245. [PMID: 32729416 DOI: 10.2174/1386207323999200729113641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/09/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endometrial cancer (EC) is a common gynecological malignancy worldwide. Immunity is closely related to the occurrence and prognosis of EC. At the same time, immune-related genes have great potential as prognostic markers in many types of cancer. OBJECTIVE Therefore, we attempt to develop immune-related gene markers to enhance prognosis prediction of EC. METHODS 542 samples of EC gene expression data and clinical follow-up information were downloaded from The Cancer Genome Atlas (TCGA). The samples were randomly divided into two groups, one group as a training set (N=271), and one set as a validation set. (N=271). In the training set, the gene pairs were established based on the relative expression levels of 271 immune genes, and the prognosis-related gene pairs were screened. The lasso was used to select the features, and finally, the robust biomarkers were screened. Finally, the prognostic model of the immune gene pair was established and verified by the validation data set. RESULTS 10030 immune gene pair (IRGPs) were obtained, and univariate survival analysis was used to identify 1809 prognostic-related IRGPs (p<0.05). 5-IRGPs were obtained by lasso regression feature selection, and multivariate regression was used to establish 5-IRGPs signature, 5-IRGPs signature is an independent prognostic factor for EC patients, and could be risk stratified in patients with TCGA datasets, age, ethnicity, stage, and histological classification (p<0.05). The mean AUC of survival in both the training set and the validation set was greater than 0.7, indicating that 5-IRGPs signature has superior classification performance in patients with EC. In addition, 5-IRGPs have the highest average C index (0.795) compared to the prognostic characteristics of the three endometrial cancers reported in the past and Stage and Age. CONCLUSION This study constructed a 5-IRGPs signature as a novel prognostic marker for predicting survival in patients with EC.
Collapse
Affiliation(s)
- Nan Li
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, Guangxi Autonomous Region, 545001, China
| | - Kai Yu
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhong Lin
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, Guangxi Autonomous Region, 545001, China
| | | |
Collapse
|
4
|
Song Y, Pan Y, Liu J. The relevance between the immune response-related gene module and clinical traits in head and neck squamous cell carcinoma. Cancer Manag Res 2019; 11:7455-7472. [PMID: 31496804 PMCID: PMC6689548 DOI: 10.2147/cmar.s201177] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023] Open
Abstract
Purpose Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer in the world, accounting for more than 90% of head and neck malignant tumors. However, its molecular mechanism is largely unknown. To help elucidate the potential mechanism of HNSCC tumorigenesis, we investigated the gene interaction patterns associated with tumorigenesis. Methods Weighted gene co-expression network analysis (WGCNA) can help us to predict the intrinsic relationship or correlation between gene expression. Additionally, we further explored the combination of clinical information and module construction. Results Sixteen modules were constructed, among which the key module most closely associated with clinical information was identified. By analyzing the genes in this module, we found that the latter may be related to the immune response, inflammatory response and formation of the tumor microenvironment. Sixteen hub genes were identified-ARHGAP9, SASH3, CORO1A, ITGAL, PPP1R16B, TBC1D10C, IL10RA, ITK, AKNA, PRKCB, TRAF3IP3, GIMAP4, CCR7, P2RY8, GIMAP7, and SP140. We further validated these genes at the transcriptional and translation levels. Conclusion The innovative use of a weighted network to analyze HNSCC samples provides new insights into the molecular mechanism and prognosis of HNSCC. Additionally, the hub genes we identified can be used as biomarkers and therapeutic targets of HNSCC, laying the foundation for the accurate diagnosis and treatment of HNSCC in clinical and research in the future.
Collapse
Affiliation(s)
- Yidan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yihua Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
5
|
Hug P, Anderegg L, Kehl A, Jagannathan V, Leeb T. AKNA Frameshift Variant in Three Dogs with Recurrent Inflammatory Pulmonary Disease. Genes (Basel) 2019; 10:E567. [PMID: 31357536 PMCID: PMC6723478 DOI: 10.3390/genes10080567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 01/03/2023] Open
Abstract
We investigated three related Rough Collies with recurrent inflammatory pulmonary disease. The clinical symptoms were similar to primary ciliary dyskinesia (PCD). However, the affected dogs did not carry any known pathogenic PCD variants. Pedigree analysis suggested a recessive mode of inheritance. Combined linkage and homozygosity mapping in three cases and seven non-affected family members delineated 19 critical intervals on 10 chromosomes comprising a total of 99 Mb. The genome of one affected dog was sequenced and compared to 601 control genomes. We detected only a single private homozygous protein-changing variant in the critical intervals. The detected variant was a 4 bp deletion, c.2717_2720delACAG, in the AKNA gene encoding the AT-hook transcription factor. It causes a frame-shift introducing a premature stop codon and truncates 37% of the open reading frame, p.(Asp906Alafs*173). We genotyped 88 Rough Collies consisting of family members and unrelated individuals. All three available cases were homozygous for the mutant allele and all 85 non-affected dogs were either homozygous wildtype (n = 67) or heterozygous (n = 18). AKNA modulates inflammatory immune responses. Akna-/- knockout mice die shortly after birth due to systemic autoimmune inflammatory processes including lung inflammation that is accompanied by enhanced leukocyte infiltration and alveolar destruction. The perfect genotype-phenotype association and the comparative functional data strongly suggest that the detected AKNA:c.2717_2720delACAG variant caused the observed severe airway inflammation in the investigated dogs. Our findings enable genetic testing, which can be used to avoid the unintentional breeding of affected puppies.
Collapse
Affiliation(s)
- Petra Hug
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Linda Anderegg
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | | | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| |
Collapse
|
6
|
The association of AKNA gene polymorphisms with knee osteoarthritis suggests the relevance of this immune response regulator in the disease genetic susceptibility. Mol Biol Rep 2018; 45:151-161. [PMID: 29368274 DOI: 10.1007/s11033-018-4148-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Abstract
Recent studies have identified AKNA as a potential susceptibility gene for several inflammatory diseases. Here, we aimed to assess the potential association of AKNA polymorphisms with knee osteoarthritis (KOA) susceptibility in a Mexican population, following STREGA recommendations. From a DNA bank of 181 KOA patients and 140 healthy controls, two AKNA SNPs were genotyped using TaqMan probes. The association between KOA susceptibility and AKNA polymorphisms genotypes was evaluated by multivariated logistic regression analysis. Information regarding patients' inflammatory biomarkers levels was obtained and their association with AKNA polymorphisms genotypes was assessed by lineal regression. We found a positive association with the recessive inheritance model of both AKNA polymorphisms (A/A genotype for both) and KOA susceptibility adjusting by age, body mass index (BMI), gender and place of birth (OR = 2.48, 95% CI 1.09-5.65 for rs10817595 polymorphism; and OR = 4.96; 95% CI 2.421-10.2 for rs3748176 polymorphism). Additionally these associations were also seen after stratifying patients by KOA severity and age. Furthermore the total leukocyte count was positively associated with rs10817595 AKNA polymorphism (β = 1.39; 95% CI 0.44-2.34) adjusting by age, BMI, gender, place of birth and disease severity. We suggest that regulatory and coding polymorphisms of the inflammatory modulator gene AKNA can influence the development of KOA. Further structural and functional studies might reveal the role of AKNA in OA and other rheumatic diseases.
Collapse
|
7
|
Liu X, Huang D, Guo P, Wu Q, Dai M, Cheng G, Hao H, Xie S, Yuan Z, Wang X. PKA/CREB and NF-κB pathway regulates AKNA transcription: A novel insight into T-2 toxin-induced inflammation and GH deficiency in GH3 cells. Toxicology 2017; 392:81-95. [DOI: 10.1016/j.tox.2017.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/14/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
|
8
|
Martínez-Nava GA, Torres-Poveda K, Lagunas-Martínez A, Bahena-Román M, Zurita-Díaz MA, Ortíz-Flores E, García-Carrancá A, Madrid-Marina V, Burguete-García AI. Cervical cancer-associated promoter polymorphism affects akna expression levels. Genes Immun 2014; 16:43-53. [PMID: 25373726 DOI: 10.1038/gene.2014.60] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/02/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022]
Abstract
Cervical cancer (CC) is responsible for >260,000 deaths worldwide each year. Efforts are being focused on identifying genetic susceptibility factors, especially in genes related to the immune response. Akna has been proposed to be one of them, but data regarding its functional role in the disease is scarce. Supporting the notion of akna as a CC susceptibility gene, we found two polymorphisms associated with squamous intraepithelial lesion (SIL) and CC; moreover, we identified an association between high akna expression levels and CC and SIL, but its direction differs in each disease stage. To show the potential existence of a cis-acting polymorphism, we assessed akna allelic expression imbalance for the alleles of the -1372C>A polymorphism. We found that, regardless of the study group, the number of transcripts derived from the A allele was significantly higher than those from the C allele. Our results support the hypothesis that akna is a CC susceptibility genetic factor and suggest that akna transcriptional regulation has a role in the disease. We anticipate our study to be a starting point for in vitro evaluation of akna transcriptional regulation and for the identification of transcription factors and cis-elements regulating AKNA function that are involved in carcinogenesis.
Collapse
Affiliation(s)
- G A Martínez-Nava
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - K Torres-Poveda
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - A Lagunas-Martínez
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - M Bahena-Román
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - M A Zurita-Díaz
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - E Ortíz-Flores
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - A García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Distrito Federal, Mexico
| | - V Madrid-Marina
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - A I Burguete-García
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| |
Collapse
|
9
|
Zhang X, Zhang L, Tian C, Yang L, Wang Z. Genetic variants and risk of cervical cancer: epidemiological evidence, meta-analysis and research review. BJOG 2014; 121:664-74. [DOI: 10.1111/1471-0528.12638] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2013] [Indexed: 12/31/2022]
Affiliation(s)
- X Zhang
- Department of Epidemiology and Health Statistics; School of Public Health; Shandong University; Jinan Shandong China
- Hangzhou Center for Disease Control and Prevention; Hangzhou Zhejiang China
| | - L Zhang
- Department of Epidemiology and Health Statistics; School of Public Health; Shandong University; Jinan Shandong China
| | - C Tian
- Kunshan Municipal Center for Disease Control and Prevention; Suzhou Jiangsu China
| | - L Yang
- Hangzhou Center for Disease Control and Prevention; Hangzhou Zhejiang China
| | - Z Wang
- Department of Epidemiology and Health Statistics; School of Public Health; Shandong University; Jinan Shandong China
| |
Collapse
|
10
|
Ying H, Lv J, Ying T, Jin S, Shao J, Wang L, Xu H, Yuan B, Yang Q. Gene-gene interaction network analysis of ovarian cancer using TCGA data. J Ovarian Res 2013; 6:88. [PMID: 24314048 PMCID: PMC4029308 DOI: 10.1186/1757-2215-6-88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/14/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The Cancer Genome Atlas (TCGA) Data portal provides a platform for researchers to search, download, and analysis data generated by TCGA. The objective of this study was to explore the molecular mechanism of ovarian cancer pathogenesis. METHODS Microarray data of ovarian cancer were downloaded from TCGA database, and Limma package in R language was used to identify the differentially expressed genes (DEGs) between ovarian cancer and normal samples, followed by the function and pathway annotations of the DEGs. Next, NetBox software was used to for the gene-gene interaction (GGI) network construction and the corresponding modules identification, and functions of genes in the modules were screened using DAVID. RESULTS Our studies identified 332 DEGs, including 146 up-regulated genes which mainly involved in the cell cycle related functions and cell cycle pathway, and 186 down-regulated genes which were enriched in extracellular region par function, and Ether lipid metabolism pathway. GGI network was constructed by 127 DEGs and their significantly interacted 209 genes (LINKERs). In the top 10 nodes ranked by degrees in the network, 5 were LINKERs. Totally, 7 functional modules in the network were selected, and they were enriched in different functions and pathways, such as mitosis process, DNA replication and DNA double-strand synthesis, lipid synthesis processes and metabolic pathways. AR, BRCA1, TFDP1, FOXM1, CDK2, and DBF4 were identified as the transcript factors of the 7 modules. CONCLUSION our data provides a comprehensive bioinformatics analysis of genes, functions, and pathways which may be involved in the pathogenesis of ovarian cancer.
Collapse
Affiliation(s)
- Huanchun Ying
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| | - Jing Lv
- Department of Oncology, The fifth Hospital of Shenyang, Shenyang 110023, China
| | - Tianshu Ying
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| | - Shanshan Jin
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| | - Jingru Shao
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| | - Lili Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| | - Hongying Xu
- Department of Gynecology and Obstetrics, The ninth Hospital of Shenyang, Shenyang 110024, China
| | - Bin Yuan
- Department of Oncology, The fifth Hospital of Shenyang, Shenyang 110023, China
| | - Qing Yang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| |
Collapse
|
11
|
Moliterno AR, Resar LMS. AKNA: another AT-hook transcription factor "hooking-up" with inflammation. Cell Res 2011; 21:1528-30. [PMID: 21670742 DOI: 10.1038/cr.2011.96] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Alison R Moliterno
- Division of Hematology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
12
|
Coordinate activation of inflammatory gene networks, alveolar destruction and neonatal death in AKNA deficient mice. Cell Res 2011; 21:1564-77. [PMID: 21606955 DOI: 10.1038/cr.2011.84] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gene expression can be regulated by chromatin modifiers, transcription factors and proteins that modulate DNA architecture. Among the latter, AT-hook transcription factors have emerged as multifaceted regulators that can activate or repress broad A/T-rich gene networks. Thus, alterations of AT-hook genes could affect the transcription of multiple genes causing global cell dysfunction. Here we report that targeted deletions of mouse AKNA, a hypothetical AT-hook-like transcription factor, sensitize mice to pathogen-induced inflammation and cause sudden neonatal death. Compared with wild-type littermates, AKNA KO mice appeared weak, failed to thrive and most died by postnatal day 10. Systemic inflammation, predominantly in the lungs, was accompanied by enhanced leukocyte infiltration and alveolar destruction. Cytologic, immunohistochemical and molecular analyses revealed CD11b(+)Gr1(+) neutrophils as major tissue infiltrators, neutrophilic granule protein, cathelin-related antimicrobial peptide and S100A8/9 as neutrophil-specific chemoattracting factors, interleukin-1β and interferon-γ as proinflammatory mediators, and matrix metalloprotease 9 as a plausible proteolytic trigger of alveolar damage. AKNA KO bone marrow transplants in wild-type recipients reproduced the severe pathogen-induced reactions and confirmed the involvement of neutrophils in acute inflammation. Moreover, promoter/reporter experiments showed that AKNA could act as a gene repressor. Our results support the concept of coordinated pathway-specific gene regulation functions modulating the intensity of inflammatory responses, reveal neutrophils as prominent mediators of acute inflammation and suggest mechanisms underlying the triggering of acute and potentially fatal immune reactions.
Collapse
|