1
|
Sule RO, Condon L, Gomes AV. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5563759. [PMID: 35096268 PMCID: PMC8791758 DOI: 10.1155/2022/5563759] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022]
Abstract
Pesticides are important chemicals or biological agents that deter or kill pests. The use of pesticides has continued to increase as it is still considered the most effective method to reduce pests and increase crop growth. However, pesticides have other consequences, including potential toxicity to humans and wildlife. Pesticides have been associated with increased risk of cardiovascular disease, cancer, and birth defects. Labels on pesticides also suggest limiting exposure to these hazardous chemicals. Based on experimental evidence, various types of pesticides all seem to have a common effect, the induction of oxidative stress in different cell types and animal models. Pesticide-induced oxidative stress is caused by both reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are associated with several diseases including cancer, inflammation, and cardiovascular and neurodegenerative diseases. ROS and RNS can activate at least five independent signaling pathways including mitochondrial-induced apoptosis. Limited in vitro studies also suggest that exogenous antioxidants can reduce or prevent the deleterious effects of pesticides.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Liam Condon
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Elkafas H, Badary O, Elmorsy E, Kamel R, Yang Q, Al-Hendy A. Endocrine-Disrupting Chemicals and Vitamin D Deficiency in the Pathogenesis of Uterine Fibroids. JOURNAL OF ADVANCED PHARMACY RESEARCH 2021; 5:260-275. [PMID: 34746367 DOI: 10.21608/aprh.2021.66748.1124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Uterine fibroids (UFs) are the most prevalent gynecologic neoplasm, affecting 70-80% of women over their lifespan. Although UFs are benign they can become life-threatening and require invasive surgeries such as myomectomy and hysterectomy. Notwithstanding the significant negative influence UFs have on female reproductive health, very little is known about early events that initiate tumor development. Several risk factors for UFs have been identified including vitamin D deficiency, inflammation, DNA repair deficiency, and environmental exposures to endocrine-disrupting chemicals (EDCs). EDCs have come under scrutiny recently due to their role in UF development. Epidemiologic studies have found an association between increased risk for early UF diagnosis and in utero EDC exposure. Environmental exposure to EDCs during uterine development increases UF incidence in a UF animal model. Notably, several studies demonstrated that abnormal myometrial stem cells (MMSCs) are the cell origin for UFs development. Our recent studies demonstrated that early-life EDC exposure reprogrammed the MMSCs toward a pro-fibroid landscape and altered the DNA repair and inflammation pathways. Notably, Vitamin D3 (VITD3) as a natural compound shrank the UF growth concomitantly with the reversion of several abnormal biological pathways and ameliorated the developmental exposure-induced DNA damage and pro-inflammation pathway in primed MMSCs. This review highlights and emphasizes the importance of multiple pathway interactions in the context of hypovitaminosis D at the MMSCs level and provides proof-of-concept information that can help develop a safe, long-term, durable, and non-surgical therapeutic option for UFs.
Collapse
Affiliation(s)
- Hoda Elkafas
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) formally, (NODCAR), Cairo 35521, Egypt.,Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Osama Badary
- Department of Clinical Pharmacy, Faculty of Pharmacy, British University in Egypt, Cairo 11837, Egypt
| | - Engy Elmorsy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Rehab Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
3
|
Curtis GH, Nogueiro S, Schneider S, Bernhofer M, McDermott M, Nixon E, Perez KN, Reeve RE, Easterling MR, Crespi EJ. Trans-ovo permethrin exposure affects growth, brain morphology and cardiac development in quail. ENVIRONMENTAL TOXICOLOGY 2021; 36:1447-1456. [PMID: 33844419 DOI: 10.1002/tox.23141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/11/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Permethrin is a commonly used, highly effective pesticide in poultry agriculture, and has recently been trialed in conservation efforts to protect Galápagos finch hatchlings from an invasive ectoparasite. Although permethrin is considered safe for adults, pesticides can have health consequences when animals are exposed during early life stages. The few studies that have examined permethrin's effects in embryonic chicks and rats have shown hydrocephaly, anencephaly, reduced cellular energy conversion, and disruption of developing heart muscle. To test whether trans-ovo exposure of permethrin affects early development in birds, we exposed Japanese quail (Coturnix japonica) eggs to cotton treated with 1% permethrin that was incorporated into nests in two amounts (0.2, 0.8 g), each with a paired untreated cotton control group. When measured on incubation Day 15, we found permethrin-treated developing birds were smaller and showed signs of microcephaly, although mortality rates were the same. Despite no difference in heart mass, ventricular tissue was less compact, cardiac arteries were reduced and heart rates were slower in permethrin-treated birds. Differences in heart development were also observed at 5 days of incubation, indicating that abnormalities are present from early in cardiac development. Future studies are needed to examine permethrin's effects on developmental pathways and to determine if these effects persist after hatching to affect offspring health. This study provides evidence that permethrin can cross the eggshell to cause non-lethal but adverse effects on embryonic development, and studies should look beyond hatching when monitoring the efficacy of permethrin on wild bird populations.
Collapse
Affiliation(s)
- Grace H Curtis
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Sara Nogueiro
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Sydney Schneider
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Marissa Bernhofer
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Mara McDermott
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Erin Nixon
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Kylie Noelle Perez
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Robyn E Reeve
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Marietta R Easterling
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
- Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Erica J Crespi
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
4
|
Chrustek A, Hołyńska-Iwan I, Olszewska-Słonina D. The influence of pyrethroides: permethrin, deltamethrin
and alpha-cypermetrin on oxidative damage. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pyrethroids, synthetic derivatives of natural pyrethrins derived from Chrysanthemum cinerariaefolim,
are commonly used for plant protection in the forestry, agricultural, pharmaceutical industry
as well as in medicine and veterinary medicine. They can enter the body by inhalation,
ingestion and skin contact. It was assumed that they are characterized by low toxicity to humans,
are quickly metabolized and do not accumulate in tissues, and are excreted in the urine. Despite
the existing restrictions, their use carries a great risk, because these compounds and their metabolites
can get into the natural environment, contaminating water, soil and food. The consequences
of using pyrethroids as a direct threat to animal and human health have been described
for many years. They are published on an ongoing basis informing about poisoning with these
compounds in humans and animals, and about fatalities after their taking. Children are most at
risk because pyrethroids can be found in breast milk. These compounds have nephrotoxic, hepatotoxic,
immunotoxic, neurotoxic effects and have a negative effect on the reproductive system
and the fetus. Pyrethroids such as permethrin, deltamethrin, alpha-cypermethrin are approved
by the World Health Organization for daily use; however, numerous scientific studies indicate
that they can cause oxidative stress. They lead to DNA, protein, lipid damage and induction of
apoptosis. The purpose of the work was to collect and systematize the available knowledge regarding
the induction of oxidative stress by selected pyrethroids.
Collapse
Affiliation(s)
- Agnieszka Chrustek
- Katedra Patobiochemii i Chemii Klinicznej, Wydział Farmaceutyczny, Collegium Medicum im. L. Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| | - Iga Hołyńska-Iwan
- Katedra Patobiochemii i Chemii Klinicznej, Wydział Farmaceutyczny, Collegium Medicum im. L. Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| | - Dorota Olszewska-Słonina
- Katedra Patobiochemii i Chemii Klinicznej, Wydział Farmaceutyczny, Collegium Medicum im. L. Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| |
Collapse
|
5
|
Nieradko-Iwanicka B, Konopelko M. Effect of Lambdacyhalothrin on Locomotor Activity, Memory, Selected Biochemical Parameters, Tumor Necrosis Factor α, and Interleukin 1ß in a Mouse Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249240. [PMID: 33321891 PMCID: PMC7764783 DOI: 10.3390/ijerph17249240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023]
Abstract
Background: Pyrethroids are synthetic insecticides used for plant protection. They are synthetic analogues of pyrethrins. Lambdacyhalothrin (LCH) is a type II pyrethroid used for wheat, potato, corn farming, and malaria control. There are data that pyrethroids may cause neurotoxicity, nephrotoxicity, hepatotoxicity, and immunotoxicity in non-target organisms. Methods: The experiment was carried on 32 Albino Swiss mice (16 females and 16 males). The animals were divided into four groups. Controls received canola oil; the rest received LCH orally in oil at a dose of 2 mg/kg bw for 7 days. Memory retention was assessed in a passive avoidance task on day 2 and 7, and spatial memory and motor activity in a Y-maze on day 1 and 7. Blood morphology, biochemical tests, tumor necrosis factor α, and interleukin 1ß were measured. Results: Decreased white blood cell count and red blood cell count, increased creatinine, and increased kidney and liver mass were observed in groups exposed to LCH. In LCH-exposed males’ kidneys and livers, interleukin 1ß was significantly elevated, and it was correlated with creatinine concentration. Conclusions: Subacute poisoning with a low dose of LCH does not significantly affect memory nor locomotor activity but increases proinflammatory interleukin 1ß in male livers and kidneys and reduces white and red blood cell counts.
Collapse
Affiliation(s)
- Barbara Nieradko-Iwanicka
- Chair and Department of Hygiene, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
- Correspondence:
| | - Michał Konopelko
- Department of Otolaryngology and Laryngological Oncology, Independent Public Clinical Hospital No. 4 in Lublin, 20-059 Lublin, Poland;
| |
Collapse
|
6
|
Bordoni L, Petracci I, Calleja-Agius J, Lalor JG, Gabbianelli R. NURR1 Alterations in Perinatal Stress: A First Step towards Late-Onset Diseases? A Narrative Review. Biomedicines 2020; 8:E584. [PMID: 33302583 PMCID: PMC7764589 DOI: 10.3390/biomedicines8120584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Perinatal life represents a delicate phase of development where stimuli of all sorts, coming to or from the mother, can influence the programming of the future baby's health. These stimuli may have consequences that persist throughout adulthood. Nuclear receptor related 1 protein (NURR1), a transcription factor with a critical role in the development of the dopaminergic neurons in the midbrain, mediates the response to stressful environmental stimuli in the perinatal period. During pregnancy, low-grade inflammation triggered by maternal obesity, hyperinsulinemia or vaginal infections alters NURR1 expression in human gestational tissues. A similar scenario is triggered by exposure to neurotoxic compounds, which are associated with NURR1 epigenetic deregulation in the offspring, with potential intergenerational effects. Since these alterations have been associated with an increased risk of developing late-onset diseases in children, NURR1, alone, or in combination with other molecular markers, has been proposed as a new prognostic tool and a potential therapeutic target for several pathological conditions. This narrative review describes perinatal stress associated with NURR1 gene deregulation, which is proposed here as a mediator of late-onset consequences of early life events.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Irene Petracci
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta;
| | - Joan G. Lalor
- School of Nursing and Midwifery, Trinity College Dublin, 24 D’Olier Street, Dublin 2, Ireland;
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| |
Collapse
|
7
|
Pyrethroid exposure and neurotoxicity: a mechanistic approach. Arh Hig Rada Toksikol 2019; 70:74-89. [DOI: 10.2478/aiht-2019-70-3263] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/01/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
Pyrethroids are a class of synthetic insecticides that are used widely in and around households to control the pest. Concerns about exposure to this group of pesticides are now mainly related to their neurotoxicity and nigrostriatal dopaminergic neurodegeneration seen in Parkinson’s disease. The main neurotoxic mechanisms include oxidative stress, inflammation, neuronal cell loss, and mitochondrial dysfunction. The main neurodegeneration targets are ion channels. However, other receptors, enzymes, and several signalling pathways can also participate in disorders induced by pyrethroids. The aim of this review is to elucidate the main mechanisms involved in neurotoxicity caused by pyrethroids deltamethrin, permethrin, and cypermethrin. We also review common targets and pathways of Parkinson’s disease therapy, including Nrf2, Nurr1, and PPARγ, and how they are affected by exposure to pyrethroids. We conclude with possibilities to be addressed by future research of novel methods of protection against neurological disorders caused by pesticides that may also find their use in the management/treatment of Parkinson’s disease.
Collapse
|
8
|
Bordoni L, Nasuti C, Fedeli D, Galeazzi R, Laudadio E, Massaccesi L, López-Rodas G, Gabbianelli R. Early impairment of epigenetic pattern in neurodegeneration: Additional mechanisms behind pyrethroid toxicity. Exp Gerontol 2019; 124:110629. [PMID: 31175960 DOI: 10.1016/j.exger.2019.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Permethrin is a synthetic pyrethroid extensively used as anti-woodworm agent and for indoor and outdoor pest control. The main route of human exposure is through fruit, vegetable and milk intake. Low dosage exposure to permethrin during neonatal brain development (from postnatal day 6 to postnatal day 21) leads to dopamine decrease in rat striatum nucleus, oxidative stress and behavioural changes linked to the development of Parkinson's like neurodegeneration later in life. The aim of this study was to evaluate the expression of genes involved in the dopaminergic pathway and epigenetic regulatory mechanisms in adolescent rats treated with permethrin during neonatal brain development. Furthermore, in order to shed light on the mechanisms associated with molecular impairments, in silico studies were performed. The outcomes show increased expression of genes related to the dopamine-synthesis pathway (Nurr1, Th, Snca), epigenetics (TET proteins and Mecp2) and exposure to toxicants (Pon1 and Pon2) in adolescent rats compared with control group. Furthermore, increased global 5mC and 5hmC levels were observed in the DNA extracted from striatum of early-life treated rats in comparison with controls. FAIRE-qPCR analysis shows that permethrin induces an enrichment of chromatin-free DNA at the level of Th and Nurr1 promoters, and ChIP-qPCR reveals a significant reduction in methylation levels at H3K9me3 position at both Th and Nurr1 promoter regions. In silico studies show that permethrin competes for the same two binding sites of known NURR1 agonists, with a lower binding free energy for permethrin, suggesting an important durable association of permethrin with the orphan receptor. Moreover, alpha-synuclein shows a strong affinity for NURR1, corroborating previous experimental outcomes on the interactions between them. This study focuses on an emerging role of early-life exposure to environmental pollutants in the regulation of late onset diseases through intriguing mechanisms that change crucial epigenetic patterns starting from adolescent age.
Collapse
Affiliation(s)
- Laura Bordoni
- School of Pharmacy, University of Camerino, Camerino 62032, MC, Italy.
| | - Cinzia Nasuti
- School of Pharmacy, University of Camerino, Camerino 62032, MC, Italy.
| | - Donatella Fedeli
- School of Pharmacy, University of Camerino, Camerino 62032, MC, Italy.
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60128, AN, Italy.
| | - Emiliano Laudadio
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60128, AN, Italy.
| | - Luca Massaccesi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60128, AN, Italy.
| | - Gerardo López-Rodas
- Department of Biochemistry and Molecular Biology, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain.
| | | |
Collapse
|
9
|
Pandey A, Dhabade P, Kumarasamy A. Inflammatory Effects of Subacute Exposure of Roundup in Rat Liver and Adipose Tissue. Dose Response 2019; 17:1559325819843380. [PMID: 31205454 PMCID: PMC6537504 DOI: 10.1177/1559325819843380] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023] Open
Abstract
Roundup is a popular herbicide containing glyphosate as an active ingredient. The formulation of Roundup is speculated to have critical toxic effects, one among which is chronic inflammation. The present study analyzed adverse inflammatory effects in the liver and adipose tissue of rats after a subacute exposure of Roundup. Adult male rats were exposed to various doses of Roundup (0, 5, 10, 25, 50, 100 and 250 mg/kg bodyweight [bw] glyphosate) orally, everyday for 14 days. On day 15, liver and adipose tissues from dosed rats were analyzed for inflammation markers. C-reactive protein in liver, cytokines IL-1β, TNF-α, IL-6, and inflammatory response marker, and prostaglandin–endoperoxide synthase were upregulated in liver and adipose of rats exposed to higher (100 and 250 mg/kg bw/d) doses of Roundup. Cumulatively, our data suggest development of inflammation in lipid and hepatic organs upon exposure to Roundup. Furthermore, liver histological studies showed formation of vacuoles, fibroid tissue, and glycogen depletion in the groups treated with doses of higher Roundup. These observations suggest progression of fatty liver disease in Roundup-treated adult rats. In summary, our data suggest progression of multiorgan inflammation, liver scarring, and dysfunction post short-term exposure of Roundup in adult male rats.
Collapse
Affiliation(s)
- Aparamita Pandey
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prachi Dhabade
- Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Anand Kumarasamy
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
10
|
Epigenetic Memory of Early-Life Parental Perturbation: Dopamine Decrease and DNA Methylation Changes in Offspring. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1472623. [PMID: 30915194 PMCID: PMC6399534 DOI: 10.1155/2019/1472623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/15/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022]
Abstract
Early-life exposure (from postnatal day 6 to postnatal day 21) to permethrin has been associated with long-term development of dopaminergic neurodegeneration in rats. Here, we first investigated if the dopamine decrease observed following early postnatal exposure to permethrin, an oxidative stressor, can impair the dopamine level in the brain of their untreated offspring. Secondly, we evaluated whether this adverse event affects the epigenome of both directly exposed rats (F0) and their untreated offspring (F1). The results show that early-life exposure to the stressor is associated with changes in global DNA methylation and hydroxymethylation in adult age. Furthermore, parental exposure leads to a significant reduction in dopamine level in the offspring (F1) born from parents or just mothers early-life treated (72.72% and 47.35%, respectively). About 2/3 of pups from exposed mothers showed a significant reduction in dopamine level compared to controls. Global DNA methylation and hydroxymethylation impairment was associated with the F1 pups that showed reduced dopamine. This study provides pivotal evidences on intergenerational effects of postnatal exposure to permethrin emphasizing that this xenobiotic can influence the epigenetic memory of early-life parental perturbations disturbing offspring health.
Collapse
|
11
|
|
12
|
Bordoni L, Fedeli D, Nasuti C, Capitani M, Fiorini D, Gabbianelli R. Permethrin pesticide induces NURR1 up-regulation in dopaminergic cell line: Is the pro-oxidant effect involved in toxicant-neuronal damage? Comp Biochem Physiol C Toxicol Pharmacol 2017; 201:51-57. [PMID: 28943456 DOI: 10.1016/j.cbpc.2017.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 11/20/2022]
Abstract
The mechanisms associated to the development of neurodegeneration due to pesticide exposure are not clear yet. In this study we evaluated how permethrin pesticide (PERM) can influence the Nurr1 gene and protein expression, and if a pro-oxidant activity of the pesticide contributes to up-regulation of Nurr1 in a dopaminergic cell line. Incubation of PC12 cells with 1μM PERM for 72h, leads to over expression of Nurr1 gene. This effect occurs with both corn oil and extra virgin olive oil (EVO) used to solubilize the toxicant. In order to investigate if the Nurr1 up-regulation induced by PERM, was associated to the pro-oxidant activity of the pesticide, anti-oxidants as glutathione (GSH), tocotrienols (TOC) and Electrolyzed Reduced Water (ERW) were tested. RT-PCR of Nurr1 showed that its up-regulation was significantly reduced in the presence of antioxidants, especially by addition of ERW. Western-blot analysis reveals that ERW was able to counterbalance the up-regulation of Nurr1 protein induced by permethrin exposure.
Collapse
Affiliation(s)
- Laura Bordoni
- Schools of Advanced Studies, University of Camerino, 62032 Camerino, MC, Italy
| | - Donatella Fedeli
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Cinzia Nasuti
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Melania Capitani
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Dennis Fiorini
- School of Science and Technology, University of Camerino, 62032 Camerino, MC, Italy
| | | |
Collapse
|
13
|
Ruiz-Sánchez E, Yescas P, Rodríguez-Violante M, Martínez-Rodríguez N, Díaz-López JN, Ochoa A, Valdes-Rojas SS, Magos-Rodríguez D, Rojas-Castañeda JC, Cervantes-Arriaga A, Canizales-Quinteros S, Rojas P. Association of polymorphisms and reduced expression levels of the NR4A2 gene with Parkinson's disease in a Mexican population. J Neurol Sci 2017; 379:58-63. [PMID: 28716280 DOI: 10.1016/j.jns.2017.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/03/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The NR4A2 transcription factor is important in the development, survival and phenotype of dopaminergic neurons and it is postulated as a possible biomarker for Parkinson's disease (PD). Therefore, our aim was to analyze in a sample of a Mexican population with idiopathic PD, mutations (in two hotspot mutation regions) and two polymorphisms (rs34884856 in promotor and rs35479735 intronic regions) of the NR4A2 gene. We also evaluate the levels of NR4A2 gene expression in peripheral blood for a Mexican population, and identify whether they are associated with NR4A2 gene polymorphisms. METHODS We conducted a case-control study, which included 227 idiopathic PD cases and 454 unrelated controls. Genetic variants of the NR4A2 gene were genotyped by high-resolution melting (HRM) and validated by an automated sequencing method. The gene expression was performed in peripheral blood using a real-time polymerase chain reaction. RESULTS The rs35479735 polymorphism was associated with a higher risk of developing PD. In addition, NR4A2 gene expression was significantly decreased in patients with PD. Linkage disequilibrium analysis showed a haplotype H4 (3C-3G) that showed lower levels of expression, and contained the risk alleles for both polymorphisms. CONCLUSIONS In summary, this is the first study in a Mexican population that considers the analysis of NR4A2 in patients with PD. An association was identified between genotype and mRNA expression levels of NR4A2 in patients with PD. These results suggest that polymorphisms and expression of the NR4A2 gene could play an important role in the risk of developing PD in Mexican populations.
Collapse
Affiliation(s)
- Elizabeth Ruiz-Sánchez
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | - Petra Yescas
- Department of Genetics, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | - Mayela Rodríguez-Violante
- Clinical Neurodegenerative Research Unit, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | | | - Jesica N Díaz-López
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | - Adriana Ochoa
- Department of Genetics, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | - Sergio S Valdes-Rojas
- Direction of Geriatric Attention, Instituto Nacional de las Personas Adultas Mayores (INAPAM), Mexico City, Mexico
| | - Daniel Magos-Rodríguez
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | | | - Amin Cervantes-Arriaga
- Clinical Neurodegenerative Research Unit, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | | | - Patricia Rojas
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico.
| |
Collapse
|
14
|
Fedeli D, Montani M, Bordoni L, Galeazzi R, Nasuti C, Correia-Sá L, Domingues VF, Jayant M, Brahmachari V, Massaccesi L, Laudadio E, Gabbianelli R. In vivo and in silico studies to identify mechanisms associated with Nurr1 modulation following early life exposure to permethrin in rats. Neuroscience 2017; 340:411-423. [DOI: 10.1016/j.neuroscience.2016.10.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 01/16/2023]
|
15
|
Current Issues in Developmental Immunotoxicity. IMMUNOPATHOLOGY IN TOXICOLOGY AND DRUG DEVELOPMENT 2017. [DOI: 10.1007/978-3-319-47377-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Hair Microelement Profile as a Prognostic Tool in Parkinson's Disease. TOXICS 2016; 4:toxics4040027. [PMID: 29051430 PMCID: PMC5606652 DOI: 10.3390/toxics4040027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/28/2022]
Abstract
Changes in the homeostasis of metals and microelements have been demonstrated in Parkinson’s disease, whose etiology includes both a genetic and environmental basis. We studied the difference of microelements in the hair of Parkinson’s disease subjects (n = 46) compared with healthy controls (n = 24). Hair was chosen as a representative matrix to measure microelements, since it is a vehicle of substance excretion from the human body and it allows for long-term evaluation of metal exposure. An inductively coupled plasma mass spectrometry (ICP-MS) analysis of hair collected from 24 Parkinson’s patients compared with their healthy relatives used as controls shows a significant decrease in Ca (U = 166, p = 0.012),), Mg (U = 187, p = 0.037), and Sr (U = 183, p = 0.030). Cd and Ca/Mg were decreased, and Cu was increased, in patients with respect to their healthy related controls at the limit of significance (p = 0.0501). Principal Component Analysis (PCA) of these microelements in hair shows a clustering into two groups according to gender, disease severity according to the Hoehn–Yahr scale, and pharmacological therapy. This pilot study represents a starting point for future investigations where a larger group of subjects will be involved to define other microelements useful when screening for early biomarkers of Parkinson’s disease.
Collapse
|
17
|
Wang X, Martínez MA, Dai M, Chen D, Ares I, Romero A, Castellano V, Martínez M, Rodríguez JL, Martínez-Larrañaga MR, Anadón A, Yuan Z. Permethrin-induced oxidative stress and toxicity and metabolism. A review. ENVIRONMENTAL RESEARCH 2016; 149:86-104. [PMID: 27183507 DOI: 10.1016/j.envres.2016.05.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/21/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Permethrin (PER), the most frequently used synthetic Type I pyrethroid insecticide, is widely used in the world because of its high activity as an insecticide and its low mammalian toxicity. It was originally believed that PER exhibited low toxicity on untargeted animals. However, as its use became more extensive worldwide, increasing evidence suggested that PER might have a variety of toxic effects on animals and humans alike, such as neurotoxicity, immunotoxicity, cardiotoxicity, hepatotoxicity, reproductive, genotoxic, and haematotoxic effects, digestive system toxicity, and cytotoxicity. A growing number of studies indicate that oxidative stress played critical roles in the various toxicities associated with PER. To date, almost no review has addressed the toxicity of PER correlated with oxidative stress. The focus of this article is primarily to summarise advances in the research associated with oxidative stress as a potential mechanism for PER-induced toxicity as well as its metabolism. This review summarises the research conducted over the past decade into the reactive oxygen species (ROS) generation and oxidative stress as a consequence of PER treatments, and ultimately their correlation with the toxicity and the metabolism of PER. The metabolism of PER involves various CYP450 enzymes, alcohol or aldehyde dehydrogenases for oxidation and the carboxylesterases for hydrolysis, through which oxidative stress might occur, and such metabolic factors are also reviewed. The protection of a variety of antioxidants against PER-induced toxicity is also discussed, in order to further understand the role of oxidative stress in PER-induced toxicity. This review will throw new light on the critical roles of oxidative stress in PER-induced toxicity, as well as on the blind spots that still exist in the understanding of PER metabolism, the cellular effects in terms of apoptosis and cell signaling pathways, and finally strategies to help to protect against its oxidative damage.
Collapse
Affiliation(s)
- Xu Wang
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - María-Aránzazu Martínez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Menghong Dai
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Irma Ares
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Victor Castellano
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marta Martínez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José Luis Rodríguez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Arturo Anadón
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Mostafa HES, Abd El-Baset SA, Kattaia AAA, Zidan RA, Al Sadek MMA. Efficacy of naringenin against permethrin-induced testicular toxicity in rats. Int J Exp Pathol 2016; 97:37-49. [PMID: 26867500 DOI: 10.1111/iep.12168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023] Open
Abstract
Permethrin (PM), a synthetic pyrethroid insecticide, has broad toxicity spectra. We aimed to investigate the effects of PM on the testes of adult albino rats, examine the recovery response and evaluate the efficacy of naringenin (NG) supplementation. Adult male albino rats were randomly assigned to five groups of six each: control, NG (50 mg/kg), PM (70 mg/kg), recovery (after subsequent withdrawal of PM) and NG-PM group. All treatments were given by oral gavage for 6 weeks and another 3 weeks for the recovery group. At the time of sacrifice, each testis was weighed. Biochemical analysis of epididymal sperm count and serum testosterone level was performed. Testes were processed for histological, ultrastructural and c-Kit immunohistochemical study. PM toxicity was evidenced by a highly significant decrease in testicular weight, epididymal sperm count and serum testosterone level compared to control. Furthermore, testicular structure abnormalities and reduced c-Kit immunoreactions were observed. Stoppage of PM in the recovery group partially reversed PM-induced changes. There was a mild decrease in testicular weight and biochemical parameters compared to control. The structure of seminiferous tubules was partially retained. The NG-PM group showed an overall improvement in testicular weight and biochemical alterations which were confirmed by light and electron microscopic examination. In conclusion, PM induced testicular toxicity, which was ameliorated by NG co-administration. However, stoppage of PM exposure was associated with partial recovery.
Collapse
Affiliation(s)
- Heba El-Sayed Mostafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia A Abd El-Baset
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa A A Kattaia
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rania A Zidan
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mona M A Al Sadek
- Department of Community Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Nasuti C, Ferraro S, Giovannetti R, Piangerelli M, Gabbianelli R. Metal and Microelement Biomarkers of Neurodegeneration in Early Life Permethrin-Treated Rats. TOXICS 2016; 4:toxics4010003. [PMID: 29051409 PMCID: PMC5606634 DOI: 10.3390/toxics4010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 12/15/2022]
Abstract
Hair is a non-invasive biological material useful in the biomonitoring of trace elements because it is a vehicle for substance excretion from the body, and it permits evaluating long-term metal exposure. Here, hair from an animal model of neurodegeneration, induced by early life permethrin treatment from the sixth to 21th day of life, has been analyzed with the aim to assess if metal and microelement content could be used as biomarkers. A hair trace element assay was performed by the ICP-MS technique in six- and 12-month-old rats. A significant increase of As, Mg, S and Zn was measured in the permethrin-treated group at 12 months compared to six months, while Si and Cu/Zn were decreased. K, Cu/Zn and S were increased in the treated group compared to age-matched controls at six and 12 months, respectively. Cr significantly decreased in the treated group at 12 months. PCA analysis showed both a best difference between treated and age-matched control groups at six months. The present findings support the evidence that the Cu/Zn ratio and K, measured at six months, are the best biomarkers for neurodegeneration. This study supports the use of hair analysis to identify biomarkers of neurodegeneration induced by early life permethrin pesticide exposure.
Collapse
Affiliation(s)
- Cinzia Nasuti
- Unit of Pharmacology, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Stefano Ferraro
- Unit of Chemistry, School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy.
| | - Rita Giovannetti
- Unit of Chemistry, School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy.
| | - Marco Piangerelli
- Computer Science Division, School of Science and Technology, University of Camerino, Via del Bastione 1, 62032 Camerino, MC, Italy.
| | - Rosita Gabbianelli
- Unit of Biochemistry and Molecular Biology, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| |
Collapse
|
20
|
Proteomic analysis for early neurodegenerative biomarker detection in an animal model. Biochimie 2015; 121:79-86. [PMID: 26631339 DOI: 10.1016/j.biochi.2015.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/24/2015] [Indexed: 12/15/2022]
Abstract
The exposure to xenobiotics in the early stages of life represents the most important component in the etiology of many neurodegenerative disorders. Proteomic analysis of plasma and brain samples from early life treated animal model was performed in order to identify early biomarkers of neurodegeneration. Two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry identified four proteins in the plasma of adolescent rats that deviated from the control group. Low expression levels of transthyretin and plasma transferrin, and the absence of long-chain fatty acid transport 1 were measured. On the other hand, the same proteomic approach was done on striatum of an adult rat model of neurodegeneration. Mitochondrial aspartate aminotransferase and voltage-dependent anion channel were under expressed, while mitochondrial malate dehydrogenase, myelin basic protein and ubiquitin-60S ribosomal protein L40 were absent in striatum of animal model compared to control group. Data show that early biomarkers for the diagnosis of neurodegeneration can be obtained by proteomic analysis, starting from adolescent age and the results highlight the time frame for the onset of neurodegeneration due to early exposure to xenobiotics.
Collapse
|
21
|
Intergenerational Effect of Early Life Exposure to Permethrin: Changes in Global DNA Methylation and in Nurr1 Gene Expression. TOXICS 2015; 3:451-461. [PMID: 29051472 PMCID: PMC5606645 DOI: 10.3390/toxics3040451] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/11/2015] [Indexed: 11/17/2022]
Abstract
Environmental exposure to pesticides during the early stages of development represents an important risk factor for the onset of neurodegenerative diseases in adult age. Neonatal exposure to Permethrin (PERM), a member of the family of synthetic pyrethroids, can induce a Parkinson-like disease and cause some alterations in striatum of rats, involving both genetic and epigenetic pathways. Through gene expression analysis and global DNA methylation assessment in both PERM-treated parents and their untreated offspring, we investigated on the prospective intergenerational effect of this pesticide. Thirty-three percent of progeny presents the same Nurr1 alteration as rats exposed to permethrin in early life. A decrease in global genome-wide DNA methylation was measured in mothers exposed in early life to permethrin as well as in their offspring, whereas untreated rats have a hypermethylated genomic DNA. Further studies are however needed to elucidate the molecular mechanisms, but, despite this, an intergenerational PERM-induced damage on progenies has been identified for the first time.
Collapse
|
22
|
Vaiserman A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis 2014; 5:419-29. [PMID: 25489493 DOI: 10.14336/ad.2014.0500419] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 12/11/2022] Open
Abstract
A growing body of evidence demonstrates that adverse events early in development, and particularly during intrauterine life, may program risks for diseases in adult life. Increasing evidence has been accumulated indicating the important role of epigenetic regulation including DNA methylation, histone modifications and miRNAs in developmental programming. Among the environmental factors which play an important role in programming of chronic pathologies, the endocrine-disrupting chemicals (EDCs) that have estrogenic, anti-estrogenic, and anti-androgenic activity are of specific concern because the developing organism is extremely sensitive to perturbation by substances with hormone-like activity. Among EDCs, there are many substances that are constantly present in the modern human environment or are in widespread use, including dioxin and dioxin-like compounds, phthalates, agricultural pesticides, polychlorinated biphenyls, industrial solvents, pharmaceuticals, and heavy metals. Apart from their common endocrine active properties, several EDCs have been shown to disrupt developmental epigenomic programming. The purpose of this review is to provide a summary of recent research findings which indicate that exposure to EDCs during in-utero and/or neonatal development can cause long-term health outcomes via mechanisms of epigenetic memory.
Collapse
|
23
|
Nasuti C, Carloni M, Fedeli D, Di Stefano A, Marinelli L, Cerasa LS, Meda C, Maggi A, Gabbianelli R. Effect of 17β-estradiol on striatal dopaminergic transmission induced by permethrin in early childhood rats. CHEMOSPHERE 2014; 112:496-502. [PMID: 25048945 DOI: 10.1016/j.chemosphere.2014.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
A positive effect of estrogen treatment has been observed in neurodegenerative diseases such as Parkinson's disease. Since 17β-estradiol can modulate positively dopaminergic system, here we sought to evaluate the effect of 17β-estradiol supplementation on an animal model developing dopaminergic alterations on nucleus of striatum after neonatal exposure to permethrin pesticide. The goal of the study was to verify if the co-treatment with 17β-estradiol could protect against the damage induced by pesticide exposure in early life. Permethrin treated rats showed a decrease of dopamine and Nurr1 gene expression in striatum, while a more pronounced decrease of dopamine was observed in rats co-administered with permethrin+17β-estradiol. No difference between control and permethrin treated rats was observed in both mRNA of ERα and ERβ, whereas the rats co-administered with permethrin+17β-estradiol showed a down-regulation of ERα expression. The in vitro studies showed that permethrin, at high concentration may have an antagonist effect on ERα and even more pronounced in ERβ, thus suggesting that permethrin may block the estrogen neuroprotective effects. In conclusion, in male rats, the administration of estrogen further enhanced the impairment of dopaminergic transmission due to exposure to permethrin.
Collapse
Affiliation(s)
- Cinzia Nasuti
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Manuel Carloni
- School of Pharmacy, Molecular Biology Unit, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Donatella Fedeli
- School of Pharmacy, Molecular Biology Unit, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Antonio Di Stefano
- Dipartimento di Scienze del Farmaco, Università G. d'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Lisa Marinelli
- Dipartimento di Scienze del Farmaco, Università G. d'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Laura Serafina Cerasa
- Dipartimento di Scienze del Farmaco, Università G. d'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Clara Meda
- Center of Excellence on Neurodegenerative Diseases University of Milan, Via Balzaretti, 9 20133 Milan, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases University of Milan, Via Balzaretti, 9 20133 Milan, Italy
| | - Rosita Gabbianelli
- School of Pharmacy, Molecular Biology Unit, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| |
Collapse
|
24
|
Dhivya Vadhana MS, Siva Arumugam S, Carloni M, Nasuti C, Gabbianelli R. Early life permethrin treatment leads to long-term cardiotoxicity. CHEMOSPHERE 2013; 93:1029-1034. [PMID: 23806482 DOI: 10.1016/j.chemosphere.2013.05.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/23/2013] [Accepted: 05/25/2013] [Indexed: 06/02/2023]
Abstract
Environmental, nutritional or hormonal influences in early life may have long-term effects changing homeostatic processes and physiological parameters in adulthood. NF-kB and Nrf2, two of the main transcription factors regulating genes involved in pro-inflammatory and antioxidant responses respectively, can be modified by various stimuli. NF-kB controls immediate early genes and is required for cardiomyocyte hypertrophic growth, while Nrf2 protects the heart from oxidative stress-induced cardiovascular complications. The aim of this study was to investigate the impact of early life permethrin treatment (1/50 of LD50, from 6th to 21st day of life) on the development of cardiotoxicity in 500-day-old rats. Nrf2 and NF-kB gene expression, calcium level and heart surface area were chosen as biomarkers of toxicity. Six candidate reference genes were first examined and GAPDH resulted the most stable one for RT-qPCR. The comparative expression analysis of the target genes showed 1.62-fold increase in Nrf2 mRNA level, while the NF-kB mRNA in treated rats was not significantly changed compared to control ones. A significant decrease in heart surface area was observed in treated rats (296.59 ± 8.09, mm(2)) with respect to the control group (320.86 ± 4.93, mm(2)). Finally, the intracellular calcium influx in heart of early life treated rats increased 4.33-fold compared to the control one. In conclusion, early life pesticide exposure to low doses of permethrin insecticide, has long-term consequences leading to cardiac hypotrophy, increased calcium and Nrf2 gene expression levels in old age.
Collapse
Affiliation(s)
- M S Dhivya Vadhana
- School of Advanced Studies, University of Camerino, Via Lili, 62032 Camerino, MC, Italy
| | | | | | | | | |
Collapse
|
25
|
Fedeli D, Carloni M, Nasuti C, Gambini A, Scocco V, Gabbianelli R. Early life permethrin exposure leads to hypervitaminosis D, nitric oxide and catecholamines impairment. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 107:93-7. [PMID: 25149241 DOI: 10.1016/j.pestbp.2013.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/12/2013] [Accepted: 05/13/2013] [Indexed: 05/25/2023]
Abstract
The aim of this study is to gain more knowledge on the impact of early life pesticide exposure on premature aging. The effect of a low dose of the insecticide permethrin administered to rats during early life (1/50 LD50, from 6th to 21st day of life) was analyzed by measuring some metabolites in plasma and urine of 500-day-old animals. Significant differences in early life treated rats compared to the control group were found in the plasma levels of Ca(++), Na(+), 25-hydroxy-vitamin D, adrenaline, noradrenaline, nitric oxide, cholesterol and urea while in urine only Na(+) content was different. These results add information on the impact of permethrin during the neonatal period, supporting the evidence that early life environmental exposure to xenobiotics has long-term effects, inducing modifications in adulthood that can be revealed by the analysis of some macroelements, metabolites and catecholamines in plasma, when rats are 500 days old.
Collapse
Affiliation(s)
| | | | | | - Anna Gambini
- Azienda Ospedaliera Universitaria, Ospedali Riuniti Umberto I, Lancisi, Salesi, Ancona, Italy
| | - Vitangelo Scocco
- Azienda Ospedaliera Universitaria, Ospedali Riuniti Umberto I, Lancisi, Salesi, Ancona, Italy
| | | |
Collapse
|
26
|
Gabbianelli R, Palan M, Flis DJ, Fedeli D, Nasuti C, Skarydova L, Ziolkowski W. Imbalance in redox system of rat liver following permethrin treatment in adolescence and neonatal age. Xenobiotica 2013; 43:1103-10. [PMID: 23713974 DOI: 10.3109/00498254.2013.796427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The effect of different permethrin treatments on the redox system of rat liver, is presented. Two types of oral administration were chosen: (i) sub-chronic treatment (1/10 of LD50 for 60 days) during adolescence (5 weeks old) and (ii) sub-acute treatment (1/44 of LD50 for 15 days) during early life (from postnatal days 6-21). The results show that adolescent permethrin treatment induces damage to the liver redox system, increasing lipid and protein peroxidation and reducing membrane fluidity in the hydrophilic--hydrophobic region of the bilayer. In addition, glutathione peroxidase (GPx) and GSH levels resulted decreased, while glutathione transferase (GST) and catalase (CAT) levels increased. The rats treated in early life with permethrin and sacrificed in adult age, showed less signs of damage compared to those exposed during adolescence in which lipid peroxidation was increased by 32%, whereas for the first group the raise was only 11%. Moreover, fluidity improved in the deeper hydrophobic membrane region of the treated group, while the level of CAT was significantly lower compared to the control one. Although sub-chronic treatment increased CAT and GST and decreased GPx and GSH levels, the present data suggest that a shorter exposure to permethrin during neonatal age decreased CAT level and it could represent an important risk factor for the onset of long-term liver damage.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- School of Pharmacy, University of Camerino , Via Gentile III da Varano, 62032 Camerino, MC , Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Carloni M, Nasuti C, Fedeli D, Montani M, Vadhana MSD, Amici A, Gabbianelli R. Early life permethrin exposure induces long-term brain changes in Nurr1, NF-kB and Nrf-2. Brain Res 2013; 1515:19-28. [PMID: 23566817 DOI: 10.1016/j.brainres.2013.03.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/19/2013] [Accepted: 03/29/2013] [Indexed: 12/15/2022]
Abstract
Pesticide exposure during brain development represents an important risk factor for the onset of brain-aging processes. Here, the impact of permethrin administered to rats from 6th to 21st day of life, at a dose near to "no observed adverse effect level" (NOAEL), was studied when animals reached 500 day-old. The permethrin treatment induced a decrease in Nurr1 gene expression in striatum, an increase in hippocampus and cerebellum, while the protein level changed only in striatum where it was increased. NF-kB p65 gene expression was increased in cerebellum, while its protein level augmented in cerebellum and in prefrontal cortex and decreased in hippocampus of treated rats compared to control ones. Nrf-2 gene expression resulted significantly higher only in cerebellum of treated animals. The results suggest that early life permethrin treatment induces long-lasting effects leading to dopaminergic neuronal disorders, monitored by Nurr1 alteration. Moreover the impairment of NF-kB and Nrf-2, important for the balance between pro- and anti-inflammatory systems, confirms that the neonatal permethrin treatment can influence genes involved with the onset of brain-ageing processes.
Collapse
|