1
|
Keeling NM, Wallisch M, Johnson J, Le HH, Vu HH, Jordan KR, Puy C, Tucker EI, Nguyen KP, McCarty OJT, Aslan JE, Hinds MT, Anderson DEJ. Pharmacologic targeting of coagulation factors XII and XI by monoclonal antibodies reduces thrombosis in nitinol stents under flow. J Thromb Haemost 2024; 22:1433-1446. [PMID: 38331196 PMCID: PMC11055672 DOI: 10.1016/j.jtha.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/11/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Cardiovascular implantable devices, such as vascular stents, are critical for the treatment of cardiovascular diseases. However, their success is dependent on robust and often long-term antithrombotic therapies. Yet, the current standard-of-care therapies often pose significant bleeding risks to patients. Coagulation factor (F)XI and FXII have emerged as potentially safe and efficacious targets to safely reduce pathologic thrombin generation in medical devices. OBJECTIVES To study the efficacy of monoclonal antibody-targeting FXII and FXI of the contact pathway in preventing vascular device-related thrombosis. METHODS The effects of inhibition of FXII and FXI using function-blocking monoclonal antibodies were examined in a nonhuman primate model of nitinol stent-related thrombosis under arterial and venous flow conditions. RESULTS We found that function-blocking antibodies of FXII and FXI reduced markers of stent-induced thrombosis in vitro and ex vivo. However, FXI inhibition resulted in more effective mitigation of thrombosis markers under varied flow conditions. CONCLUSION This work provides further support for the translation of contact pathway of coagulation inhibitors for their adjunctive clinical use with cardiovascular devices.
Collapse
Affiliation(s)
- Novella M Keeling
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA.
| | - Michael Wallisch
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Aronora Inc, Portland, Oregon, USA
| | - Jennifer Johnson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Hillary H Le
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Helen H Vu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Kelley R Jordan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Erik I Tucker
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Aronora Inc, Portland, Oregon, USA
| | - Khanh P Nguyen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
2
|
Witkowska J, Borowski T, Sowińska A, Choińska E, Moszczyńska D, Morgiel J, Sobiecki J, Wierzchoń T. Influence of Low Temperature Plasma Oxidizing on the Bioactivity of NiTi Shape Memory Alloy for Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6086. [PMID: 37763363 PMCID: PMC10533197 DOI: 10.3390/ma16186086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
The present study elucidates the impact of glow discharge oxidation within a low-temperature plasma environment on the bioactivity characteristics of an NiTi shape memory alloy. The properties of the produced surface layers, such as structure (TEM observations), surface morphology (SEM observations), chemical and phase composition (EDS and XRD measurements), wettability (optical gonimeter), and the biological response of osteoblasts and platelets to the oxidized surface compared with the NiTi alloy without a surface layer are presented. The presented surface modification of the NiTi shape memory alloy, achieved through oxidizing in a low-temperature plasma environment, led to the creation of a continuous surface layer composed of nanocrystalline titanium oxide TiO2 (rutile). The findings obtained from this study provide evidence that the oxidized layer augments the bioactivity of the shape memory alloy. This augmentation was substantiated through the spontaneous biomimetic deposition of apatite from a simulated body fluid (SBF) solution. Furthermore, the modified surface exhibited improved osteoblast proliferation, and enhanced platelet adhesion and activation. This proposed surface modification strategy holds promise as a prospective solution to enhance the biocompatibility and bioactivity of NiTi shape memory alloy intended for prolonged use in bone implant applications.
Collapse
Affiliation(s)
- Justyna Witkowska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (T.B.); (E.C.); (D.M.); (J.S.); (T.W.)
| | - Tomasz Borowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (T.B.); (E.C.); (D.M.); (J.S.); (T.W.)
| | - Agnieszka Sowińska
- Pathology Department, Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Emilia Choińska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (T.B.); (E.C.); (D.M.); (J.S.); (T.W.)
| | - Dorota Moszczyńska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (T.B.); (E.C.); (D.M.); (J.S.); (T.W.)
| | - Jerzy Morgiel
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Krakow, Poland;
| | - Jerzy Sobiecki
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (T.B.); (E.C.); (D.M.); (J.S.); (T.W.)
| | - Tadeusz Wierzchoń
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (T.B.); (E.C.); (D.M.); (J.S.); (T.W.)
| |
Collapse
|
3
|
Wang X, Xie D, Wei L, You D, Hou M, Leng Y. DFT investigation of the dissolution trends of NiTi alloys with the B 2 and B19' phases during the initial oxidation stage. Phys Chem Chem Phys 2023. [PMID: 37449875 DOI: 10.1039/d3cp01024d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The selective corrosion of NiTi alloys was studied using density functional theory calculations, and the dissolution trends of the NiTi-B2 and NiTi-B19' phases in the initial oxidation stage were compared to predict their corrosion difference. The dissolution process of Ni and Ti was simulated by creating Ni or Ti vacancies on the unoxidized and oxidized NiTi alloy surfaces. The results show that the surface vacancy formation energy of Ti vacancies is higher than that of Ni vacancies, indicating that Ti is more difficult to dissolve than Ni. Furthermore, oxidation promotes and impedes the dissolution of Ni and Ti, respectively. This study improves the fundamental understanding of the corrosion mechanism of NiTi alloys.
Collapse
Affiliation(s)
- Xiaoting Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dong Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.
| | - Longjun Wei
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Duo You
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.
| | - Mingxi Hou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yongxiang Leng
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Sichuan Province International Science and Technology Cooperation Base of Functional Materials, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
4
|
Alipour S, Taromian F, Ghomi ER, Zare M, Singh S, Ramakrishna S. Nitinol: From historical milestones to functional properties and biomedical applications. Proc Inst Mech Eng H 2022; 236:1595-1612. [DOI: 10.1177/09544119221123176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Isoatomic NiTi alloy (Nitinol) has become an important biomaterial due to its unique characteristics, including shape memory effect, superelasticity, and high damping. Nitinol has been widely used in the biomedical field, including orthopedics, vascular stents, orthodontics, and other medical devices. However, there have been convicting views about the biocompatibility of Nitinol. Some studies have shown that Nitinol has extremely low cytotoxicity, indicating Nitinol has good biocompatibility. However, some studies have shown that the in-vivo corrosion resistance of Nitinol significantly decreases. This comprehensive paper discusses the historical developments of Nitinol, its biomedical applications, and its specific functional property. These render the suitability of Nitinol for such biomedical applications and provide insights into its in vivo and in vitro biocompatibility in the physiological environment and the antimicrobial strategies that can be applied to enhance its biocompatibility. Although 3D metal printing is still immature and Nitinol medical materials are difficult to be processed, Nitinol biomaterials have excellent potential and commercial value for 3D printing. However, there are still significant problems in the processing of Nitinol and improving its biocompatibility. With the deepening of research and continuous progress in surface modification and coating technology, a series of medical devices made from Nitinol are expected to be released soon.
Collapse
Affiliation(s)
- Saeid Alipour
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Farzaneh Taromian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Erfan Rezvani Ghomi
- Center for nanotechnology and sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Mina Zare
- Center for nanotechnology and sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Sunpreet Singh
- Center for nanotechnology and sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
- Mechanical Engineering, Chandigarh University, Punjab, India
| | - Seeram Ramakrishna
- Center for nanotechnology and sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| |
Collapse
|
5
|
Sandell M, Chireh A, Spyrou A, Grankvist R, Al-Saadi J, Jonsson S, van der Wijngaart W, Stemme G, Holmin S, Roxhed N. Endovascular Device for Endothelial Cell Sampling. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mikael Sandell
- Division of Micro and Nanosystems KTH Royal Institute of Technology Malvinas väg 10 114 28 Stockholm Sweden
- Department of Clinical Neuroscience Karolinska Institutet Tomtebodavägen 18A 171 77 Stockholm Sweden
- MedTechLabs Bioclinicum Karolinska University Hospital 171 64 Solna Sweden
| | - Arvin Chireh
- Department of Clinical Neuroscience Karolinska Institutet Tomtebodavägen 18A 171 77 Stockholm Sweden
| | - Argyris Spyrou
- Division of Micro and Nanosystems KTH Royal Institute of Technology Malvinas väg 10 114 28 Stockholm Sweden
- MedTechLabs Bioclinicum Karolinska University Hospital 171 64 Solna Sweden
| | - Rikard Grankvist
- Department of Clinical Neuroscience Karolinska Institutet Tomtebodavägen 18A 171 77 Stockholm Sweden
| | - Jonathan Al-Saadi
- Department of Clinical Neuroscience Karolinska Institutet Tomtebodavägen 18A 171 77 Stockholm Sweden
| | - Stefan Jonsson
- Department of Materials Science and Engineering KTH Royal Institute of Technology Brinellvägen 23 100 44 Stockholm Sweden
| | - Wouter van der Wijngaart
- Division of Micro and Nanosystems KTH Royal Institute of Technology Malvinas väg 10 114 28 Stockholm Sweden
| | - Göran Stemme
- Division of Micro and Nanosystems KTH Royal Institute of Technology Malvinas väg 10 114 28 Stockholm Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience Karolinska Institutet Tomtebodavägen 18A 171 77 Stockholm Sweden
- MedTechLabs Bioclinicum Karolinska University Hospital 171 64 Solna Sweden
| | - Niclas Roxhed
- Division of Micro and Nanosystems KTH Royal Institute of Technology Malvinas väg 10 114 28 Stockholm Sweden
- MedTechLabs Bioclinicum Karolinska University Hospital 171 64 Solna Sweden
| |
Collapse
|
6
|
Kareem AK, Gabir MM, Ali IR, Ismail AE, Taib I, Darlis N, Almoayed OM. A review on femoropopliteal arterial deformation during daily lives and nickel-titanium stent properties. J Med Eng Technol 2022; 46:300-317. [PMID: 35234558 DOI: 10.1080/03091902.2022.2041749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The increasing number of studies on the behaviour of stent placement in recent decades provides a clear understanding of peripheral artery disease (PAD). The severe mechanical loads (axial tension and compression, bending, radial compression and torsion) deformation of the femoropopliteal artery (FPA) is responsible for the highest failure rate of permanent nickel-titanium (Nitinol) stents. Therefore, the purpose of this article is to review research papers that examined the deformation of the natural load environment of FPA, the properties of Nitinol and mechanical considerations. In conclusion, a better understanding of mechanical behaviour for FPA Nitinol stents contributes to increased mechanical performance and fatigue-life.
Collapse
Affiliation(s)
- Ali K Kareem
- Department of Biomedical Engineering, Al-Mustaqbal University College, Hillah, Iraq.,Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| | - Mustafa M Gabir
- Air Conditioning and Refrigeration Techniques Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Inas R Ali
- Business Administration Department, Al-Mustaqbal University College, Hillah, Iraq.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Muar, Malaysia
| | - Al E Ismail
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| | - Ishkrizat Taib
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| | - Nofrizalidris Darlis
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| | - Omar M Almoayed
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| |
Collapse
|
7
|
Sinha TK, Lim JH, Chothe HR, Kim JG, Nam T, Lee T, Oh JS. Polyvinyl pyrrolidone (
PVP
) as an efficient and biocompatible binder for metal alloy processing: A case study with
Ti‐20Zr‐11Nb‐3Sn. J Appl Polym Sci 2022. [DOI: 10.1002/app.52396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tridib Kumar Sinha
- Department of Materials Engineering and Convergence Technology, RIGET Gyeongsang National University Jinju South Korea
- Department of Applied Sciences School of Engineering, University of Petroleum & Energy Studies (UPES), Energy Acres Building Dehradun Uttarakhand India
| | - Jin Hwan Lim
- Department of Materials Engineering and Convergence Technology, RIGET Gyeongsang National University Jinju South Korea
| | - Harshada R. Chothe
- Department of Materials Engineering and Convergence Technology, RIGET Gyeongsang National University Jinju South Korea
| | - Jung Gi Kim
- Department of Materials Engineering and Convergence Technology, RIGET Gyeongsang National University Jinju South Korea
| | - Taehyun Nam
- Department of Materials Engineering and Convergence Technology, RIGET Gyeongsang National University Jinju South Korea
| | - Taekyung Lee
- School of Mechanical Engineering Pusan National University Busan South Korea
| | - Jeong Seok Oh
- Department of Materials Engineering and Convergence Technology, RIGET Gyeongsang National University Jinju South Korea
| |
Collapse
|
8
|
A Critical Appraisal of the Use and Properties of Nickel-Titanium Dental Alloys. MATERIALS 2021; 14:ma14247859. [PMID: 34947453 PMCID: PMC8703947 DOI: 10.3390/ma14247859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
Nickel-titanium (NiTi) archwires are used in dentistry for orthodontic treatment. NiTi alloys have favourable mechanical characteristics, such as superelasticity and shape memory, and are also known as a corrosion-resistant alloy. In specific cases, an archwire could be attacked by certain types of corrosion or wear degradation, which can cause the leaching of metal ions and a hypersensitive response due to increased concentrations of Ni in the human body. A systematic search of the literature retrieved 102 relevant studies. The review paper focuses on three main fields: (i) electrochemical properties of NiTi wires and the effect of different environments on the properties of NiTi wires (fluoride and low pH); (ii) tribocorrosion, a combination of chemical and mechanical wear of the material, and (iii) the biocompatibility of NiTi alloy and its subsequent effect on the human body. The review showed that corrosion properties are affected by microstructure, pH of saliva and the presence of fluorides. A high variation in published results should be, therefore, interpreted with care. The release of nickel ions was assessed using the same unit, showing that the vast majority of metal ions were released in the first few days of exposure, then a stable, steady state was reached. In tribocorrosion studies, the increased concentrations of Ni ions were reported.
Collapse
|
9
|
Link A, Michel T, Schaller M, Tronser T, Krajewski S, Cattaneo G. In vitro investigation of an intracranial flow diverter with a fibrin-based, hemostasis mimicking, nanocoating. ACTA ACUST UNITED AC 2020; 16:015026. [PMID: 33166946 DOI: 10.1088/1748-605x/abc8d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Flow diversion aims at treatment of intracranial aneurysms via vessel remodeling mechanisms, avoiding the implantation of foreign materials into the aneurysm sack. However, complex implantation procedure, high metal surface and hemodynamic disturbance still pose a risk for thromboembolic complications in the clinical praxis. A novel fibrin and heparin based nano coating considered as a hemocompatible scaffold for neointimal formation was investigated regarding thrombogenicity and endothelialization. The fibrin-heparin coating was compared to a bare metal as well as fibrin- or heparin-coated flow diverters. The implants were tested separately in regard to inflammation and coagulation markers in two different in vitro hemocompatibility models conducted with human whole blood (n = 5). Endothelialization was investigated through a novel dynamic in vitro cell seeding model containing primary human cells with subsequent viability assay. It was demonstrated that platelet loss and platelet activation triggered by presence of a bare metal stent could be significantly reduced by applying the fibrin-heparin, fibrin and heparin coating. Viability of endothelial cells after proliferation was similar in fibrin-heparin compared to bare metal implants, with a slight, non-significant improvement observed in the fibrin-heparin group. The results suggest that the presented nanocoating has the potential to reduce thromboembolic complications in a clinical setting. Though the new model allowed for endothelial cell proliferation under flow conditions, a higher number of samples is required to assess a possible effect of the coating.
Collapse
Affiliation(s)
- Antonia Link
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Tuebingen, Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Davoodian F, Salahinejad E, Sharifi E, Barabadi Z, Tayebi L. PLGA-coated drug-loaded nanotubes anodically grown on nitinol. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111174. [DOI: 10.1016/j.msec.2020.111174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022]
|
11
|
Pacheco-Fernández I, Rentero M, Ayala JH, Pasán J, Pino V. Green solid-phase microextraction fiber coating based on the metal-organic framework CIM-80(Al): Analytical performance evaluation in direct immersion and headspace using gas chromatography and mass spectrometry for the analysis of water, urine and brewed coffee. Anal Chim Acta 2020; 1133:137-149. [PMID: 32993866 DOI: 10.1016/j.aca.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023]
Abstract
A new solid-phase microextraction (SPME) fiber coating was prepared by the immobilization of the metal-organic framework (MOF) CIM-80(Al) on nitinol wires by a green in situ growth approach, using an aqueous synthetic approach, and without the need of any additional material to ensure the attachment of the MOF to the nitinol support. The coating was used for the development of headspace (HS) and direct immersion (DI) SPME methods in combination with gas chromatography and mass spectrometry (GC-MS) for the determination of polycyclic aromatic hydrocarbons (PAHs) as model compounds. Both methods were optimized and validated using the MOF-based fiber together with the commercial polydimethylsiloxane (PDMS) fiber. The MOF extraction phase exhibited superior analytical performance for most of the PAHs in HS-SPME mode (and particularly for less volatiles), while the PDMS fiber presented better results in the DI-SPME method. The analytical performance of the MOF sorbent coating in HS- and DI-SPME methods was also evaluated in urine and brewed coffee samples, without requiring any pretreatment step apart from dilution for DI-SPME experiments, thus showing suitability of the novel coatings for the analysis of complex samples. The proposed CIM-80(Al) fiber was efficient and biocompatible (for using a low cytotoxic sorbent and a biocompatible core support), and it also demonstrated stability and robustness, with inter-fiber (and inter-day) relative standard deviation values lower than 19%, and reusability for more than 80 extraction cycles using 280 °C as desorption temperature.
Collapse
Affiliation(s)
- Idaira Pacheco-Fernández
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| | - Manuel Rentero
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Física, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| | - Juan H Ayala
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Física, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| | - Verónica Pino
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| |
Collapse
|
12
|
Nagaraja S, Pelton AR. Corrosion resistance of a Nitinol ocular microstent: Implications on biocompatibility. J Biomed Mater Res B Appl Biomater 2020; 108:2681-2690. [PMID: 32159908 DOI: 10.1002/jbm.b.34599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/03/2020] [Accepted: 02/22/2020] [Indexed: 11/11/2022]
Abstract
Nitinol is commonly used in medical implants due to its unique thermomechanical properties of shape memory and superelasticity. Free nickel has the potential to induce biological responses that may be a concern for permanent implants manufactured from nickel-containing alloys. Although there are extensive reports on the effects of surface treatments on corrosion behavior in cardiovascular Nitinol implants, there is a lack of data on corrosion resistance and impact on biocompatibility for ocular implants. Therefore, the objective of this study was to determine localized corrosion and nickel elution resistance of an electropolished Nitinol-based ocular device (Hydrus Microstent, Ivantis, Inc.) intended for patients with primary open angle glaucoma. Pitting corrosion susceptibility was characterized by potentiodynamic polarization testing per ASTM F2129. In addition, nickel ion release was quantified with immersion testing to 63 days. The results indicated high localized corrosion resistance as all samples reached polarization potentials of 800 mV without pitting initiation. Maximum nickel elution rates per device were less than approximately 1.1 ng/device/day after the first day of immersion and reduced to less than 0.1 ng/device/day after 7 days. For a patient with bilateral microstents, these nickel concentrations are ×10,000 lower than previously published tolerable intake levels for systemic toxicity. Overall, these corrosion results are in good agreement with literature values of well processed and biocompatible Nitinol devices indicating adverse systemic biological responses are not expected in vivo.
Collapse
|
13
|
Maleckis K, Anttila E, Aylward P, Poulson W, Desyatova A, MacTaggart J, Kamenskiy A. Nitinol Stents in the Femoropopliteal Artery: A Mechanical Perspective on Material, Design, and Performance. Ann Biomed Eng 2018; 46:684-704. [PMID: 29470746 DOI: 10.1007/s10439-018-1990-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
Abstract
Endovascular stenting has matured into a commonly used treatment for peripheral arterial disease (PAD) due to its minimally invasive nature and associated reductions in short-term morbidity and mortality. The mechanical properties of the superelastic Nitinol alloy have played a major role in the explosion of peripheral artery stenting, with modern stents demonstrating reasonable resilience and durability. Yet in the superficial femoral and popliteal arteries, even the newest generation Nitinol stents continue to demonstrate clinical outcomes that leave significant room for improvement. Restenosis and progression of native arterial disease often lead to recurrence of symptoms and reinterventions that increase morbidity and health care expenditures. One of the main factors thought to be associated with stent failure in the femoropopliteal artery (FPA) is the unique and highly dynamic mechanical environment of the lower limb. Clinical and experimental data demonstrate that the FPA undergoes significant deformations with limb flexion. It is hypothesized that the inability of many existing stent designs to conform to these deformations likely plays a role in reconstruction failure, as repetitive movements of the leg and thigh combine with mechanical mismatch between the artery and the stent and result in mechanical damage to both the artery and the stent. In this review we will identify challenges and provide a mechanical perspective of FPA stenting, and then discuss current research directions with promise to provide a better understanding of Nitinol, specific features of stent design, and improved characterization of the biomechanical environment of the FPA to facilitate development of better stents for patients with PAD.
Collapse
Affiliation(s)
- Kaspars Maleckis
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Eric Anttila
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Paul Aylward
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - William Poulson
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Anastasia Desyatova
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Jason MacTaggart
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| | - Alexey Kamenskiy
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| |
Collapse
|
14
|
Tran VN, Lee HS, Truong VG, Rhee YH, Kang HW. Concentric photothermal coagulation with basket-integrated optical device for treatment of tracheal stenosis. JOURNAL OF BIOPHOTONICS 2018; 11:e201700073. [PMID: 28731623 DOI: 10.1002/jbio.201700073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 05/20/2023]
Abstract
A basket-integrated optical device is developed to consistently treat tubular tissue by centering an optical diffuser in the lumen. Four nitinol arms in conjunction with the optical diffusing applicator are deployed to induce homogeneous circumferential light emission and concentric photothermal coagulation on tracheal tissue. A 1470-nm laser light is employed for the tissue testing at various irradiation conditions and evaluated in terms of thermal gradient and temperature evolution. Preliminary experiments on liver tissue demonstrate the concentric development of the radial thermal coagulation in the tissue (eccentric ratio = ~5.5%). The interstitial tissue temperature increases with the total amount of energy delivery (around 65°C). Ex vivo trachea testing yields up to 16.5% tissue shrinkage due to dehydration as well as uniform ablation of the cilia and goblet cells in a mucosa layer under 7-W irradiation for 10 s. The proposed optical device may be a feasible therapeutic method to entail the circumferential coagulation in the tubular tissues in a reliable manner.
Collapse
Affiliation(s)
- Van N Tran
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Hyoung Shin Lee
- Department of Otolaryngology Head and Neck Surgery, Kosin University, Busan, South Korea
| | - Van G Truong
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Yun-Hee Rhee
- Beckman Laser Institute Korea, Dankook University, Cheonan, South Korea
| | - Hyun Wook Kang
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
15
|
Bechtold C, de Miranda RL, Chluba C, Quandt E. Fabrication of self-expandable NiTi thin film devices with micro-electrode array for bioelectric sensing, stimulation and ablation. Biomed Microdevices 2016; 18:106. [PMID: 27830452 DOI: 10.1007/s10544-016-0131-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-expandable medical devices provide mechanical functionality at a specific location of the human body and are viable for minimal invasive procedures. Besides radiopaque markers and drug-eluting coatings, next generation self-expandable devices can be equipped with additional functionality, such as conductive and flexible electrodes, which enables chronic recording of bioelectrical signals, stimulating or ablating tissue. This promises new therapeutic options in various medical fields, among them in particular neuromodulation (e.g. deep brain stimulation), BioMEMS, radio frequency ablation, mapping or denervation. However, the fabrication of such multi-functional devices is challenging. For this study we have realized a 35 μm thick, superelastic NiTi thin film stent structure with six isolated electrodes on the outer circumference, each electrode connected to a contact pad at the end of the stent structure, using magnetron sputtering, UV lithography and wet chemical etching. Mechanical and electrical properties of the device during typical loading conditions, i.e. crimping, simulated pulsatile and electrochemical testing, were characterized and reveal promising results. For the fabrication of future multifunctional, minimal invasive medical devices, such as electroceuticals or other intelligent implants, NiTi thin film technology is therefore a versatile alternative to conventional fabrication routes.
Collapse
Affiliation(s)
| | | | - Christoph Chluba
- Acquandas GmbH, Kaiserstrasse 2, 24143, Kiel, Germany.,Institute for Materials Science, Faculty of Engineering, University of Kiel, Kaiserstrasse 2, 24143, Kiel, Germany
| | - Eckhard Quandt
- Institute for Materials Science, Faculty of Engineering, University of Kiel, Kaiserstrasse 2, 24143, Kiel, Germany
| |
Collapse
|
16
|
Schurr MO, Hartmann C, Kirschniak A, Ho CN, Fleisch C, Buess G. [Experimental study on a new method for colonoscopic closure of large-bowel perforations with the OTSC clip]. ACTA ACUST UNITED AC 2008; 53:45-51. [PMID: 18979620 DOI: 10.1515/bmt.2008.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iatrogenic perforation of the colon during interventional endoscopic procedures, e.g., mucosectomy, is a problematic complication, as safe treatment often requires surgical repair. Iatrogenic perforation of the colon is indeed a rare complication; however, given the increasing case numbers in interventional endoscopy it is of considerable practical relevance. The closure of perforations can be achieved with conventional endoscopic clips; however, these working channel based clips are often too small to close a perforation securely. Therefore, we have developed a novel endoscopic clipping system that can be attached to the tip of the endoscope. This over-the-scope-clip system (OTSC), made of Nitinol, was tested in an experimental trial (domestic pig, 50-60 kg) for its applicability for perforation closure. In acute experiments, tight endoscopic closure of 10 perforations in five animals was demonstrated; perforations were made through repeat biopsy. In three further animals, the postoperative course was studied over a period of 2 weeks. Peritonitis was not found in any of these animals. The local healing result at the site of implantation was good. Clips were present 2 weeks after the procedure. In this experimental study, the OTSC clip system was found to be a simple and secure method of iatrogenic colon perforation closure.
Collapse
Affiliation(s)
- Marc O Schurr
- Steinbeis Hochschule Berlin, IHCI-Institut, Tübingen, Deutschland.
| | | | | | | | | | | |
Collapse
|
17
|
Quiñones R, Gawalt ES. Study of the formation of self-assembled monolayers on nitinol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:10123-30. [PMID: 17725369 DOI: 10.1021/la701110p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Shape memory alloys such as nitinol (NiTi) have gained interest due to their unique and unusual properties of thermal shape memory, superelasticity, and good damping properties. Nitinol is mainly used for medical purposes. In order to control the surface properties of this alloy, self-assembled monolayers (SAMs) were formed and characterized on the native oxide surface of nitinol for the first time. Factors which affect the formation of SAMs, such as head group functionality, chain length, and tail group functionality, were varied and analyzed. Functionalized alkyl phosphonic acid molecules (OH, COOH, and CH3) formed monolayers on the nitinol surface using a simple deposition method resulting in the molecules being ordered and strongly bound to the surface. Diffuse reflectance infrared spectroscopy (DRIFT), contact angle goniometry, atomic force microscopy (AFM), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) were used to characterize the surfaces before and after organic modification.
Collapse
Affiliation(s)
- Rosalynn Quiñones
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | |
Collapse
|
18
|
Stepan LL, Levi DS, Gans E, Mohanchandra KP, Ujihara M, Carman GP. Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi. J Biomed Mater Res A 2007; 82:768-76. [PMID: 17330873 DOI: 10.1002/jbm.a.31192] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.
Collapse
Affiliation(s)
- L L Stepan
- Biomedical Engineering IDP, UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Kujala S, Pajala A, Kallioinen M, Pramila A, Tuukkanen J, Ryhänen J. Biocompatibility and strength properties of nitinol shape memory alloy suture in rabbit tendon. Biomaterials 2004; 25:353-8. [PMID: 14585723 DOI: 10.1016/s0142-9612(03)00488-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nitinol (NiTi) is a promising new tendon suture material with good strength, easy handling and good super-elastic properties. NiTi sutures were implanted for biocompatibility testing into the right medial gastrocnemius tendon in 15 rabbits for 2, 6 and 12 weeks. Additional sutures were implanted in subcutaneous tissue for strength measurements in order to determine the effect of implantation on strength properties of NiTi suture material. Braided polyester sutures (Ethibond) of approximately the same diameter were used as control. Encapsulating membrane formation around the sutures was minimal in the case of both materials. The breaking load of NiTi was significantly greater compared to braided polyester. Implantation did not affect the strength properties of either material.
Collapse
Affiliation(s)
- Sauli Kujala
- Department of Surgery, Oulu University Hospital, P.O. Box 21, Oulu FIN-90029, Finland.
| | | | | | | | | | | |
Collapse
|
20
|
Kujala S, Ryhänen J, Danilov A, Tuukkanen J. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials 2003; 24:4691-7. [PMID: 12951012 DOI: 10.1016/s0142-9612(03)00359-4] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Porous nickel-titanium (NiTi) alloy is a promising new material for a bone graft substitute with good strength properties and an elastic modulus closer to that of bone than any other metallic material. The purpose of this study was to evaluate the effect of porosity on the osteointegration of NiTi implants in rat bone. The porosities (average void volume) and the mean pore size (MPS) were 66.1% and 259+/-30 microm (group 1, n=14), 59.2% and 272+/-17 microm (group 2, n=4) and 46.6% and 505+/-136 microm (group 3, n=15), respectively. The implants were implanted in the distal femoral metaphysis of the rats for 30 weeks. The proportional bone-implant contact was best in group 1 (51%) without a significant difference compared to group 3 (39%). Group 2 had lower contact values (29%) than group 1 (p=0.038). Fibrotic tissue within the porous implant was found more often in group 1 than in group 3 (p=0.021), in which 12 samples out of 15 showed no signs of fibrosis. In conclusion, porosity of 66.1% (MPS 259+/-30 microm) showed best bone contact (51%) of the porosities tested here. However, the porosity of 46.6% (MPS 505+/-136 microm) with bone contact of 39% was not significantly inferior in this respect and showed lower incidence of fibrosis within the porous implant.
Collapse
Affiliation(s)
- Sauli Kujala
- Department of Surgery, Oulu University Hospital, P.O. Box 21, Oys FIN-90029, Finland.
| | | | | | | |
Collapse
|
21
|
Ponsonnet L, Comte V, Othmane A, Lagneau C, Charbonnier M, Lissac M, Jaffrezic N. Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel–titanium substrates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2002. [DOI: 10.1016/s0928-4931(02)00097-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Kujala S, Ryhänen J, Jämsä T, Danilov A, Saaranen J, Pramila A, Tuukkanen J. Bone modeling controlled by a nickel-titanium shape memory alloy intramedullary nail. Biomaterials 2002; 23:2535-43. [PMID: 12033601 DOI: 10.1016/s0142-9612(01)00388-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitinol (NiTi) shape memory metal alloy makes it possible to prepare functional implants that apply a continuous bending force to the bone. The purpose of this study was to find out if bone modeling can be controlled with a functional intramedullary NiTi nail. Pre-shaped intramedullary NiTi nails (length 26 mm, thickness 1.0-1.4 mm) with a curvature radius of 25-37 mm were implanted in the cooled martensite form in the medullary cavity of the right femur in eight rats, where they restored their austenite form, causing a bending force. After 12 weeks, the operated femurs were compared with their non-operated contralateral counterpairs. Anteroposterior radiographs demonstrated significant bowing, as indicated by the angle between the distal articular surface and the long axis of the femur (p = 0.003). Significant retardation of longitudinal growth and thickening of operated femurs were also seen. Quantitative densitometry showed a significant increase in the average cross-sectional cortical area (p = 0.001) and cortical thickness (p = 0.002), which were most obvious in the mid-diaphyseal area. Cortical bone mineral density increased in the proximal part of the bone and decreased in the distal part. Polarized light microscopy of the histological samples revealed that the new bone induced by the functional intramedullary nail was mainly woven bone. In conclusion, this study showed that bone modeling can be controlled with a functional intramedullary nail made of nickel-titanium shape memory alloy.
Collapse
Affiliation(s)
- Sauli Kujala
- Department of Surgery, Oulu University Hospital, Finland.
| | | | | | | | | | | | | |
Collapse
|