1
|
Cryptococcal Meningitis in a Mexican Neurological Center. Neurologist 2023:00127893-990000000-00053. [PMID: 36592340 DOI: 10.1097/nrl.0000000000000482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cryptococcal meningitis, one of the most severe infections affecting the central nervous system, often involves severe neurological sequels and high mortality. METHODS A retrospective review was performed, including 76 cases admitted in a 10-year period at a neurological referral center in Mexico City. From 68 isolates, 52 fungal specimens were identified as part of the Cryptococcus neoformans var. neoformans complex, 15 as C. neoformans var gattii complex, and one as Cryptococcus non-neoformans/gattii. RESULTS Higher cryptococcal meningitis incidence and severity were found in HIV-infected men; other risk factors frequently observed were diabetes mellitus and labor exposure to poultry. The main clinical manifestations were subacute headache, cognitive alterations, and photophobia (exclusively in HIV patients). MRI was highly sensitive for pathologic findings such as meningeal enhancements and cryptococcomas, most of them associated to C. neoformans complex. Eleven patients developed severe brain vasculitis, as observed by transcranial Doppler. Hydrocephalus with intracranial hypertension was the most frequent complication. CONCLUSIONS One-half of the population died, and the rest had neurological sequels, mainly neuropsychiatric manifestations and secondary headaches. These patients developed severe functional limitations in performing daily activities in an independent manner.
Collapse
|
2
|
Liu S, Hu Q, Li C, Zhang F, Gu H, Wang X, Li S, Xue L, Madl T, Zhang Y, Zhou L. Wide-Range, Rapid, and Specific Identification of Pathogenic Bacteria by Surface-Enhanced Raman Spectroscopy. ACS Sens 2021; 6:2911-2919. [PMID: 34282892 PMCID: PMC8406416 DOI: 10.1021/acssensors.1c00641] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensitive, selective, rapid, and label-free detection of pathogenic bacteria with high generality is of great importance for clinical diagnosis, biosecurity, and public health. However, most traditional approaches, such as microbial cultures, are time-consuming and laborious. To circumvent these problems, surface-enhanced Raman spectroscopy (SERS) appears to be a powerful technique to characterize bacteria at the single-cell level. Here, by SERS, we report a strategy for the rapid and specific detection of 22 strains of common pathogenic bacteria. A novel and high-quality silver nanorod SERS substrate, prepared by the facile interface self-assembly method, was utilized to acquire the chemical fingerprint information of pathogens with improved sensitivity. We also applied the mathematical analysis methods, such as the t-test and receiver operating characteristic method, to determine the Raman features of these 22 strains and demonstrate the clear identification of most bacteria (20 strains) from the rest and also the reliability of this SERS sensor. This rapid and specific strategy for wide-range bacterial detection offers significant advantages over existing approaches and sets the base for automated and onsite detection of pathogenic bacteria in a complex real-life situation.
Collapse
Affiliation(s)
- Siying Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiushi Hu
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Li
- Institute of Medical Equipment, Academy of Military Sciences, Tianjin 300161, China
| | - Fangrong Zhang
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Institute of Molecular Biology & Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Hongjing Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xinrui Wang
- Anti-plague Institute Hebei Province, Zhangjiakou 075000, China
| | - Shuang Li
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Xue
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tobias Madl
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Institute of Molecular Biology & Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhou
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Firacative C, Meyer W, Castañeda E. Cryptococcus neoformans and Cryptococcus gattii Species Complexes in Latin America: A Map of Molecular Types, Genotypic Diversity, and Antifungal Susceptibility as Reported by the Latin American Cryptococcal Study Group. J Fungi (Basel) 2021; 7:jof7040282. [PMID: 33918572 PMCID: PMC8069395 DOI: 10.3390/jof7040282] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cryptococcosis, a potentially fatal mycosis, is caused by members of the Cryptococcus neoformans and Cryptococcus gattii species complexes. In Latin America, cryptococcal meningitis is still an important health threat with a significant clinical burden. Analysis of publicly available molecular data from 5686 clinical, environmental, and veterinary cryptococcal isolates from member countries of the Latin American Cryptococcal Study Group showed that, as worldwide, C. neoformans molecular type VNI is the most common cause of cryptococcosis (76.01%) in HIV-infected people, followed by C. gattii molecular type VGII (12.37%), affecting mostly otherwise healthy hosts. These two molecular types also predominate in the environment (68.60% for VNI and 20.70% for VGII). Among the scarce number of veterinary cases, VGII is the predominant molecular type (73.68%). Multilocus sequence typing analysis showed that, in Latin America, the C. neoformans population is less diverse than the C. gattii population (D of 0.7104 vs. 0.9755). Analysis of antifungal susceptibility data showed the presence of non-wild-type VNI, VGI, VGII, and VGIII isolates in the region. Overall, the data presented herein summarize the progress that has been made towards the molecular epidemiology of cryptococcal isolates in Latin America, contributing to the characterization of the genetic diversity and antifungal susceptibility of these globally spreading pathogenic yeasts.
Collapse
Affiliation(s)
- Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota 111221, Colombia
- Correspondence: ; Tel.: +57-1-297-0200 (ext. 3404)
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Research and Education Network Westmead Hospital, Faculty of Medicine and Health, Sydney Medical School-Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, Australia;
| | - Elizabeth Castañeda
- Grupo de Microbiología, Instituto Nacional de Salud, Bogota 111321, Colombia;
| |
Collapse
|
4
|
Dou H, Wang H, Xie S, Chen X, Xu Z, Xu Y. Molecular characterization of Cryptococcus neoformans isolated from the environment in Beijing, China. Med Mycol 2018; 55:737-747. [PMID: 28431114 DOI: 10.1093/mmy/myx026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/04/2017] [Indexed: 12/20/2022] Open
Abstract
The molecular type of environmental Cryptococcus neoformans in Beijing was not clear. Our study aims to reveal the molecular characterization of C. neoformans complex from environment in Beijing, China. A total of 435 samples of pigeon droppings from 11 different homes in Beijing were collected from August to November in 2015. Pigeon droppings were inoculated onto caffeic acid cornmeal agar (CACA) to screen C. neoformans complex. Bruker Biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was performed for species identification. Serotype and mating type was determined by specific primers. Restriction fragment length polymorphisms of URA5 (URA5-RFLP) were applied to genotype. Multi-locus sequence typing (MLST) was done for further identification and sequence type (ST) determination. Altogether, 81 isolates of C. neoformans AFLP1/VNI were recognized from 435 pigeon droppings in this study. The positive rate for C. neoformans AFLP1/VNI from pigeon droppings in different homes varied from 5.0% to 52.6%, the average was 20.2%. All of these cryptococcal strains were serotype A, MATα. They were genotyped as VNI by URA5-RFLP and were confirmed by MLST. No other molecular types of C. neoformans and Cryptococcus gattii isolates were isolated. Their STs were identified as ST 31 (n = 54, 66.7%), followed by ST 53 (n = 10), ST 191 (n = 8), ST 5 (n = 5), ST 57 (n = 3), and ST 38 (n = 1). We concluded that not only clinical but also environmental isolates of C. neoformans need to be investigated more deeply and more extensively. The virulence difference between ST 5 and ST 31 need to be explored in the future.
Collapse
Affiliation(s)
- Hongtao Dou
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Huizhu Wang
- Department of Clinical Laboratory, Beijing Di-Tan Hospital, Capital Medical University, Beijing, China
| | - Shaowei Xie
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinxin Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhipeng Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E. The status of cryptococcosis in Latin America. Mem Inst Oswaldo Cruz 2018; 113:e170554. [PMID: 29641639 PMCID: PMC5888000 DOI: 10.1590/0074-02760170554] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022] Open
Abstract
Cryptococcosis is a life-threatening fungal infection caused by the encapsulated
yeasts Cryptococcus neoformans and C. gattii,
acquired from the environment. In Latin America, as occurring
worldwide, C. neoformans causes more than 90% of the cases of
cryptococcosis, affecting predominantly patients with HIV, while C.
gattii generally affects otherwise healthy individuals. In this
region, cryptococcal meningitis is the most common presentation, with
amphotericin B and fluconazole being the antifungal drugs of choice. Avian
droppings are the predominant environmental reservoir of C.
neoformans, while C. gattii is associated with
several arboreal species. Importantly, C. gattii has a high
prevalence in Latin America and has been proposed to be the likely origin of
some C. gattii populations in North America. Thus, in the
recent years, significant progress has been made with the study of the basic
biology and laboratory identification of cryptococcal strains, in understanding
their ecology, population genetics, host-pathogen interactions, and the clinical
epidemiology of this important mycosis in Latin America.
Collapse
Affiliation(s)
- Carolina Firacative
- Westmead Hospital, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jairo Lizarazo
- Internal Medicine Department, Hospital Universitario Erasmo Meoz, Universidad de Pamplona, Cúcuta, Colombia
| | - María Teresa Illnait-Zaragozí
- Diagnosis and Reference Centre, Bacteriology-Mycology Department Research, Tropical Medicine Institute Pedro Kourí, Havana, Cuba
| | | | | |
Collapse
|
6
|
Ecoepidemiology of Cryptococcus gattii in Developing Countries. J Fungi (Basel) 2017; 3:jof3040062. [PMID: 29371578 PMCID: PMC5753164 DOI: 10.3390/jof3040062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023] Open
Abstract
Cryptococcosis is a systemic infection caused by species of the encapsulated yeast Cryptococcus. The disease may occur in immunocompromised and immunocompetent hosts and is acquired by the inhalation of infectious propagules present in the environment. Cryptococcus is distributed in a plethora of ecological niches, such as soil, pigeon droppings, and tree hollows, and each year new reservoirs are discovered, which helps researchers to better understand the epidemiology of the disease. In this review, we describe the ecoepidemiology of the C. gattii species complex focusing on clinical cases and ecological reservoirs in developing countries from different continents. We also discuss some important aspects related to the antifungal susceptibility of different species within the C. gattii species complex and bring new insights on the revised Cryptococcus taxonomy.
Collapse
|
7
|
Lahiri Mukhopadhyay S, Bahubali VH, Manjunath N, Swaminathan A, Maji S, Palaniappan M, Parthasarathy S, Chandrashekar N. Central nervous system infection due to Cryptococcus gattii sensu lato
in India: Analysis of clinical features, molecular profile and antifungal susceptibility. Mycoses 2017; 60:749-757. [DOI: 10.1111/myc.12656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022]
Affiliation(s)
| | - Veenakumari H. Bahubali
- Department of Neuromicrobiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - Netravathi Manjunath
- Department of Neurology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - Aarthi Swaminathan
- Department of Neuroimaging and Interventional Radiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - Sayani Maji
- Department of Neuromicrobiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - Marimuthu Palaniappan
- Department of Biostatistics; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | | | - Nagarathna Chandrashekar
- Department of Neuromicrobiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| |
Collapse
|
8
|
|
9
|
Medina N, Samayoa B, Lau-Bonilla D, Denning DW, Herrera R, Mercado D, Guzmán B, Pérez JC, Arathoon E. Burden of serious fungal infections in Guatemala. Eur J Clin Microbiol Infect Dis 2017; 36:965-969. [PMID: 28243758 DOI: 10.1007/s10096-017-2920-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Guatemala is a developing country in Central America with a high burden of HIV and endemic fungal infections; we attempted to estimate the burden of serious fungal infections for the country. A full literature search was done to identify epidemiology papers reporting fungal infections from Guatemala. We used specific populations at risk and fungal infection frequencies in the population to estimate national rates. The population of Guatemala in 2013 was 15.4 million; 40% were younger than 15 and 6.2% older than 60. There are an estimated 53,000 adults with HIV infection, in 2015, most presenting late. The estimated cases of opportunistic fungal infections were: 705 cases of disseminated histoplasmosis, 408 cases of cryptococcal meningitis, 816 cases of Pneumocystis pneumonia, 16,695 cases of oral candidiasis, and 4,505 cases of esophageal candidiasis. In the general population, an estimated 5,568 adult asthmatics have allergic bronchopulmonary aspergillosis (ABPA) based on a 2.42% prevalence of asthma and a 2.5% ABPA proportion. Amongst 2,452 pulmonary tuberculosis patients, we estimated a prevalence of 495 for chronic pulmonary aspergillosis in this group, and 1,484 for all conditions. An estimated 232,357 cases of recurrent vulvovaginal candidiasis is likely. Overall, 1.7% of the population are affected by these conditions. The true fungal infection burden in Guatemala is unknown. Tools and training for improved diagnosis are needed. Additional research on prevalence is needed to employ public health measures towards treatment and improving the reported data of fungal diseases.
Collapse
Affiliation(s)
- N Medina
- Asociación de Salud Integral, Guatemala City, Guatemala
| | - B Samayoa
- Asociación de Salud Integral, Guatemala City, Guatemala. .,Universidad de San Carlos de Guatemala, Guatemala City, Guatemala.
| | - D Lau-Bonilla
- Asociación de Salud Integral, Guatemala City, Guatemala
| | - D W Denning
- The National Aspergillosis Centre, University Hospital of South Manchester, Manchester, UK.,The University of Manchester and the Manchester Academic Health Science Centre, Manchester, UK
| | - R Herrera
- Asociación de Salud Integral, Guatemala City, Guatemala
| | - D Mercado
- Asociación de Salud Integral, Guatemala City, Guatemala
| | - B Guzmán
- Asociación de Salud Integral, Guatemala City, Guatemala
| | - J C Pérez
- Asociación de Salud Integral, Guatemala City, Guatemala
| | - E Arathoon
- Asociación de Salud Integral, Guatemala City, Guatemala
| |
Collapse
|
10
|
Firacative C, Roe CC, Malik R, Ferreira-Paim K, Escandón P, Sykes JE, Castañón-Olivares LR, Contreras-Peres C, Samayoa B, Sorrell TC, Castañeda E, Lockhart SR, Engelthaler DM, Meyer W. MLST and Whole-Genome-Based Population Analysis of Cryptococcus gattii VGIII Links Clinical, Veterinary and Environmental Strains, and Reveals Divergent Serotype Specific Sub-populations and Distant Ancestors. PLoS Negl Trop Dis 2016; 10:e0004861. [PMID: 27494185 PMCID: PMC4975453 DOI: 10.1371/journal.pntd.0004861] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022] Open
Abstract
The emerging pathogen Cryptococcus gattii causes life-threatening disease in immunocompetent and immunocompromised hosts. Of the four major molecular types (VGI-VGIV), the molecular type VGIII has recently emerged as cause of disease in otherwise healthy individuals, prompting a need to investigate its population genetic structure to understand if there are potential genotype-dependent characteristics in its epidemiology, environmental niche(s), host range and clinical features of disease. Multilocus sequence typing (MLST) of 122 clinical, environmental and veterinary C. gattii VGIII isolates from Australia, Colombia, Guatemala, Mexico, New Zealand, Paraguay, USA and Venezuela, and whole genome sequencing (WGS) of 60 isolates representing all established MLST types identified four divergent sub-populations. The majority of the isolates belong to two main clades, corresponding either to serotype B or C, indicating an ongoing species evolution. Both major clades included clinical, environmental and veterinary isolates. The C. gattii VGIII population was genetically highly diverse, with minor differences between countries, isolation source, serotype and mating type. Little to no recombination was found between the two major groups, serotype B and C, at the whole and mitochondrial genome level. C. gattii VGIII is widespread in the Americas, with sporadic cases occurring elsewhere, WGS revealed Mexico and USA as a likely origin of the serotype B VGIII population and Colombia as a possible origin of the serotype C VGIII population. Serotype B isolates are more virulent than serotype C isolates in a murine model of infection, causing predominantly pulmonary cryptococcosis. No specific link between genotype and virulence was observed. Antifungal susceptibility testing against six antifungal drugs revealed that serotype B isolates are more susceptible to azoles than serotype C isolates, highlighting the importance of strain typing to guide effective treatment to improve the disease outcome. Cryptococcus gattii, which is classically divided into four major molecular types (VGI-VGIV), and two serotypes B and C, is the second most important cause of cryptococcosis. The rising incidence of human and animal cryptococcosis cases caused by molecular type VGIII highlights the need for increased vigilance. In this study, we characterized a large set of C. gattii VGIII isolates. Genetic analysis revealed four diverging sub-populations, which were primarily associated with serotype B or C, and very likely originated from endemic regions in Colombia, Mexico and the USA. Differences in virulence and antifungal susceptibility between serotypes may result in different disease outcomes since serotype B isolates were more virulent in mice than serotype C isolates, but serotype C isolates were less susceptible to azoles, the primary treatment for uncomplicated cryptococcosis. Identification of cryptococcal serotype and molecular type in clinical practice has the potential to guide treatment regimens and hence reduce morbidity and mortality in both sporadic cases and those associated with outbreaks. Our study significantly contributes to the understanding of the epidemiology, genetics and pathogenesis of Cryptococcus and cryptococcosis.
Collapse
Affiliation(s)
- Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Chandler C. Roe
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Sydney, Australia
| | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
- Infectious Disease Department, Triangulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Jane E. Sykes
- Department of Medicine and Epidemiology, University of California, Davis, Davis, California, United States of America
| | - Laura Rocío Castañón-Olivares
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad National Autónoma de México, Mexico City, Mexico
| | | | | | - Tania C. Sorrell
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
| | | | - Shawn R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David M. Engelthaler
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
- * E-mail:
| |
Collapse
|
11
|
Chen M, Zhou J, Li J, Li M, Sun J, Fang WJ, Al-Hatmi AMS, Xu J, Boekhout T, Liao WQ, Pan WH. Evaluation of five conventional and molecular approaches for diagnosis of cryptococcal meningitis in non-HIV-infected patients. Mycoses 2016; 59:494-502. [PMID: 27061343 DOI: 10.1111/myc.12497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/19/2016] [Accepted: 02/22/2016] [Indexed: 11/29/2022]
Abstract
Cryptococcal meningitis (CM) is a life-threatening mycosis primarily occurring in HIV-infected individuals. Recently, non-HIV-infected hosts were increasingly reported to form a considerable proportion. However, the majority of the reported studies on the diagnosis of CM patients were performed on HIV-infected patients. For evaluation of various diagnostic approaches for CM in non-HIV-infected patients, a range of conventional and molecular assays used for diagnosis of CM were verified on 85 clinical CSFs from non-HIV-infected CM patients, including India ink staining, culture, a newly developed loop-mediated isothermal amplification (LAMP), the lateral flow assay (LFA) of cryptococcal antigen detection and a qPCR assay. The LFA had the highest positive detection rate (97.6%; 95% CI, 91.8-99.7%) in non-HIV-infected CM patients, followed by the LAMP (87.1%; 95% CI, 78.0-93.4%), the qPCR (80.0%; 95% CI, 69.9-87.9%), India ink staining (70.6%; 95% CI, 59.7-80.0%) and culture (35.3%; 95% CI, 25.2-46.4%). All culture positive specimens were correctly identified by the LFA.
Collapse
Affiliation(s)
- Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands
| | - Jie Zhou
- Department of Dermatology, Shanghai Seventh People's Hospital, Shanghai, China
| | - Juan Li
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meng Li
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Sun
- Department of Pharmacy, General Hospital of Jinan Military Command, Jinan, China
| | - Wen J Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Abdullah M S Al-Hatmi
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands.,Directorate General of Health Services, Ministry of Health, Ibri Hospital, Ibri, Oman
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Canada
| | - Teun Boekhout
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands
| | - Wan Q Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei H Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Treviño-Rangel RDJ, Villanueva-Lozano H, Hernández-Rodríguez P, Martínez-Reséndez MF, García-Juárez J, Rodríguez-Rocha H, González GM. Activity of sertraline againstCryptococcus neoformans:in vitroandin vivoassays. Med Mycol 2015; 54:280-6. [DOI: 10.1093/mmy/myv109] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/25/2015] [Indexed: 12/16/2022] Open
|
13
|
Rodrigues J, Fonseca FL, Schneider RO, Godinho RMDC, Firacative C, Maszewska K, Meyer W, Schrank A, Staats C, Kmetzsch L, Vainstein MH, Rodrigues ML. Pathogenic diversity amongst serotype C VGIII and VGIV Cryptococcus gattii isolates. Sci Rep 2015; 5:11717. [PMID: 26153364 PMCID: PMC4495446 DOI: 10.1038/srep11717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022] Open
Abstract
Cryptococcus gattii is one of the causative agents of human cryptococcosis. Highly virulent strains of serotype B C. gattii have been studied in detail, but little information is available on the pathogenic properties of serotype C isolates. In this study, we analyzed pathogenic determinants in three serotype C C. gattii isolates (106.97, ATCC 24066 and WM 779). Isolate ATCC 24066 (molecular type VGIII) differed from isolates WM 779 and 106.97 (both VGIV) in capsule dimensions, expression of CAP genes, chitooligomer distribution, and induction of host chitinase activity. Isolate WM 779 was more efficient than the others in producing pigments and all three isolates had distinct patterns of reactivity with antibodies to glucuronoxylomannan. This great phenotypic diversity reflected in differential pathogenicity. VGIV isolates WM 779 and 106.97 were similar in their ability to cause lethality and produced higher pulmonary fungal burden in a murine model of cryptococcosis, while isolate ATCC 24066 (VGIII) was unable to reach the brain and caused reduced lethality in intranasally infected mice. These results demonstrate a high diversity in the pathogenic potential of isolates of C. gattii belonging to the molecular types VGIII and VGIV.
Collapse
Affiliation(s)
- Jéssica Rodrigues
- Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda L Fonseca
- Fundação Oswaldo Cruz - Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Rio de Janeiro, Brazil
| | - Rafael O Schneider
- Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo M da C Godinho
- Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Firacative
- 1] Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia [2] Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Krystyna Maszewska
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
| | - Augusto Schrank
- Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Charley Staats
- Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Livia Kmetzsch
- Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilene H Vainstein
- Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcio L Rodrigues
- 1] Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil [2] Fundação Oswaldo Cruz - Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
González GM, Casillas-Vega N, Garza-González E, Hernández-Bello R, Rivera G, Rodríguez JA, Bocanegra-Garcia V. Molecular typing of clinical isolates of Cryptococcus neoformans/Cryptococcus gattii species complex from Northeast Mexico. Folia Microbiol (Praha) 2015; 61:51-6. [DOI: 10.1007/s12223-015-0409-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/15/2015] [Indexed: 02/05/2023]
|
15
|
Abstract
Understanding of the taxonomy and phylogeny of Cryptococcus gattii has been advanced by modern molecular techniques. C. gattii probably diverged from Cryptococcus neoformans between 16 million and 160 million years ago, depending on the dating methods applied, and maintains diversity by recombining in nature. South America is the likely source of the virulent C. gattii VGII molecular types that have emerged in North America. C. gattii shares major virulence determinants with C. neoformans, although genomic and transcriptomic studies revealed that despite similar genomes, the VGIIa and VGIIb subtypes employ very different transcriptional circuits and manifest differences in virulence phenotypes. Preliminary evidence suggests that C. gattii VGII causes severe lung disease and death without dissemination, whereas C. neoformans disseminates readily to the central nervous system (CNS) and causes death from meningoencephalitis. Overall, currently available data indicate that the C. gattii VGI, VGII, and VGIII molecular types more commonly affect nonimmunocompromised hosts, in contrast to VGIV. New, rapid, cheap diagnostic tests and imaging modalities are assisting early diagnosis and enabling better outcomes of cerebral cryptococcosis. Complications of CNS infection include increased intracranial pressure, severe neurological sequelae, and development of immune reconstitution syndrome, although the mortality rate is low. C. gattii VGII isolates may exhibit higher fluconazole MICs than other genotypes. Optimal therapeutic regimens are yet to be determined; in most cases, initial therapy with amphotericin B and 5-flucytosine is recommended.
Collapse
|
16
|
Lizarazo J, Escandón P, Agudelo CI, Firacative C, Meyer W, Castañeda E. Retrospective study of the epidemiology and clinical manifestations of Cryptococcus gattii infections in Colombia from 1997-2011. PLoS Negl Trop Dis 2014; 8:e3272. [PMID: 25411779 PMCID: PMC4238989 DOI: 10.1371/journal.pntd.0003272] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/14/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cryptococcosis due to Cryptococcus gattii is endemic in various parts of the world, affecting mostly immunocompetent patients. A national surveillance study of cryptococcosis, including demographical, clinical and microbiological data, has been ongoing since 1997 in Colombia, to provide insights into the epidemiology of this mycosis. METHODOLOGY/PRINCIPAL FINDINGS From 1,209 surveys analyzed between 1997-2011, 45 cases caused by C. gattii were reported (prevalence 3.7%; annual incidence 0.07 cases/million inhabitants/year). Norte de Santander had the highest incidence (0.81 cases/million/year), representing 33.3% of all cases. The male: female ratio was 3.3∶1. Mean age at diagnosis was 41±16 years. No specific risk factors were identified in 91.1% of patients. HIV infection was reported in 6.7% of patients, autoimmune disease and steroids use in 2.2%. Clinical features included headache (80.5%), nausea/vomiting (56.1%) and neurological derangements (48.8%). Chest radiographs were taken in 21 (46.7%) cases, with abnormal findings in 7 (33.3%). Cranial CT scans were obtained in 15 (33.3%) cases, with abnormalities detected in 10 (66.7%). Treatment was well documented in 30 cases, with most receiving amphotericin B. Direct sample examination was positive in 97.7% cases. Antigen detection was positive for all CSF specimens and for 75% of serum samples. C. gattii was recovered from CSF (93.3%) and respiratory specimens (6.6%). Serotype was determined in 42 isolates; 36 isolates were serotype B (85.7%), while 6 were C (14.3%). The breakdowns of molecular types were VGII (55.6%), VGIII (31.1%) and VGI (13.3%). Among 44 strains, 16 MLST sequence types (ST) were identified, 11 of them newly reported. CONCLUSIONS/SIGNIFICANCE The results of this passive surveillance study demonstrate that cryptococcosis caused by C. gattii has a low prevalence in Colombia, with the exception of Norte de Santander. The predominance of molecular type VGII is of concern considering its association with high virulence and the potential to evolve into outbreaks.
Collapse
Affiliation(s)
- Jairo Lizarazo
- Internal Medicine Department, Hospital Universitario Erasmo Meoz, Cúcuta, Norte de Santander, Colombia
| | | | | | - Carolina Firacative
- Microbiology Group, Instituto Nacional de Salud, Bogotá, Colombia
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
| | | |
Collapse
|
17
|
Abstract
Cryptococcus gattii is a basidiomycetous human fungal pathogen that typically causes infection in tropical and subtropical regions and is responsible for an ongoing outbreak in immunocompetent individuals on Vancouver Island and in the Pacific Northwest of the US. Pathogenesis of this species may be linked to its sexual cycle that generates infectious propagules called basidiospores. A marked predominance of only one mating type (α) in clinical and environmental isolates suggests that a-α opposite-sex reproduction may be infrequent or geographically restricted, raising the possibility of an alternative unisexual cycle involving cells of only α mating type, as discovered previously in the related pathogenic species Cryptococcus neoformans. Here we report observation of hallmark features of unisexual reproduction in a clinical isolate of C. gattii (isolate 97/433) and describe genetic and environmental factors conducive to this sexual cycle. Our results are consistent with population genetic evidence of recombination in the largely unisexual populations of C. gattii and provide a useful genetic model for understanding how novel modes of sexual reproduction may contribute to evolution and virulence in this species.
Collapse
|
18
|
Springer DJ, Billmyre RB, Filler EE, Voelz K, Pursall R, Mieczkowski PA, Larsen RA, Dietrich FS, May RC, Filler SG, Heitman J. Cryptococcus gattii VGIII isolates causing infections in HIV/AIDS patients in Southern California: identification of the local environmental source as arboreal. PLoS Pathog 2014; 10:e1004285. [PMID: 25144534 PMCID: PMC4140843 DOI: 10.1371/journal.ppat.1004285] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/16/2014] [Indexed: 12/30/2022] Open
Abstract
Ongoing Cryptococcus gattii outbreaks in the Western United States and Canada illustrate the impact of environmental reservoirs and both clonal and recombining propagation in driving emergence and expansion of microbial pathogens. C. gattii comprises four distinct molecular types: VGI, VGII, VGIII, and VGIV, with no evidence of nuclear genetic exchange, indicating these represent distinct species. C. gattii VGII isolates are causing the Pacific Northwest outbreak, whereas VGIII isolates frequently infect HIV/AIDS patients in Southern California. VGI, VGII, and VGIII have been isolated from patients and animals in the Western US, suggesting these molecular types occur in the environment. However, only two environmental isolates of C. gattii have ever been reported from California: CBS7750 (VGII) and WM161 (VGIII). The incongruence of frequent clinical presence and uncommon environmental isolation suggests an unknown C. gattii reservoir in California. Here we report frequent isolation of C. gattii VGIII MATα and MATa isolates and infrequent isolation of VGI MATα from environmental sources in Southern California. VGIII isolates were obtained from soil debris associated with tree species not previously reported as hosts from sites near residences of infected patients. These isolates are fertile under laboratory conditions, produce abundant spores, and are part of both locally and more distantly recombining populations. MLST and whole genome sequence analysis provide compelling evidence that these environmental isolates are the source of human infections. Isolates displayed wide-ranging virulence in macrophage and animal models. When clinical and environmental isolates with indistinguishable MLST profiles were compared, environmental isolates were less virulent. Taken together, our studies reveal an environmental source and risk of C. gattii to HIV/AIDS patients with implications for the >1,000,000 cryptococcal infections occurring annually for which the causative isolate is rarely assigned species status. Thus, the C. gattii global health burden could be more substantial than currently appreciated. The environmentally-acquired human pathogen C. gattii is responsible for ongoing and expanding outbreaks in the Western United States and Canada. C. gattii comprises four distinct molecular types: VGI, VGII, VGIII, and VGIV. Molecular types VGI, VGII, and VGIII have been isolated from patients and animals throughout the Western US. The Pacific Northwest and Canadian outbreak is primarily caused by C. gattii VGII. VGIII is responsible for ongoing infections in HIV/AIDS patients in Southern California. However, only two environmental C. gattii isolates have ever been identified from the Californian environment: CBS7750 (VGII) and WM161 (VGIII). We sought to collect environmental samples from areas that had confirmed reports of clinical or veterinary infections. Here we report the isolation of C. gattii VGI and VGIII from environmental soil and tree samples. C. gattii isolates were obtained from three novel tree species: Canary Island pine, American sweetgum, and a Pohutukawa tree. Genetic analysis provides robust evidence that these environmental isolates are the source of human infections.
Collapse
Affiliation(s)
- Deborah J. Springer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (DJS); (JH)
| | - R. Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Elan E. Filler
- David Geffen School of Medicine at UCLA, Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Los Angeles, California, United States of America
| | - Kerstin Voelz
- Institute of Microbiology & Infection and the School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- National Institute of Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Rhiannon Pursall
- Institute of Microbiology & Infection and the School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Piotr A. Mieczkowski
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert A. Larsen
- Division of Infectious Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robin C. May
- Institute of Microbiology & Infection and the School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- National Institute of Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Scott G. Filler
- David Geffen School of Medicine at UCLA, Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Los Angeles, California, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (DJS); (JH)
| |
Collapse
|
19
|
Firacative C, Duan S, Meyer W. Galleria mellonella model identifies highly virulent strains among all major molecular types of Cryptococcus gattii. PLoS One 2014; 9:e105076. [PMID: 25133687 PMCID: PMC4136835 DOI: 10.1371/journal.pone.0105076] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/20/2014] [Indexed: 12/18/2022] Open
Abstract
Cryptococcosis is mainly caused by Cryptococcus neoformans. However, the number of cases due to C. gattii is increasing, affecting mainly immunocompetent hosts. C. gattii is divided into four major molecular types, VGI to VGIV, which differ in their host range, epidemiology, antifungal susceptibility and geographic distribution. Besides studies on the Vancouver Island outbreak strains, which showed that the subtype VGIIa is highly virulent compared to the subtype VGIIb, little is known about the virulence of the other major molecular types. To elucidate the virulence potential of the major molecular types of C. gattii, Galleria mellonella larvae were inoculated with ten globally selected strains per molecular type. Survival rates were recorded and known virulence factors were studied. One VGII, one VGIII and one VGIV strain were more virulent (p <0.05) than the highly virulent Vancouver Island outbreak strain VGIIa (CDCR265), 11 (four VGI, two VGII, four VGIII and one VGIV) had similar virulence (p >0.05), 21 (five VGI, five VGII, four VGIII and seven VGIV) were less virulent (p <0.05) while one strain of each molecular type were avirulent. Cell and capsule size of all strains increased markedly during larvae infection (p <0.001). No differences in growth rate at 37°C were observed. Melanin synthesis was directly related with the level of virulence: more virulent strains produced more melanin than less virulent strains (p <0.05). The results indicate that all C. gattii major molecular types exhibit a range of virulence, with some strains having the potential to be more virulent. The study highlights the necessity to further investigate the genetic background of more and less virulent strains in order to recognize critical features, other than the known virulence factors (capsule, melanin and growth at mammalian body temperature), that maybe crucial for the development and progression of cryptococcosis.
Collapse
Affiliation(s)
- Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Shuyao Duan
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
- * E-mail:
| |
Collapse
|
20
|
Tseng HK, Liu CP, Ho MW, Lu PL, Lo HJ, Lin YH, Cho WL, Chen YC. Microbiological, epidemiological, and clinical characteristics and outcomes of patients with cryptococcosis in Taiwan, 1997-2010. PLoS One 2013; 8:e61921. [PMID: 23613973 PMCID: PMC3629109 DOI: 10.1371/journal.pone.0061921] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/15/2013] [Indexed: 01/24/2023] Open
Abstract
Background Among members of Cryptococcus neoformans- Cryptococcus gattii species complex, C. neoformans is distributed worldwide whereas C. gattii is considered to be more prevalent in the subtropics and tropics including Taiwan. This nationwide study was undertaken to determine the distribution of genotypes, clinical characteristics and outcomes of 219 patients with proven cryptococcosis at 20 hospitals representative of all geographic areas in Taiwan during 1997–2010. Methods and Findings Of 219 isolates analyzed, C. neoformans accounted for 210 isolates (95.9%); nine isolates were C. gattii (4.1%). The predominant genotype was VNI (206 isolates). The other genotypes included VNII (4 isolates), VGI (3 isolates) and VGII (6 isolates). Antifungal minimal inhibition concentrations higher than epidemiologic cutoff values (ECVs) were found in nine VNI isolates (7 for amphotericin B). HIV infection was the most common underlying condition (54/219, 24.6%). Among HIV-negative patients, liver diseases (HBV carrier or cirrhosis) were common (30.2%) and 15.4% did not have any underlying condition. Meningoencephalitis was the most common presentation (58.9%), followed by pulmonary infection (19.6%) and “others” (predominantly cryptococcemia) (18.7%). The independent risk factors for 10-week mortality, by multivariate analysis, were cirrhosis of liver (P = 0.014) and CSF cryptococcal antigen titer ≥512 (P = 0.020). All except one of 54 HIV-infected patients were infected by VNI genotype (98.1%). Of the 13 isolates of genotypes other than VNI, 12 (92.3%) were isolated from HIV-negative patients. HIV-infected patients compared to HIV-negative patients were more likely to have meningoencephalitis and serum cryptococcal antigen ≥1∶512. Patients infected with C. gattii compared to C. neoformans were younger, more likely to have meningoencephalitis (100% vs. 57%), reside in Central Taiwan (56% vs. 31%), and higher 10-week crude mortality (44.4% vs. 22.2%). Conclusions Cryptococcus neoformans in Taiwan, more prevalent than C. gatii, has a predominant VNI genotype. Isolates with antifungal MIC higher than ECVs were rare.
Collapse
Affiliation(s)
- Hsiang-Kuang Tseng
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Mackay Memorial Hospital, Zhongshan District, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Mackay Medicine Nursing and Management College, Taipei, Taiwan
| | - Chang-Pan Liu
- Division of Infectious Diseases, Department of Internal Medicine, Mackay Memorial Hospital, Zhongshan District, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Mackay Medicine Nursing and Management College, Taipei, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Yu-Hui Lin
- Division of Infectious Diseases, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Long Cho
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- * E-mail: (YCC); (WLC)
| | - Yee-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- * E-mail: (YCC); (WLC)
| | | |
Collapse
|
21
|
Chowdhary A, Prakash A, Randhawa HS, Kathuria S, Hagen F, Klaassen CH, Meis JF. First environmental isolation ofCryptococcus gattii, genotype AFLP5, from India and a global review. Mycoses 2013; 56:222-8. [DOI: 10.1111/myc.12039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Cogliati M. Global Molecular Epidemiology of Cryptococcus neoformans and Cryptococcus gattii: An Atlas of the Molecular Types. SCIENTIFICA 2013; 2013:675213. [PMID: 24278784 PMCID: PMC3820360 DOI: 10.1155/2013/675213] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 05/08/2023]
Abstract
Cryptococcosis is a fungal disease affecting more than one million people per year worldwide. The main etiological agents of cryptococcosis are the two sibling species Cryptococcus neoformans and Cryptococcus gattii that present numerous differences in geographical distribution, ecological niches, epidemiology, pathobiology, clinical presentation and molecular characters. Genotyping of the two Cryptococcus species at subspecies level supplies relevant information to understand how this fungus has spread worldwide, the nature of its population structure, and how it evolved to be a deadly pathogen. At present, nine major molecular types have been recognized: VNI, VNII, VNB, VNIII, and VNIV among C. neoformans isolates, and VGI, VGII, VGIII, and VGIV among C. gattii isolates. In this paper all the information available in the literature concerning the isolation of the two Cryptococcus species has been collected and analyzed on the basis of their geographical origin, source of isolation, level of identification, species, and molecular type. A detailed analysis of the geographical distribution of the major molecular types in each continent has been described and represented on thematic maps. This study represents a useful tool to start new epidemiological surveys on the basis of the present knowledge.
Collapse
Affiliation(s)
- Massimo Cogliati
- Lab. Micologia Medica, Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
- *Massimo Cogliati:
| |
Collapse
|
23
|
Springer DJ, Phadke S, Billmyre B, Heitman J. Cryptococcus gattii, no longer an accidental pathogen? CURRENT FUNGAL INFECTION REPORTS 2012; 6:245-256. [PMID: 23243480 DOI: 10.1007/s12281-012-0111-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cryptococcus gattii is an environmentally occurring pathogen that is responsible for causing cryptococcosis marked by pneumonia and meningoencephalitis in humans and animals. C. gattii can form long-term associations with trees and soil resulting in the production of infectious propagules (spores and desiccated yeast). The ever expanding reports of clinical and environmental isolation of C. gattii in temperate climates strongly imply C. gattii occurs world-wide. The key ability of yeast and spores to enter, survive, multiply, and exit host cells and to infect immunocompetent hosts distinguishes C. gattii as a primary pathogen and suggest evolution of C. gattii pathogenesis as a result of interaction with plants and other organisms in its environmental niche. Here we summarize the historical literature on C. gattii and recent literature supporting the world-wide occurrence of the primary pathogen C. gattii.
Collapse
Affiliation(s)
- Deborah J Springer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | | | | |
Collapse
|
24
|
Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother 2012; 56:5898-906. [PMID: 22948877 DOI: 10.1128/aac.01115-12] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidemiological cutoff values (ECVs) for the Cryptococcus neoformans-Cryptococcus gattii species complex versus fluconazole, itraconazole, posaconazole, and voriconazole are not available. We established ECVs for these species and agents based on wild-type (WT) MIC distributions. A total of 2,985 to 5,733 CLSI MICs for C. neoformans (including isolates of molecular type VNI [MICs for 759 to 1,137 isolates] and VNII, VNIII, and VNIV [MICs for 24 to 57 isolates]) and 705 to 975 MICs for C. gattii (including 42 to 260 for VGI, VGII, VGIII, and VGIV isolates) were gathered in 15 to 24 laboratories (Europe, United States, Argentina, Australia, Brazil, Canada, Cuba, India, Mexico, and South Africa) and were aggregated for analysis. Additionally, 220 to 359 MICs measured using CLSI yeast nitrogen base (YNB) medium instead of CLSI RPMI medium for C. neoformans were evaluated. CLSI RPMI medium ECVs for distributions originating from at least three laboratories, which included ≥95% of the modeled WT population, were as follows: fluconazole, 8 μg/ml (VNI, C. gattii nontyped, VGI, VGIIa, and VGIII), 16 μg/ml (C. neoformans nontyped, VNIII, and VGIV), and 32 μg/ml (VGII); itraconazole, 0.25 μg/ml (VNI), 0.5 μg/ml (C. neoformans and C. gattii nontyped and VGI to VGIII), and 1 μg/ml (VGIV); posaconazole, 0.25 μg/ml (C. neoformans nontyped and VNI) and 0.5 μg/ml (C. gattii nontyped and VGI); and voriconazole, 0.12 μg/ml (VNIV), 0.25 μg/ml (C. neoformans and C. gattii nontyped, VNI, VNIII, VGII, and VGIIa,), and 0.5 μg/ml (VGI). The number of laboratories contributing data for other molecular types was too low to ascertain that the differences were due to factors other than assay variation. In the absence of clinical breakpoints, our ECVs may aid in the detection of isolates with acquired resistance mechanisms and should be listed in the revised CLSI M27-A3 and CLSI M27-S3 documents.
Collapse
|
25
|
Mihara T, Izumikawa K, Kakeya H, Ngamskulrungroj P, Umeyama T, Takazono T, Tashiro M, Nakamura S, Imamura Y, Miyazaki T, Ohno H, Yamamoto Y, Yanagihara K, Miyzaki Y, Kohno S. Multilocus sequence typing of Cryptococcus neoformans in non-HIV associated cryptococcosis in Nagasaki, Japan. Med Mycol 2012; 51:252-60. [PMID: 22901045 DOI: 10.3109/13693786.2012.708883] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cryptococcosis is primarily caused by two Cryptococcus species, i.e., Cryptococcus neoformans and C. gattii. Both include several genetically diverse subgroups that can be differentiated using various molecular strain typing methods. Since little is known about the molecular epidemiology of the C. neoformans/C. gattii species complex in Japan, we conducted a molecular epidemiological analysis of 35 C. neoformans isolates from non-HIV patients in Nagasaki, Japan and 10 environmental isolates from Thailand. All were analyzed using URA5-restriction fragment length polymorphism (RFLP) and multilocus sequence typing (MLST). Combined sequence data for all isolates were evaluated with the neighbor-joining method. All were found to be serotype A and mating type MATα. Thirty-two of the 35 clinical isolates molecular type VNI, while the three remaining isolates were VNII as determined through the URA5-RFLP method. Thirty-one of the VNI isolates were identified as MLST sequence type (ST) 5, the remaining one was ST 32 and the three VNII isolates were found to be ST 43. All the environmental isolates were identified as molecular type VNI (four MLST ST 5 and six ST 4). Our study shows that C. neoformans isolates in Nagasaki are genetically homogeneous, with most of the isolates being ST 5.
Collapse
Affiliation(s)
- Tomo Mihara
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Kerri A Johannson
- Department of Internal Medicine, Division of Respirology, University of Calgary, Calgary, Alta
| | | | | | | |
Collapse
|
27
|
Sifuentes-Osornio J, Corzo-León DE, Ponce-de-León LA. Epidemiology of Invasive Fungal Infections in Latin America. CURRENT FUNGAL INFECTION REPORTS 2012; 6:23-34. [PMID: 22363832 PMCID: PMC3277824 DOI: 10.1007/s12281-011-0081-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The pathogenic role of invasive fungal infections (IFIs) has increased during the past two decades in Latin America and worldwide, and the number of patients at risk has risen dramatically. Working habits and leisure activities have also been a focus of attention by public health officials, as endemic mycoses have provoked a number of outbreaks. An extensive search of medical literature from Latin America suggests that the incidence of IFIs from both endemic and opportunistic fungi has increased. The increase in endemic mycoses is probably related to population changes (migration, tourism, and increased population growth), whereas the increase in opportunistic mycoses may be associated with the greater number of people at risk. In both cases, the early and appropriate use of diagnostic procedures has improved diagnosis and outcome.
Collapse
Affiliation(s)
- Jose Sifuentes-Osornio
- Laboratory of Microbiology, Salvador Zubiran National Institute of Medical Science and Nutrition, 15 Vasco de Quiroga, sección XVI, Tlalpan, México City, ZC 14000 Mexico
| | - Dora E. Corzo-León
- Infectious Diseases, Salvador Zubiran National Institute of Medical Science and Nutrition, México City, Mexico
| | - L. Alfredo Ponce-de-León
- Laboratory of Microbiology, Salvador Zubiran National Institute of Medical Science and Nutrition, 15 Vasco de Quiroga, sección XVI, Tlalpan, México City, ZC 14000 Mexico
| |
Collapse
|
28
|
Walraven CJ, Gerstein W, Hardison SE, Wormley F, Lockhart SR, Harris JR, Fothergill A, Wickes B, Gober-Wilcox J, Massie L, Ku TSN, Firacative C, Meyer W, Lee SA. Fatal disseminated Cryptococcus gattii infection in New Mexico. PLoS One 2011; 6:e28625. [PMID: 22194869 PMCID: PMC3237461 DOI: 10.1371/journal.pone.0028625] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/11/2011] [Indexed: 01/15/2023] Open
Abstract
We report a case of fatal disseminated infection with Cryptococcus gattii in a patient from New Mexico. The patient had no history of recent travel to known C. gattii-endemic areas. Multilocus sequence typing revealed that the isolate belonged to the major molecular type VGIII. Virulence studies in a mouse pulmonary model of infection demonstrated that the strain was less virulent than other C. gattii strains. This represents the first documented case of C. gattii likely acquired in New Mexico.
Collapse
Affiliation(s)
- Carla J. Walraven
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, New Mexico, United States of America
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Wendy Gerstein
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, New Mexico, United States of America
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Sarah E. Hardison
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Floyd Wormley
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Shawn R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Julie R. Harris
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Annette Fothergill
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Brian Wickes
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Julie Gober-Wilcox
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, New Mexico, United States of America
| | - Larry Massie
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, New Mexico, United States of America
| | - T. S. Neil Ku
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, New Mexico, United States of America
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Sydney Medical School - Westmead Hospital, The University of Sydney, New South Wales, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Sydney Medical School - Westmead Hospital, The University of Sydney, New South Wales, Australia
| | - Samuel A. Lee
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, New Mexico, United States of America
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
29
|
Byrnes EJ, Li W, Ren P, Lewit Y, Voelz K, Fraser JA, Dietrich FS, May RC, Chatuverdi S, Chatuverdi V, Heitman J. A diverse population of Cryptococcus gattii molecular type VGIII in southern Californian HIV/AIDS patients. PLoS Pathog 2011; 7:e1002205. [PMID: 21909264 PMCID: PMC3164645 DOI: 10.1371/journal.ppat.1002205] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 06/25/2011] [Indexed: 11/18/2022] Open
Abstract
Cryptococcus gattii infections in southern California have been reported in patients with HIV/AIDS. In this study, we examined the molecular epidemiology, population structure, and virulence attributes of isolates collected from HIV/AIDS patients in Los Angeles County, California. We show that these isolates consist almost exclusively of VGIII molecular type, in contrast to the VGII molecular type isolates causing the North American Pacific Northwest outbreak. The global VGIII population structure can be divided into two molecular groups, VGIIIa and VGIIIb. Isolates from the Californian patients are virulent in murine and macrophage models of infection, with VGIIIa significantly more virulent than VGIIIb. Several VGIII isolates are highly fertile and produce abundant sexual spores that may serve as infectious propagules. The a and α VGIII MAT locus alleles are largely syntenic with limited rearrangements compared to the known VGI (a/α) and VGII (α) MAT loci, but each has unique characteristics including a distinct deletion flanking the 5' VGIII MATa alleles and the α allele is more heterogeneous than the a allele. Our studies indicate that C. gattii VGIII is endemic in southern California, with other isolates originating from the neighboring regions of Mexico, and in rarer cases from Oregon and Washington state. Given that >1,000,000 cases of cryptococcal infection and >620,000 attributable mortalities occur annually in the context of the global AIDS pandemic, our findings suggest a significant burden of C. gattii may be unrecognized, with potential prognostic and therapeutic implications. These results signify the need to classify pathogenic Cryptococcus cases and highlight possible host differences among the C. gattii molecular types influencing infection of immunocompetent (VGI/VGII) vs. immunocompromised (VGIII/VGIV) hosts.
Collapse
Affiliation(s)
- Edmond J. Byrnes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wenjun Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ping Ren
- Mycology Laboratory, Wadsworth Center, Albany, New York, United States of America
| | - Yonathan Lewit
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kerstin Voelz
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James A. Fraser
- Centre for Infectious Disease Research, Department of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robin C. May
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Sudha Chatuverdi
- Mycology Laboratory, Wadsworth Center, Albany, New York, United States of America
| | - Vishnu Chatuverdi
- Mycology Laboratory, Wadsworth Center, Albany, New York, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
The Outbreak of Cryptococcus gattii in Western North America: Epidemiology and Clinical Issues. Curr Infect Dis Rep 2011; 13:256-61. [PMID: 21461678 DOI: 10.1007/s11908-011-0181-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Over the previous decade, we observed the emergence of the fungal pathogen, Cryptococcus gattii, as a cause of disease in humans and animals in a temperate climate. This outbreak, first documented on Vancouver Island, has since expanded throughout Western North America, with non-travel-associated cases now in British Columbia, Washington, Oregon, and California. Additionally, a secondary outbreak, originating in and still restricted to Oregon, has also occurred. During the past several years, several studies detailing molecular typing, virulence, antifungal susceptibilities, epidemiology, and clinical issues have been published. These studies begin to address the complex dynamics of this novel emergence of a rare and fatal fungus, outline clinical characteristics of human cases, and also opened several new areas that should be explored in the upcoming years.
Collapse
|
31
|
San-Blas G, Burger E. Experimental medical mycological research in Latin America - a 2000-2009 overview. Rev Iberoam Micol 2010; 28:1-25. [PMID: 21167301 DOI: 10.1016/j.riam.2010.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 11/26/2022] Open
Abstract
An overview of current trends in Latin American Experimental Medical Mycological research since the beginning of the 21(st) century is done (search from January 2000 to December 2009). Using the PubMed and LILACS databases, the authors have chosen publications on medically important fungi which, according to our opinion, are the most relevant because of their novelty, interest, and international impact, based on research made entirely in the Latin American region or as part of collaborative efforts with laboratories elsewhere. In this way, the following areas are discussed: 1) molecular identification of fungal pathogens; 2) molecular and clinical epidemiology on fungal pathogens of prevalence in the region; 3) cell biology; 4) transcriptome, genome, molecular taxonomy and phylogeny; 5) immunology; 6) vaccines; 7) new and experimental antifungals.
Collapse
Affiliation(s)
- Gioconda San-Blas
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| | | |
Collapse
|
32
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
33
|
Byrnes EJ, Li W, Lewit Y, Ma H, Voelz K, Ren P, Carter DA, Chaturvedi V, Bildfell RJ, May RC, Heitman J. Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog 2010; 6:e1000850. [PMID: 20421942 PMCID: PMC2858702 DOI: 10.1371/journal.ppat.1000850] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/08/2010] [Indexed: 02/06/2023] Open
Abstract
Cryptococcus gattii causes life-threatening disease in otherwise healthy hosts and to a lesser extent in immunocompromised hosts. The highest incidence for this disease is on Vancouver Island, Canada, where an outbreak is expanding into neighboring regions including mainland British Columbia and the United States. This outbreak is caused predominantly by C. gattii molecular type VGII, specifically VGIIa/major. In addition, a novel genotype, VGIIc, has emerged in Oregon and is now a major source of illness in the region. Through molecular epidemiology and population analysis of MLST and VNTR markers, we show that the VGIIc group is clonal and hypothesize it arose recently. The VGIIa/IIc outbreak lineages are sexually fertile and studies support ongoing recombination in the global VGII population. This illustrates two hallmarks of emerging outbreaks: high clonality and the emergence of novel genotypes via recombination. In macrophage and murine infections, the novel VGIIc genotype and VGIIa/major isolates from the United States are highly virulent compared to similar non-outbreak VGIIa/major-related isolates. Combined MLST-VNTR analysis distinguishes clonal expansion of the VGIIa/major outbreak genotype from related but distinguishable less-virulent genotypes isolated from other geographic regions. Our evidence documents emerging hypervirulent genotypes in the United States that may expand further and provides insight into the possible molecular and geographic origins of the outbreak. Emerging and reemerging infectious diseases are increasing worldwide and represent a major public health concern. One class of emerging human and animal diseases is caused by fungi. In this study, we examine the expansion on an outbreak of a fungus, Cryptococcus gattii, in the Pacific Northwest of the United States. This fungus has been considered a tropical fungus, but emerged to cause an outbreak in the temperate climes of Vancouver Island in 1999 that is now causing disease in humans and animals in the United States. In this study we applied a method of sequence bar-coding to determine how the isolates causing disease are related to those on Vancouver Island and elsewhere globally. We also expand on the discovery of a new pathogenic strain recently identified only in Oregon and show that it is highly virulent in immune cell and whole animal virulence experiments. These studies extend our understanding of how diseases emerge in new climates and how they adapt to these regions to cause disease. Our findings suggest further expansion into neighboring regions is likely to occur and aim to increase disease awareness in the region.
Collapse
Affiliation(s)
- Edmond J. Byrnes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wenjun Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yonathan Lewit
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hansong Ma
- Department of Molecular Pathobiology, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Kerstin Voelz
- Department of Molecular Pathobiology, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Ping Ren
- Mycology Laboratory, Wadsworth Center, Albany, New York, United States of America
| | - Dee A. Carter
- Department of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, Albany, New York, United States of America
| | - Robert J. Bildfell
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Robin C. May
- Department of Molecular Pathobiology, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
34
|
Identification of Cryptococcus gattii by use of L-canavanine glycine bromothymol blue medium and DNA sequencing. J Clin Microbiol 2009; 47:3669-72. [PMID: 19794048 DOI: 10.1128/jcm.01072-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are closely related pathogenic fungi. Cryptococcus neoformans is ecologically widespread and affects primarily immunocompromised patients, while C. gattii is traditionally found in tropical climates and has been reported to cause disease in immunocompetent patients. l-Canavanine glycine bromothymol blue (CGB) agar can be used to differentiate C. neoformans and C. gattii, but there are few reports of its performance in routine clinical practice. Growth of C. gattii on CGB agar produces a blue color, indicating the assimilation of glycine, while C. neoformans fails to cause a color change. Using reference and clinical strains, we evaluated the ability of CGB agar and D2 large ribosomal subunit DNA sequencing (D2 LSU) to differentiate C. neoformans and C. gattii. One hundred two yeast isolates were screened for urease activity, melanin production, and glycine assimilation on CGB agar as well as by D2 sequencing. Seventeen of 17 (100%) C. gattii isolates were CGB positive, and 54 of 54 C. neoformans isolates were CGB negative. Several yeast isolates other than the C. gattii isolates were CGB agar positive, indicating that CGB agar cannot be used alone for identification of C. gattii. D2 correctly identified and differentiated all C. gattii and C. neoformans isolates. This study demonstrates that the use of CGB agar, in conjunction with urea hydrolysis and Niger seed agar, or D2 LSU sequencing can be reliably used in the clinical laboratory to distinguish C. gattii from C. neoformans. We describe how CGB agar and D2 sequencing have been incorporated into the yeast identification algorithm in our laboratory.
Collapse
|