1
|
Rani M, Nath A, Kumer A. In-silico investigations on the anticancer activity of selected 2-aryloxazoline derivatives against breast cancer. J Biomol Struct Dyn 2023; 41:8392-8401. [PMID: 36245134 DOI: 10.1080/07391102.2022.2134208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
As the in-silico study has become an important tool to search for new drugs in the concurrent era with towering acceptance and accuracy, it has been employed in our research to unearth effective cancer drugs. Breast cancer has accounted for the most serious diseases for both men and women. Although few research outputs have been obtained on breast cancer, these are not an adequate amount to ascertain new drugs. Due to this gap, virtual screening, in-silico study, and computational techniques have been used to provide the ability to design and select anticancer compounds with desirable drug-like properties of breast cancer protein, which is commonly known as fatty acid synthase. A total of nine derivatives of 2-aryloxazoline compounds were chosen, and In-silico was studied to evaluate as a potential anticancer agent with the comparison of seven Food and Drug Administration(FDA) approved breast cancer drugs. These compounds were subjected to computational studies for quantum calculations, ADME and Lipinski analysis, as well as molecular docking and MD simulations against a variety of therapeutic targets involved in cell proliferation of fatty acid synthase (PDB ID:3TJM, 3ERT, 4OAR, 2J6M). An in-silico docking study reveals that ligands Hit-4, Hit-6, and Hit-8 had the highest docking scores at -10.3 kcal/mol, -10.3 kcal/mol, and -10.2 kcal/mol towards the protein of fatty acid synthase. The ligands had docking scores better than the standard anti-breast cancer drug gefitinib (-5.3 kcal/mole). Our findings demonstrate how crucial it is for pharmaceutical researchers to develop novel drugs for the treatment of breast cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Moly Rani
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Ashutosh Nath
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
- Department of Chemistry, University of Massachusetts Boston, MA, USA
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, European University of Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
2
|
Sourouni M, Götte M, Kiesel L, von Wahlde MK. Effect of 3α-dihydroprogesterone and 5α-dihydroprogesterone on DCIS cells and possible impact for postmenopausal women. Climacteric 2023; 26:275-283. [PMID: 36880551 DOI: 10.1080/13697137.2023.2182678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
OBJECTIVE Progesterone metabolites 5α-dihydroprogesterone (5αP) and 3α-dihydroprogesterone (3αP) have opposite effects on proliferation, apoptosis and metastasis in the breast. Evidence regarding their influence on ductal carcinoma in situ (DCIS) lesions is lacking. METHODS MCF10DCIS.com cells were cultured in a 3D culture system and treated with 5αP or 3αP. After 5 and 12 days of treatment, polymerase chain reaction (PCR) of proliferation, invasion/metastasis, anti-apoptotic or other markers was performed. Cells treated with the tumor-promoting 5αP were observed under the light and confocal microscopes to reveal possible morphological changes that could indicate a transition from an in situ to an invasive phenotype. As a control, the morphology of the MDA-MB-231 invasive cell line was examined. The invasive potential after exposure to 5αP was also assessed using a detachment assay. RESULTS The PCR analysis of the chosen markers showed no statistically significant difference between naive cells and cells treated with 5αP or 3αP. DCIS spheroids retained their in situ morphology after treatment with 5αP. The detachment assay showed no increased potential for invasion after exposure to 5αP. Progesterone metabolites 5αP and 3αP do not facilitate or prohibit tumor promotion/invasion in MCF10DCIS.com cells, respectively. CONCLUSION As oral micronized progesterone has been proved effective for hot flushes in postmenopausal women, first in vitro data propose that progesterone-only therapy could possibly be considered for women after DCIS suffering from hot flushes.
Collapse
Affiliation(s)
- M Sourouni
- Department of Obstetrics and Gynecology, University Hospital Muenster, Muenster, Germany.,Department of Gynecological Endocrinology and Fertility Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - M Götte
- Department of Obstetrics and Gynecology, University Hospital Muenster, Muenster, Germany
| | - L Kiesel
- Department of Obstetrics and Gynecology, University Hospital Muenster, Muenster, Germany
| | - M-K von Wahlde
- Department of Obstetrics and Gynecology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
3
|
Yadav N, Sunder R, Desai S, Dharavath B, Chandrani P, Godbole M, Dutt A. Progesterone modulates the DSCAM-AS1/miR-130a/ESR1 axis to suppress cell invasion and migration in breast cancer. Breast Cancer Res 2022; 24:97. [PMID: 36578092 PMCID: PMC9798554 DOI: 10.1186/s13058-022-01597-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND A preoperative-progesterone intervention increases disease-free survival in patients with breast cancer, with an unknown underlying mechanism. We elucidated the role of non-coding RNAs in response to progesterone in human breast cancer. METHODS Whole transcriptome sequencing dataset of 30 breast primary tumors (10 tumors exposed to hydroxyprogesterone and 20 tumors as control) were re-analyzed to identify differentially expressed non-coding RNAs followed by real-time PCR analyses to validate the expression of candidates. Functional analyses were performed by genetic knockdown, biochemical, and cell-based assays. RESULTS We identified a significant downregulation in the expression of a long non-coding RNA, Down syndrome cell adhesion molecule antisense DSCAM-AS1, in response to progesterone treatment in breast cancer. The progesterone-induced expression of DSCAM-AS1 could be effectively blocked by the knockdown of progesterone receptor (PR) or treatment of cells with mifepristone (PR-antagonist). We further show that knockdown of DSCAM-AS1 mimics the effect of progesterone in impeding cell migration and invasion in PR-positive breast cancer cells, while its overexpression shows an opposite effect. Additionally, DSCAM-AS1 sponges the activity of miR-130a that regulates the expression of ESR1 by binding to its 3'-UTR to mediate the effect of progesterone in breast cancer cells. Consistent with our findings, TCGA analysis suggests that high levels of miR-130a correlate with a tendency toward better overall survival in patients with breast cancer. CONCLUSION This study presents a mechanism involving the DSCAM-AS1/miR-130a/ESR1 genomic axis through which progesterone impedes breast cancer cell invasion and migration. The findings highlight the utility of progesterone treatment in impeding metastasis and improving survival outcomes in patients with breast cancer.
Collapse
Affiliation(s)
- Neelima Yadav
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Roma Sunder
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sanket Desai
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Bhasker Dharavath
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Pratik Chandrani
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
- Medical Oncology Molecular Lab & Centre for Computational Biology, Bioinformatics and Crosstalk Lab, Tata Memorial Centre, Mumbai, Maharashtra, 410210, India
| | - Mukul Godbole
- School of Biosciences and Technology, Faculty of Sciences and Health Sciences, MIT World Peace University, Pune, Maharashtra, 411038, India
| | - Amit Dutt
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
4
|
Halim F, Azhar Y, Suwarman S, Hernowo B. p53 Mutation as Plausible Predictor for Endocrine Resistance Therapy in Luminal Breast Cancer. F1000Res 2022; 11:330. [PMID: 36519010 PMCID: PMC9718986 DOI: 10.12688/f1000research.108628.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Endocrine therapy resistance in Luminal Breast Cancer is a significant issue to be tackled, but currently, no specific biomarker could be used to anticipate this event. p53 mutation is widely known as one of Breast Cancer's most prominent genetic alterations. Its mutation could generate various effects in Estrogen Receptor and Progesterone Receptor molecular works, tangled in events leading to the aggravation of endocrine therapy resistance. Hence the possibility of p53 mutation utilization as an endocrine therapy resistance predictive biomarker is plausible. The purpose of this review is to explore the latest knowledge of p53 role in Estrogen Receptor and Progesterone Receptor molecular actions, thus aggravating the Endocrine Therapy resistance in Luminal Breast Cancer, from which we could define possibilities and limitations to utilize p53 as the predictive biomarker of endocrine therapy resistance in Luminal Breast Cancer.
Collapse
Affiliation(s)
- Freda Halim
- Department of Surgery, Pelita Harapan University, Tangerang, Indonesia,
| | - Yohana Azhar
- Department of Surgery - Oncology, Head and Neck Division, Hasan Sadikin General Hospital, Universitas Padjajaran, Bandung, Indonesia
| | - Suwarman Suwarman
- Department of Anesthesiology and Intensive Care, Hasan Sadikin General Hospital, Universitas Padjajaran, Bandung, Indonesia
| | - Bethy Hernowo
- Department of Anatomical Pathology, Universitas Padjajaran, Bandung, West Java, Indonesia
| |
Collapse
|
5
|
Sarink D, White KK, Loo LW, Wu AH, Wilkens LR, Marchand LL, Park SY, Setiawan VW, Merritt MA. Racial/ethnic differences in postmenopausal breast cancer risk by hormone receptor status: The multiethnic cohort study. Int J Cancer 2022; 150:221-231. [PMID: 34486728 PMCID: PMC8627491 DOI: 10.1002/ijc.33795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/17/2023]
Abstract
There are racial/ethnic differences in the incidence of hormone receptor positive and negative breast cancer. To understand why these differences exist, we investigated associations between hormone-related factors and breast cancer risk by race/ethnicity in the Multiethnic Cohort (MEC) Study. Among 81 511 MEC participants (Native Hawaiian, Japanese American, Latina, African American and White women), 3806 estrogen receptor positive (ER+) and 828 ER- incident invasive breast cancers were diagnosed during a median of 21 years of follow-up. We used Cox proportional hazards regression models to calculate associations between race/ethnicity and breast cancer risk, and associations between hormone-related factors and breast cancer risk by race/ethnicity. Relative to White women, ER+ breast cancer risk was higher in Native Hawaiians and lower in Latinas and African Americans; ER- disease risk was higher in African Americans. We observed interaction with race/ethnicity in associations between oral contraceptive use (OC; Pint .03) and body mass index (BMI; Pint .05) with ER+ disease risk; ever versus never OC use increased risk only in Latinas and positive associations for obese versus lean BMI were strongest in Japanese Americans. For ER- disease risk, associations for OC use, particularly duration of use, were strongest for African Americans (Pint .04). Our study shows that associations of OC use and obesity with ER+ and ER- breast cancer risk differ by race/ethnicity, but established risk factors do not fully explain racial/ethnic differences in risk. Further studies are needed to identify factors to explain observed racial/ethnic differences in breast cancer incidence.
Collapse
Affiliation(s)
- Danja Sarink
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Kami K. White
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Lenora W.M. Loo
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Anna H. Wu
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Lynne R. Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Loïc Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Song-Yi Park
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - V. Wendy Setiawan
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Melissa A. Merritt
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
6
|
In silico molecular docking and dynamic simulation of eugenol compounds against breast cancer. J Mol Model 2021; 28:17. [PMID: 34962586 DOI: 10.1007/s00894-021-05010-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Breast cancer is one of the most severe problems, and it is the primary cause of cancer-related death in females worldwide. The adverse effects and therapeutic resistance development are among the most potent clinical issues for potent medications for breast cancer treatment. The eugenol molecules have a significant affinity for breast cancer receptors. The aim of the study has been on the eugenol compounds, which has potent actions on Erα, PR, EGFR, CDK2, mTOR, ERBB2, c-Src, HSP90, and chemokines receptors inhibition. Initially, the drug-likeness property was examined to evaluate the anti-breast cancer activity by applying Lipinski's rule of five on 120 eugenol molecules. Further, structure-based virtual screening was performed via molecular docking, as protein-like interactions play a vital role in drug development. The 3D structure of the receptors has been acquired from the protein data bank and is docked with 87 3D PubChem and ZINC structures of eugenol compounds, and five FDA-approved anti-cancer drugs using AutoDock Vina. Then, the compounds were subjected to three replica molecular dynamic simulations run of 100 ns per system. The results were evaluated using root mean square deviation (RMSD), root mean square fluctuation (RMSF), and protein-ligand interactions to indicate protein-ligand complex stability. The results confirm that Eugenol cinnamaldehyde has the best docking score for breast cancer, followed by Aspirin eugenol ester and 4-Allyl-2-methoxyphenyl cinnamate. From the results obtained from in silico studies, we propose that the selected eugenols can be further investigated and evaluated for further lead optimization and drug development.
Collapse
|
7
|
Genazzani AR, Monteleone P, Giannini A, Simoncini T. Pharmacotherapeutic options for the treatment of menopausal symptoms. Expert Opin Pharmacother 2021; 22:1773-1791. [PMID: 33980106 DOI: 10.1080/14656566.2021.1921148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Menopausal symptoms can be very overwhelming for women. Over the years, many pharmacotherapeutic options have been tested, and others are still being developed. Hormone therapy (HT) is the most efficient therapy for managing vasomotor symptoms and related disturbances. The term HT comprises estrogens and progestogens, androgens, tibolone, the tissue-selective estrogen complex (TSEC), a combination of bazedoxifene and conjugated estrogens, and the selective estrogen receptor modulators, such as ospemifene. Estrogens and progestogens and androgens may differ significantly for chemical structure and can be delivered through different routes, thereby displaying various pharmacological and clinical properties. Tibolone, TSEC and SERM also exhibit unique pharmacodynamics that can be exploited to obtain distinctive therapeutic effects. Non-hormonal options fall mainly into the selective serotonin reuptake inhibitor (SSRI) and selective noradrenergic reuptake inhibitor (SNRI), GABA-analogue drug classes.Areas covered: Herein, the authors describe the pharmacokinetics and pharmacodynamics of hormonal (androgens, estrogens, progestogens, tibolone, TSEC, SERMs) and non-hormonal (SSRIs, SNRIs, Gabapentin, Pregabalin, Oxybutynin, Neurokinin antagonists) treatments for menopausal symptoms and report essential clinical trial data in humans.Expert opinion: Patient tailoring of treatment is key to managing symptoms of menopause. Physicians must have in-depth knowledge of the pharmacology of compounds to tailor therapy to the individual patient's characteristics and needs.
Collapse
Affiliation(s)
- Andrea R Genazzani
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Patrizia Monteleone
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Giannini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Tommaso Simoncini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Simu S, Marcovici I, Dobrescu A, Malita D, Dehelean CA, Coricovac D, Olaru F, Draghici GA, Navolan D. Insights into the Behavior of Triple-Negative MDA-MB-231 Breast Carcinoma Cells Following the Treatment with 17β-Ethinylestradiol and Levonorgestrel. Molecules 2021; 26:2776. [PMID: 34066763 PMCID: PMC8125870 DOI: 10.3390/molecules26092776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/30/2022] Open
Abstract
Oral contraceptives (OCs) are widely used due to their efficiency in preventing unplanned pregnancies and treating several human illnesses. Despite their medical value, the toxicity of OCs remains a public concern. Previous studies indicate the carcinogenic potential of synthetic sex hormones and their link to the development and progression of hormone-dependent malignancies such as breast cancer. However, little is known about their influence on the evolution of triple-negative breast carcinoma (TNBC), a malignancy defined by the absence of estrogen, progesterone, and HER2 receptors. This study reveals that the active ingredients of modern OCs, 17β-Ethinylestradiol, Levonorgestrel, and their combination induce differential effects in MDA-MB-231 TNBC cells. The most relevant behavioral changes occurred after the 24 h treatment with 17β-Ethinylestradiol, summarized as follows: (i) decreased cell viability (64.32% at 10 µM); (ii) cell roundness and loss of confluence; (iii) apoptotic aspect of cell nuclei (fragmentation, membrane blebbing); and (iv) inhibited cell migration, suggesting a potential anticancer effect. Conversely, Levonorgestrel was generally associated with a proliferative activity. The association of the two OCs exerted similar effects as 17β-Ethinylestradiol but was less effective. Further studies are necessary to elucidate the hormones' cytotoxic mechanism of action on TNBC cells.
Collapse
Affiliation(s)
- Sebastian Simu
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Iasmina Marcovici
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Amadeus Dobrescu
- Faculty of Medicine, 2nd Department of Surgery, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Daniel Malita
- Faculty of Medicine, Department of Radiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Dorina Coricovac
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Flavius Olaru
- Faculty of Medicine, Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (F.O.); (D.N.)
| | - George Andrei Draghici
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Dan Navolan
- Faculty of Medicine, Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (F.O.); (D.N.)
| |
Collapse
|
9
|
Classical and Non-Classical Progesterone Signaling in Breast Cancers. Cancers (Basel) 2020; 12:cancers12092440. [PMID: 32867363 PMCID: PMC7563480 DOI: 10.3390/cancers12092440] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Much emphasis is placed on estrogen (E2) and estrogen receptor (ER) signaling as most research is focused on understanding E2 and ER’s ability to enhance proliferative signals in breast cancers. Progesterone (P4) is important for normal mammary gland development, function and menstrual control. However, P4 and its receptors (PRs) in breast cancer etiology continue to be understudied and its role in breast cancer remains controversial. The Women’s Health Initiative (WHI) clinical trial clearly demonstrated the importance of progestogens in breast cancer development. P4 has historically been associated with classical-signaling through nuclear receptors, however non-classical P4 signaling via membrane receptors has been described. Progestogens have the ability to bind to nuclear and membrane receptors and studies have demonstrated that both can promote breast cancer cell proliferation and breast tumor growth. In this review, we attempt to understand the classical and non-classical signaling role of P4 in breast cancers because both nuclear and membrane receptors could become viable therapeutic options for breast cancer patients.
Collapse
|
10
|
Li T, Zhang W, Lin SX. Steroid enzyme and receptor expression and regulations in breast tumor samples - A statistical evaluation of public data. J Steroid Biochem Mol Biol 2020; 196:105494. [PMID: 31610224 DOI: 10.1016/j.jsbmb.2019.105494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
In spite of the significant progress of estrogen-dependent breast cancer (BC) treatment, aromatase inhibitor resistance is a major problem limiting the clinical benefit of this frontier endocrine-therapy. The aim of this study was to determine the differential expression of steroid-converting enzymes between tumor and adjacent normal tissues, as well as their correlation in modulating intratumoral steroid-hormone levels in post-menopausal estrogen-dependent BC. RNA sequencing dataset (n = 1097) of The-Cancer-Genome-Atlas (Breast Invasive Carcinoma) retrieved through the data portal of Genomic Data Commons was used for differential expressions and expression correlation analyses by Mann-Whitney U and Spearman's rank test, respectively. The results showed significant up-regulation of 17β-HSD7 (2.50-fold, p < 0.0001) in BC, supporting its effect in sex-hormone control. Besides, suppression of 11β-HSD1 expression (-8.29-fold, p < 0.0001) and elevation of 11β-HSD2 expression (2.04-fold, p < 0.0001) provide a low glucocorticoid environment diminishing BC anti-proliferation. Furthermore, 3α-HSDs were down-regulated (-1.59-fold, p < 0.01; -8.18-fold, p < 0.0001; -33.96-fold, p < 0.0001; -31.85-fold, p < 0.0001 for type 1-4, respectively), while 5α-reductases were up-regulated (1.41-fold, p < 0.0001; 2.85-fold, p < 0.0001; 1.70-fold, p < 0.0001 for type 1-3, respectively) in BC, reducing cell proliferation suppressers 4-pregnenes, increasing cell proliferation stimulators 5α-pregnanes. Expression analysis indicates significant correlations between 11β-HSD1 with 3α-HSD4 (r = 0.605, p < 0.0001) and 3α-HSD3 (r = 0.537, p < 0.0001). Significant expression correlations between 3α-HSDs were also observed. Our results systematically present the regulation of steroid-converting enzymes and their roles in modulating the intratumoral steroid-hormone levels in BC with a vivid 3D-schema, supporting novel therapy targeting the reductive 17β-HSD7 and proposing a new combined therapy targeting 11β-HSD2 and 17β-HSD7.
Collapse
MESH Headings
- 17-Hydroxysteroid Dehydrogenases/genetics
- 17-Hydroxysteroid Dehydrogenases/metabolism
- Breast Neoplasms/epidemiology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cohort Studies
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Databases, Factual/statistics & numerical data
- Estradiol/pharmacology
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gonadal Steroid Hormones/genetics
- Gonadal Steroid Hormones/metabolism
- Humans
- Public Sector/statistics & numerical data
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- Tang Li
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada
| | - Wenfa Zhang
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada.
| |
Collapse
|
11
|
Acharya R, Chacko S, Bose P, Lapenna A, Pattanayak SP. Structure Based Multitargeted Molecular Docking Analysis of Selected Furanocoumarins against Breast Cancer. Sci Rep 2019; 9:15743. [PMID: 31673107 PMCID: PMC6823401 DOI: 10.1038/s41598-019-52162-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is one of the biggest global dilemmas and its current therapy is to target the hormone receptors by the use of partial agonists/antagonists. Potent drugs for breast cancer treatment are Tamoxifen, Trastuzumab, Paclitaxel, etc. which show adverse effects and resistance in patients. The aim of the study has been on certain phytochemicals which has potent actions on ERα, PR, EGFR and mTOR inhibition. The current study is performed by the use of molecular docking as protein-ligand interactions play a vital role in drug design. The 3D structures of ERα, PR, EGFR and mTOR were obtained from the protein data bank and docked with 23 3D PubChem structures of furanocoumarin compounds using FlexX. Drug-likeness property was checked by applying the Lipinski's rule of five on the furanocoumarins to evaluate anti-breast cancer activity. Antagonist and inhibition assay of ERα, EGFR and mTOR respectively has been performed using appropriate in-vitro techniques. The results confirm that Xanthotoxol has the best docking score for breast cancer followed by Bergapten, Angelicin, Psoralen and Isoimperatorin. Further, the in-vitro results also validate the molecular docking analysis. This study suggests that the selected furanocoumarins can be further investigated and evaluated for breast cancer treatment and management strategies.
Collapse
Affiliation(s)
- Reetuparna Acharya
- Division of Advanced Pharmacology, Department of Pharm. Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Shinu Chacko
- Division of Pharmaceutical Chemistry, Department of Pharm. Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
- Research Manager, Clinical Pharmacology and Pharmacokinetics, Sun Pharmaceutical Industries Limited, Gurgaon, 122015, India
| | - Pritha Bose
- Division of Advanced Pharmacology, Department of Pharm. Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Antonio Lapenna
- Department of Oncology and Metabolism, University of Sheffield Medical School, Beech Hill Road, Sheffield, S102RX, United Kingdom
| | - Shakti Prasad Pattanayak
- Division of Advanced Pharmacology, Department of Pharm. Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
12
|
Abstract
Major advances in menopause hormone therapy (MHT) hold promise in the future of better and safer care for women at and after the menopause. The principal advances are: (1) the critical window or 'window of opportunity' in the 10 years or so after the menopause, during which the benefits of MHT in healthy women exceed any risks; (2) use of transdermal instead of oral administration of estrogen to reduce the risk of venous thromboembolism; (c) investigation of the use of oral micronized progesterone (MP) and vaginal MP to prevent endometrial hyperplasia and carcinoma without any increased risk of breast cancer and venous thromboembolism in postmenopausal women receiving estrogens; vaginal MP prevents endometrial proliferation in the short term but the long-term effects in MHT remain to be established; (4) investigation into the use of intrauterine levonorgestrel-releasing devices (LNG-IUDs), which are an attractive form of MHT in perimenopausal women, providing contraception and reducing uterine bleeding, although the risk of breast cancer with LNG-IUDs requires clarification. Women in the future can look forward to a symptom-free menopause and to safer and more beneficial MHT.
Collapse
Affiliation(s)
- D A Davey
- a Faculty of Health Sciences , University of Cape Town , Western Cape , South Africa
| |
Collapse
|
13
|
Altinoz MA, Ozpinar A, Elmaci I. Reproductive epidemiology of glial tumors may reveal novel treatments: high-dose progestins or progesterone antagonists as endocrino-immune modifiers against glioma. Neurosurg Rev 2018; 42:351-369. [DOI: 10.1007/s10143-018-0953-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/10/2018] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
|
14
|
Jiang Y, Tian W. The effects of progesterones on blood lipids in hormone replacement therapy. Lipids Health Dis 2017; 16:219. [PMID: 29157280 PMCID: PMC5697110 DOI: 10.1186/s12944-017-0612-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/07/2017] [Indexed: 12/28/2022] Open
Abstract
The safety of progestogens as a class has drawn much attention after the publication of data from the Women’s Health Initiative (WHI) trial, particularly with respect to cardiovascular disease. Depending on the chemical structure, pharmacokinetics, receptor affinity and potency of action, progestogens have a divergent range of properties that may translate to very different clinical effects. The purpose of this review is to describe the role of varied progestogens in hormone replacement therapy (HRT), especially focusing on blood lipids, which are the most important parameters for assessing cardiovascular disease risk.
Collapse
Affiliation(s)
- Yifan Jiang
- Guizhou Provincial Center for Drug Reevaluation, Guiyang, Guizhou, 550001, People's Republic of China
| | - Weijie Tian
- Department of Obstetrics and Gynecology, Guizhou Provincial People's Hospital, NO.83, Zhongshan East Road, Guiyang, Guizhou, 550002, People's Republic of China.
| |
Collapse
|
15
|
Zhou L, Zhou W, Zhang H, Hu Y, Yu L, Zhang Y, Zhang Y, Wang S, Wang P, Xia W. Progesterone suppresses triple-negative breast cancer growth and metastasis to the brain via membrane progesterone receptor α. Int J Mol Med 2017; 40:755-761. [PMID: 28713912 PMCID: PMC5548012 DOI: 10.3892/ijmm.2017.3060] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/12/2017] [Indexed: 01/01/2023] Open
Abstract
Progesterone plays an important role in mammary epithelial cell proliferation and differentiation. Evidence from experimental and clinical studies indicates that progesterone is a risk factor for breast cancer under certain conditions through binding nuclear progesterone receptor (PR). These mechanisms, however, are not applicable to triple-negative breast cancer (TNBC) due to the lack of PR in these cancers. In this study, we demonstrate that membrane progesterone receptor α (mPRα) is expressed in TNBC tissues and the expression level of mPRα is negatively associated with the TNM stage. We found that progesterone suppressed the growth, migration and invasion of mPRα+ human TNBC cells in vitro, which was neither mediated by PR nor by PR membrane component 1 (PGRMCl). Notably, these effects exerted by progesterone were significantly blocked by shRNA specific to mPRα. Moreover, the knockdown of mPRα expression impaired the inhibitory effects of progesterone on mPRα+ tumor growth and metastasis in vivo. These data collectively indicate that progesterone suppresses TNCB growth and metastasis via mPRα, which provides evidence of the anti-neoplastic effects of progesterone-mPRα pathway in the treatment of human TNBC.
Collapse
Affiliation(s)
- Li Zhou
- Department of Oncology and Hematology, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Wei Zhou
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Hongwei Zhang
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Yan Hu
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Lei Yu
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Yufei Zhang
- Department of Intervention, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Yanli Zhang
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Shuang Wang
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Peng Wang
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, Shanghai Seventh People's Hospital, Shanghai 200137, P.R. China
| |
Collapse
|
16
|
Schaudig K, Schwenkhagen A. Individualisierte Hormontherapie in Peri- und Postmenopause. GYNAKOLOGISCHE ENDOKRINOLOGIE 2016. [DOI: 10.1007/s10304-016-0054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Shawky MS, Ricciardelli C, Lord M, Whitelock J, Ferro V, Britt K, Thompson EW. Proteoglycans: Potential Agents in Mammographic Density and the Associated Breast Cancer Risk. J Mammary Gland Biol Neoplasia 2015; 20:121-31. [PMID: 26501889 DOI: 10.1007/s10911-015-9346-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022] Open
Abstract
Although increased mammographic density (MD) has been well established as a marker for increased breast cancer (BC) risk, its pathobiology is far from understood. Altered proteoglycan (PG) composition may underpin the physical properties of MD, and may contribute to the associated increase in BC risk. Numerous studies have investigated PGs, which are a major stromal matrix component, in relation to MD and BC and reported results that are sometimes discordant. Our review summarises these results and highlights discrepancies between PG associations with BC and MD, thus serving as a guide for identifying PGs that warrant further research towards developing chemo-preventive or therapeutic agents targeting preinvasive or invasive breast lesions, respectively.
Collapse
|
18
|
Breast Cancer Invasion and Metastasis by mPRα Through the PI3K/Akt Signaling Pathway. Pathol Oncol Res 2015; 22:471-6. [PMID: 26608797 DOI: 10.1007/s12253-015-0023-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/16/2015] [Indexed: 12/30/2022]
Abstract
Invasive breast cancer is the most common type of malignancy in women worldwide. However, the mechanism responsible for breast cancer metastasis is still unclear and needs further illustration. It has been proven that matrix metallopeptidase 9 (MMP-9) promotes metastasis of the cancer cells. However, the interaction between mPRα and MMP-9 has not been studied. Therefore, in the present research, the effect of MMP-9 on the malignant progression of invasive breast cancer promoted by membrane progesterone receptorα (mPRα) was investigated. The results showed that the protein expression of mPRα, p-Akt and MMP-9 increased in the cancerous tissues compared to that of the noncancerous breast tissue. Furthermore, a positive correlation was found between mPRα and C-erbB-2, as well as the number of involved local lymph nodes. On the other hand, a negative correlation was observed between mPRα and estrogen receptors (ER) along with progesterone receptors (PR). Similarly, a positive association was found between MMP-9 and the number of involved local lymph nodes. Besides, the high expression of MMP-9 also had a positive correlation with the tumor size. However, the high level of MMP-9 had a negative correlation with ER and PR. In addition, there was a positive correlation between mPRα and p-Akt together with MMP-9. The results confirm that mPRα was a major marker of harmful prognosis and it promoted the expression of MMP-9 during invasion to the local lymph nodes through the pathway of PI3K/Akt. The present study provided a novel therapeutic strategy to inhibit breast cancer growth by preventing mPRα signaling pathway.
Collapse
|
19
|
Flores VA, Taylor HS. The Effect of Menopausal Hormone Therapies on Breast Cancer: Avoiding the Risk. Endocrinol Metab Clin North Am 2015; 44:587-602. [PMID: 26316245 PMCID: PMC4555991 DOI: 10.1016/j.ecl.2015.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Estrogen and P treatment results in greater risk of breast cancer than placebo. Treatment with estrogen alone does not increase the risk of breast cancer, may be used by women who have had a hysterectomy, and may even result in a decreased risk of breast cancer. Continued research seeks to improve the understanding of the interplay between estrogen and progestogens that predispose to adverse effects on breast tissue. Caution over this hypothesized benefit is warranted until it is substantiated by data on the incidence of breast cancer in tissue selective estrogen complex users.
Collapse
Affiliation(s)
- Valerie A Flores
- Women and Infants Hospital, Warren Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
20
|
Khodr ZG, Sherman ME, Pfeiffer RM, Gierach GL, Brinton LA, Falk RT, Patel DA, Linville LM, Papathomas D, Clare SE, Visscher DW, Mies C, Hewitt SM, Storniolo AMV, Rosebrock A, Caban JJ, Figueroa JD. Circulating sex hormones and terminal duct lobular unit involution of the normal breast. Cancer Epidemiol Biomarkers Prev 2015; 23:2765-73. [PMID: 25472681 DOI: 10.1158/1055-9965.epi-14-0667] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Terminal duct lobular units (TDLU) are the predominant source of breast cancers. Lesser degrees of age-related TDLU involution have been associated with increased breast cancer risk, but factors that influence involution are largely unknown. We assessed whether circulating hormones, implicated in breast cancer risk, are associated with levels of TDLU involution using data from the Susan G. Komen Tissue Bank (KTB) at the Indiana University Simon Cancer Center (2009-2011). METHODS We evaluated three highly reproducible measures of TDLU involution, using normal breast tissue samples from the KTB (n = 390): TDLU counts, median TDLU span, and median acini counts per TDLU. RRs (for continuous measures), ORs (for categorical measures), 95% confidence intervals (95% CI), and Ptrends were calculated to assess the association between tertiles of estradiol, testosterone, sex hormone-binding globulin (SHBG), progesterone, and prolactin with TDLU measures. All models were stratified by menopausal status and adjusted for confounders. RESULTS Among premenopausal women, higher prolactin levels were associated with higher TDLU counts (RRT3vsT1:1.18; 95% CI: 1.07-1.31; Ptrend = 0.0005), but higher progesterone was associated with lower TDLU counts (RRT3vsT1: 0.80; 95% CI: 0.72-0.89; Ptrend < 0.0001). Among postmenopausal women, higher levels of estradiol (RRT3vsT1:1.61; 95% CI: 1.32-1.97; Ptrend < 0.0001) and testosterone (RRT3vsT1: 1.32; 95% CI: 1.09-1.59; Ptrend = 0.0043) were associated with higher TDLU counts. CONCLUSIONS These data suggest that select hormones may influence breast cancer risk potentially through delaying TDLU involution. IMPACT Increased understanding of the relationship between circulating markers and TDLU involution may offer new insights into breast carcinogenesis. Cancer Epidemiol Biomarkers Prev; 23(12); 2765-73. ©2014 AACR.
Collapse
Affiliation(s)
- Zeina G Khodr
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland
| | - Mark E Sherman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland. Division of Cancer Prevention, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland
| | - Gretchen L Gierach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland
| | - Louise A Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland
| | - Roni T Falk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland
| | - Deesha A Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland
| | - Laura M Linville
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Daphne Papathomas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland
| | - Susan E Clare
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Carolyn Mies
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen M Hewitt
- Applied Molecular Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Anna Maria V Storniolo
- Susan G. Komen Tissue Bank at the Indiana University Simon Cancer Center, Indianapolis, Indiana
| | - Adrian Rosebrock
- Computer Science and Electrical Engineering Department, University of Maryland, Baltimore, Maryland
| | - Jesus J Caban
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland.
| |
Collapse
|
21
|
History of uterine leiomyomata and incidence of breast cancer. Cancer Causes Control 2015; 26:1487-93. [PMID: 26250515 DOI: 10.1007/s10552-015-0647-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/28/2015] [Indexed: 01/02/2023]
Abstract
PURPOSE Uterine leiomyomata (UL), benign tumors of the myometrium, are influenced by sex steroid hormones. A history of UL diagnosis has been associated with a higher risk of uterine malignancies. The relation between UL and breast cancer, another hormonally responsive cancer, has not been studied. METHODS We investigated the association between self-reported physician-diagnosed UL and incidence of breast cancer in the Black Women's Health Study, a prospective cohort study. We followed 57,747 participants without a history of breast cancer from 1995 to 2013. UL diagnoses were reported at baseline and biennially. Breast cancer was reported on biennial questionnaires and confirmed by pathology data from medical records or cancer registries. Cox regression was used to derive incidence rate ratios (IRRs) and 95 % confidence intervals (CI) and adjust for potential confounders. RESULTS There were 2,276 incident cases of breast cancer (1,699 invasive, 394 in situ, and 183 unknown) during 879,672 person-years of follow-up. The multivariable IRR for the overall association between history of UL and breast cancer incidence was 0.99 (95 % CI 0.90-1.08), with similar results for ER + (IRR = 1.03) and ER - breast cancer (IRR = 1.05). IRRs for early diagnosis of UL (before age 30) were slightly above 1.0, with IRRs of 1.14 (95 % CI 0.99-1.31) for overall breast cancer, 1.14 (95 % CI 0.93-1.40) for ER + breast cancer, and 1.20 (95 % CI 0.89-1.61) for ER - breast cancer. IRRs for early diagnosis of UL were elevated for breast cancer diagnosed before 40 years of age (IRR = 1.39, 95 % CI 0.97-1.99) and premenopausal breast cancer (IRR = 1.26, 95 % CI 1.01-1.58). No consistent patterns in risk were observed across estrogen receptor subtypes, and IRRs did not differ appreciably within strata of BMI, female hormone use, mammography recency, or family history of breast cancer. CONCLUSIONS The present study of US black women suggests that a history of UL diagnosis is unrelated to the incidence of breast cancer overall. The positive associations observed for early diagnosed UL with breast cancer before age 40 and with premenopausal breast cancer require confirmation in future studies.
Collapse
|
22
|
Breast Tissue Composition and Immunophenotype and Its Relationship with Mammographic Density in Women at High Risk of Breast Cancer. PLoS One 2015; 10:e0128861. [PMID: 26110820 PMCID: PMC4481506 DOI: 10.1371/journal.pone.0128861] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/03/2015] [Indexed: 12/02/2022] Open
Abstract
Aim To investigate the cellular and immunophenotypic basis of mammographic density in women at high risk of breast cancer. Methods Mammograms and targeted breast biopsies were accrued from 24 women at high risk of breast cancer. Mammographic density was classified into Wolfe categories and ranked by increasing density. The histological composition and immunophenotypic profile were quantified from digitized haematoxylin and eosin-stained and immunohistochemically-stained (ERα, ERβ, PgR, HER2, Ki-67, and CD31) slides and correlated to mammographic density. Results Increasing mammographic density was significantly correlated with increased fibrous stroma proportion (rs (22) = 0.5226, p = 0.0088) and significantly inversely associated with adipose tissue proportion (rs (22) = -0.5409, p = 0.0064). Contrary to previous reports, stromal expression of ERα was common (19/20 cases, 95%). There was significantly higher stromal PgR expression in mammographically-dense breasts (p=0.026). Conclusions The proportion of stroma and fat underlies mammographic density in women at high risk of breast cancer. Increased expression of PgR in the stroma of mammographically dense breasts and frequent and unexpected presence of stromal ERα expression raises the possibility that hormone receptor expression in breast stroma may have a role in mediating the effects of exogenous hormonal therapy on mammographic density.
Collapse
|
23
|
Abstract
The population-based case–control study CECILE investigated the impact of various menopausal hormone therapy (MHT) products on breast cancer (BC) risk in 1,555 postmenopausal women [1]. The case group (n = 739) included incident cases of in situ (!) or invasive BC in postmenopausal women. The control group (n = 816) included women from the general population within predefined quotas by age and socio-economic status (SES). While quotas by age were applied to obtain similar distributions by age among controls and among cases, quotas by SES in control women were applied to reflect the distribution by SES of women in the general population in the study area. Data of participants were obtained by a structured questionnaire during in-person interviews, and from pathology reports if applicable, respectively. Women were divided into current and past MHT user. MHTs were classified in estrogen-only therapy (ET), estrogen combined with progestin therapy (EPT) and tibolone. EPT was subdivided in three subtypes according to the progestogen constituent: natural micronized progesterone, progesterone derivatives, and testosterone derivatives. In comparison to never MHT users, any current or past MHT use (ET, EPT, tibolone) was not associated with an increased BC risk. However, in subanalysis BC risk was significantly increased for current use of EPT for 4 or more years (n = 73 cases and n = 56 controls, adjusted OR 1.55; 95 % CI 1.02–2.36). Within the group of current EPT users for 4 or more years, 14 cases had used estrogens combined with micronized progesterone (n = 17 controls), and 55 a combination with a synthetic progestogen (n = 34 controls), respectively. Compared to never MHT use, current use of EPT containing a synthetic progestogen for 4 or more years was associated with a significantly increased BC risk (adjusted OR 2.07; 95 % CI 1.26–3.39), but EPT containing micronized progesterone was not (adjusted OR 0.79; 95 % CI 0.37–1.71). 73 % of current MHT users started treatment within the first year of onset of menopause. Early EPT (n = 52 cases and n = 38 controls, adjusted OR 1.65; 95 % CI 1.02–2.69), but not early ET, starters had a significantly higher BC risk compared to never MHT users. In contrast, MHT initiation beyond 1 year after menopause was not associated with an increased BC risk. The authors concluded that: (1) ET and EPT containing natural progesterone did not increase BC risk whereas, (2) BC risk was increased in users of tibolone or EPT containing a synthetic progestogen, respectively, and that (3) MHT use early after onset of menopause was associated with an increased BC risk as compared to women who delay MHT beyond 1 or more years.
Collapse
Affiliation(s)
- Petra Stute
- Department of Obstetrics and Gynecology, University of Berne, Bern, Switzerland,
| |
Collapse
|
24
|
Abstract
The adverse outcomes seen in the Women's Health Initiative (WHI) 1 were mainly due to an over-dosage of hormones in a relatively elderly population. However, fundamental differences exist between conjugated equine estrogens and 17 beta estradiol and between medroxyprogesterone acetate and natural progesterone. It is likely that these differences also contributed to the adverse outcomes in WHI, which were contrary to the cardiovascular benefits seen in previous observational trials. Recent studies of cardiovascular risk markers in younger women have been designed using predominantly estradiol and natural progesterone (transdermal and oral) as the primary interventions. This paper reviews the effects that body identical estradiol and progesterone can have, both in the physiological environment and also when replaced as transdermal estradiol and micronised oral progesterone.
Collapse
Affiliation(s)
- Nick Panay
- Queen Charlotte's & Chelsea and Chelsea & Westminster Hospitals, Imperial College, London, UK
| |
Collapse
|
25
|
Hogervorst JG, Fortner RT, Mucci LA, Tworoger SS, Eliassen AH, Hankinson SE, Wilson KM. Associations between dietary acrylamide intake and plasma sex hormone levels. Cancer Epidemiol Biomarkers Prev 2013; 22:2024-36. [PMID: 23983241 DOI: 10.1158/1055-9965.epi-13-0509] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The rodent carcinogen acrylamide was discovered in 2002 in commonly consumed foods. Epidemiologic studies have observed positive associations between acrylamide intake and endometrial, ovarian, and breast cancer risks, which suggest that acrylamide may have sex-hormonal effects. METHODS We cross-sectionally investigated the relationship between acrylamide intake and plasma levels of sex hormones and sex hormone-binding globulin (SHBG) among 687 postmenopausal and 1,300 premenopausal controls from nested case-control studies within the Nurses' Health Studies. RESULTS There were no associations between acrylamide and sex hormones or SHBG among premenopausal women overall or among never-smokers. Among normal-weight premenopausal women, acrylamide intake was statistically significantly positively associated with luteal total and free estradiol levels. Among postmenopausal women overall and among never-smokers, acrylamide was borderline statistically significantly associated with lower estrone sulfate levels but not with other estrogens, androgens, prolactin, or SHBG. Among normal-weight women, (borderline) statistically significant inverse associations were noted for estrone, free estradiol, estrone sulfate, DHEA, and prolactin, whereas statistically significant positive associations for testosterone and androstenedione were observed among overweight women. CONCLUSIONS Overall, this study did not show conclusive associations between acrylamide intake and sex hormones that would lend unequivocal biologic plausibility to the observed increased risks of endometrial, ovarian, and breast cancer. The association between acrylamide and sex hormones may differ by menopausal and overweight status. We recommend other studies investigate the relationship between acrylamide and sex hormones in women, specifically using acrylamide biomarkers. IMPACT The present study showed some interesting associations between acrylamide intake and sex hormones that urgently need confirmation.
Collapse
Affiliation(s)
- Janneke G Hogervorst
- Authors' Affiliations: Department of Epidemiology, GROW-School for Oncology & Developmental Biology, Maastricht University, Maastricht, the Netherlands; Department of Epidemiology, Harvard School of Public Health; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; and Division of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
26
|
Kurbel S. Model of tumor-associated epigenetic changes of HER2, ER, and PgR expression in invasive breast cancer phenotypes. Tumour Biol 2013; 34:2011-7. [PMID: 23640060 DOI: 10.1007/s13277-013-0809-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 04/16/2013] [Indexed: 11/24/2022] Open
Abstract
This theoretic paper is an attempt to apply the epigenetic progenitor model of human cancer origin, proposed by Feinberg et al. (Nat Rev Genet 7:21-33, 2006), to the reported phenotype features of invasive breast cancer. The model is based on the idea that expression of estrogen receptors (ER), progesterone receptors (PgR), and HER2 molecules in breast tumors is either remnants of the tissue stem cell from which the tumor has developed or a newly acquired tumor-associated epigenetic feature. HER2 overexpression is considered as an example of the tumor-associated epigenetic changes. The model makes a simple distinction regarding the possible types of ER and PgR expression: the "functional" steroid hormone receptors are inherited from pretumoral tissue stem cells, while the "dysfunctional" steroid hormone receptors are acquired during tumorigenesis from initially ER-PgR-negative cells. In the former, estrogen binding increases the PgR expression while progesterone binding decreases the expression of ER and PgR. Since the estrogen-dependent PgR expression works only in cells with functional ERs, the expected share of tumors with functional ER and PgR receptors is in the model calculated as the squared probability of expressing the PgRs. Reported data from various trials are pooled together to find out phenotype shares (ER+PgR+ makes 62.03 %, ER+PgR- 16.43 %, ER-PgR+ 3.06, and ER-PgR- 18.48 %). By applying the model on these shares, the proposed share of tumors with the functional ER+PgR+ phenotype was 38.48 %, while the share of tumors with the dysfunctional ER+PgR+ was 23.55 %. The presented model suggests that both luminal A and luminal B tumor types are heterogeneous regarding the steroid receptor expression. Some tumors have functional and some have dysfunctional steroid receptors. If these predicted subgroups exist, their detection in the clinical practice might substantially improve treatment options, particularly in the premenopausal setting.
Collapse
Affiliation(s)
- Sven Kurbel
- Department of Physiology, Osijek Medical Faculty, J Huttlera 4, 31000, Osijek, Croatia.
| |
Collapse
|