1
|
Safaei F, Alirezalu A, Noruzi P, Alirezalu K. Phytochemical and morpho-physiological response of Melissa officinalis L. to different NH 4+ to NO 3̄ ratios under hydroponic cultivation. BMC PLANT BIOLOGY 2024; 24:968. [PMID: 39407126 PMCID: PMC11481551 DOI: 10.1186/s12870-024-05693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The utilization of nutrition management, has recently been developed as a means of improving the growth and production of phytochemical compounds in herbs. The present study aimed to improve the growth, physiological, and phytochemical characteristics of lemon balm (Melissa officinalis L.) using different NH4+ (ammonium) to NO3̄ (nitrate) ratios (0:100, 25:75, 50:50, 75:25 and 100:0) under floating culture system (FCS). RESULTS The treatment containing 0:100 - NH4+:NO3̄ ratio showed the most remarkable values for the growth and morpho-physiological characteristics of M. officinalis. The results demonstrated that maximum biomass (105.57 g) earned by using the ratio of 0:100 and minimum at 75:25 ratio of NH4+: NO3̄. The plants treated with high nitrate ratio (0:100 - NH4+:NO3̄) showed the greatest concentration of total phenolics (60.40 mg GAE/g DW), chlorophyll a (31.32 mg/100 g DW), flavonoids (12.97 mg QUE/g DW), and carotenoids (83.06 mg/100 g DW). Using the 75:25 - NH4+:NO3̄ ratio caused the highest dry matter (DM), N and K macronutrients in the leaves. The highest antioxidant activity by both DPPH (37.39 µg AAE/mL) and FRAP (69.55 mM Fe++/g DW) methods was obtained in 75:25 - NH4+:NO3̄ treatment. The p-coumaric acid as a main abundant phenolic composition, was detected by HPLC analysis as the highest content in samples grown under 0:100 - NH4+:NO3̄ treatment. Also, the major compounds in M. officinalis essential oil were identified as geranial, neral, geranyl acetate and geraniol by GC analysis. With increasing NO3̄ application, geraniol and geranyl acetate contents were decreased. CONCLUSIONS The findings of present study suggest that the management of NH4+ to NO3̄ ratios in nutrient solutions could contribute to improving growth, physiological and phytochemical properties of M. officinalis. The plants treated with high nitrate ratio (especially 0:100 - NH4+:NO3̄) showed the greatest effects on improving the growth and production of morpho-physiological and phytochemical compounds. By comprehensively understanding the intricate dynamics among nitrogen sources, plants, and their surroundings, researchers and practitioners can devise inventive approaches to optimize nitrogen management practices and foster sustainable agricultural frameworks.
Collapse
Affiliation(s)
- Farzad Safaei
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Parviz Noruzi
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Kazem Alirezalu
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Fan Z, Lali MN, Xiong H, Luo Y, Wang Y, Wang Y, Lu M, Wang J, He X, Shi X, Zhang Y. Seedlings of Poncirus trifoliata exhibit tissue-specific detoxification in response to NH 4 + toxicity. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:467-475. [PMID: 38466186 DOI: 10.1111/plb.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
Ammonium nitrogen (NH4 +-N) is essential for fruit tree growth, but the impact of excess NH4 +-N from fertilizer on evergreen citrus trees is unclear. In a climate chamber, 8-month-old citrus plants were exposed to five different hydroponic NH4 +-N concentrations (0, 5, 10, 15 and 20 mm) for 1 month to study effects of NH4 +-N on growth characteristics, N uptake, metabolism, antioxidant enzymes and osmotic regulatory substances. Application of 10 mm NH4 +-N adversely affected root plasma membrane integrity, root physiological functions, and plant biomass. MDA, CAT, POD, APX and SOD content were significantly correlated with leaf N metabolic enzyme activity (GOGAT, GDH, GS and NR). GDH was the primary enzyme involved in NH4 +-N assimilation in leaves, while the primary pathway involved in roots was GS-GOGAT. Under comparatively high NH4 + addition, roots were the main organs involved in NH4 + utilization in citrus seedlings. Our results demonstrated that variations in NH4 + concentration and enzyme activity in various organs are associated with more effective N metabolism in roots than in leaves to prevent NH4 + toxicity in evergreen woody citrus plants. These results provide insight into the N forms used by citrus plants that are important for N fertilizer management.
Collapse
Affiliation(s)
- Z Fan
- College of Resources and Environment, Southwest University, Chongqing, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - M N Lali
- College of Resources and Environment, Southwest University, Chongqing, China
- Department of Forestry and Natural Resources, Faculty of Agriculture, Bamyan University, Bamyan, Afghanistan
| | - H Xiong
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Y Luo
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Y Wang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Y Wang
- Development and Guidance Station of Cereal and Oil Crops in Hechuan District, Chongqing, China
| | - M Lu
- College of Resources and Environment, Southwest University, Chongqing, China
- Chongqing Agro-Tech Extension Station, Chongqing, China
| | - J Wang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - X He
- College of Resources and Environment, Southwest University, Chongqing, China
| | - X Shi
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Y Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Chrysargyris A, Hajisolomou E, Xylia P, Tzortzakis N. Ammonium to total nitrogen ratio affects the purslane ( Portulaca oleracea L.) growth, nutritional, and antioxidant status. Heliyon 2023; 9:e21644. [PMID: 38027987 PMCID: PMC10661198 DOI: 10.1016/j.heliyon.2023.e21644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Purslane (Portulaca oleracea L.) is a widespread weed, which is greatly appreciated for its high nutritional value. The present work evaluated the effect of different ammonium/total nitrogen ratios (NH4/Total N: Nr 0.01-0.15) on growth, physiological and biochemical parameters, and nutrient accumulation in different plant parts of hydroponically grown purslane, under two growing seasons, spring and autumn. Young seedlings of purslane were transferred to a Nutrient Film Technique (NFT) system and they were exposed to different Nr levels. The pH and the electrical conductivity of the nutrient solution were kept constant at 5.8 and 2.3 mS cm-1, respectively. After the end of the cultivation periods (19 days for spring and 22 days for autumn), a series of assessments (growth parameters, mineral content in different plant organs, antioxidant status of the plant, etc.) were done. Plant height, leaf number, root fresh weight and plant biomass revealed decreased trends at the higher NH4/total N ratios, especially during the autumn growing season. Total phenols, flavonoids and antioxidant capacity appeared increased at Nr ≤ 0.10 during both seasons (autumn and spring), revealing higher nitrogen accumulation rates and increased water and nutrient use efficiency. Purslane plants grown in Nr 0.05-0.10 revealed a less intense oxidative stress, with decreased lipid peroxidation levels that was the result of the activation of both enzymatic (superoxide dismutase, catalase and peroxidase) and non-enzymatic (ascorbic acid) antioxidant capacity of the plant. Increased Nr resulted in the accumulation of potassium, while calcium and magnesium levels in leaves were decreased. Additionally, the greater water use efficiency was measured for plants grown under Nr 0.01-0.05. Therefore, the recommended ammonium/total nitrogen ratio for purslane production of increased yield, improved nutritional value and efficient use of water and nitrogen sources is to employ Nr of 0.05, while additional care should be addressed during autumn periods as plants are subjected to greater impacts of the Nr ratio.
Collapse
Affiliation(s)
- Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Limassol, Cyprus
| | - Efraimia Hajisolomou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Limassol, Cyprus
| | - Panayiota Xylia
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Limassol, Cyprus
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Limassol, Cyprus
| |
Collapse
|
4
|
Guo J, Chen T, Zheng G, Yang J, Qian T, Liu X, Meng X, Li Y. Cadmium accumulation responses in Hylotelephium spectabile: The role of photosynthetic characteristics under different nitrogen, moisture, and light conditions. CHEMOSPHERE 2023; 319:138019. [PMID: 36736483 DOI: 10.1016/j.chemosphere.2023.138019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The influence of environmental factors on Cd accumulation by Hylotelephium spectabile and its physiological mechanisms are unclear. A field trial was conducted to investigate the effects of nitrogen, soil moisture, and light regulation on plant growth, Cd absorption and translocation, and the photosynthetic characteristics of two H. spectabile populations (LN with high Cd accumulation capacity and HB1 with relatively low Cd accumulation capacity). The results showed that Cd accumulation in LN was 59.6% higher than that in HB1 which may partly be explained by the inherent high transpiration rate of LN, especially at the terminal stage. In addition, the photosynthetic rate of LN responded more positively to nitrogen than HB1, which further amplified its advantages on plant growth and Cd accumulation. Moderate drought significantly stimulated root growth of LN, indicating that LN possesses stronger resistance to drought. Shade inhibited Cd distribution, rather than directly affecting Cd concentrations in H. spectabile. The combined stress of shade and drought had a synergistic effect on Cd translocation in H. spectabile. Moreover, LN achieved 17.3%∼444.5% higher transpiration levels than HB1 under environmental stress, which ensured a more efficient Cd transport capacity of LN. Therefore, the investigation of photosynthetic characteristics further revealed the physiological mechanism by which LN accumulated Cd superior to HB1 under environmental stress and responded more positively to nitrogen nutrition.
Collapse
Affiliation(s)
- Junmei Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, China; Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tianwei Qian
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, China
| | - Xiaona Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, China
| | - Xiaofei Meng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufeng Li
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Naseri A, Alirezalu A, Noruzi P, Alirezalu K. The effect of different ammonium to nitrate ratios on antioxidant activity, morpho-physiological and phytochemical traits of Moldavian balm (Dracocephalum moldavica). Sci Rep 2022; 12:16841. [PMID: 36207586 PMCID: PMC9546921 DOI: 10.1038/s41598-022-21338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Improving yield and secondary metabolites production of medicinal plants through nutrition management recently has been considered. The present study was done to determine the effects of different ammonium (NH4+) to nitrate (NO3-) ratios (100:0, 75:25, 50:50, 25:75, 0:100) on morphophysiological, nutrient contents (N, P, K, Ca, and Mg), phenolic compounds (Total phenolics (TPC) and flavonoid (TFC) contents and individual phenolics including chlorogenic acid, rosmarinic acid, gallic acid, cinnamic acid, caffeic acid, rutin, p-Coumaric acid, apigenin, and quercetin by HPLC-DAD), essential oil composition (by GC and GC-MS), and antioxidant capacity (by DPPH and FRAP assays) of Moldavian balm (Dracocephalum moldavica L.) in deep water culture (DWC) system. The highest biomass and morphological traits values of D. moldavica observed in 0:100 ratio of NH4+:NO3-. Also, the highest TPC and TFC was earned in plants that supplied with 0:100 ratio of NH4+:NO3-. Using the 25:75 ratio of NH4+:NO3- caused the highest nutrient contents (N, Ca and Mg) in the leaves. p-Coumaric acid was detected as the major abundant phenolic compound in extracts and the application of 75:25 ratio of NH4+:NO3 resulted in the highest amounts of p-Coumaric acid, gallic acid, rosmarinic acid, caffeic acid, quercetin, and rutin. The highest antioxidant capacity by both FRAP and DPPH assays was obtained in 75:25 ratio of NH4+:NO3-. Also, the highest geranial and geranyl acetate, geraniol, and neral were obtained in 75:25, 25:75, and 50:50 ratios of NH4+:NO3-, respectively. Plants supplied with the 0:100 ratio of NH4+:NO3-, had the highest total carotenoids, while the highest chlorophyll a and b content gained with 75:25 ratio of NH4+:NO3-. These results suggest that the management of N source in nutrient recipe could contribute to enhance of morphophysiological traits, antioxidant activity and phytochemical compounds in Moldavian balm.
Collapse
Affiliation(s)
- Ali Naseri
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Parviz Noruzi
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Kazem Alirezalu
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran
| |
Collapse
|
6
|
Saloner A, Bernstein N. Nitrogen Source Matters: High NH 4/NO 3 Ratio Reduces Cannabinoids, Terpenoids, and Yield in Medical Cannabis. FRONTIERS IN PLANT SCIENCE 2022; 13:830224. [PMID: 35720524 PMCID: PMC9198551 DOI: 10.3389/fpls.2022.830224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/31/2022] [Indexed: 05/11/2023]
Abstract
The N form supplied to the plant, ammonium (NH4 +) or nitrate (NO3 -), is a major factor determining the impact of N nutrition on plant function and metabolic responses. We have hypothesized that the ratio of NH4/NO3 supplied to cannabis plants affects the physiological function and the biosynthesis of cannabinoids and terpenoids, which are major factors in the cannabis industry. To evaluate the hypothesis we examined the impact of five supply ratios of NH4/NO3 (0, 10, 30, 50, and 100% N-NH4 +, under a uniform level of 200 mg L-1 N) on plant response. The plants were grown in pots, under controlled environment conditions. The results revealed high sensitivity of cannabinoid and terpenoid concentrations and plant function to NH4/NO3 ratio, thus supporting the hypothesis. The increase in NH4 supply generally caused an adverse response: Secondary metabolite production, inflorescence yield, plant height, inflorescence length, transpiration and photosynthesis rates, stomatal conductance, and chlorophyll content, were highest under NO3 nutrition when no NH4 was supplied. Ratios of 10-30% NH4 did not substantially impair secondary metabolism and plant function, but produced smaller inflorescences and lower inflorescence yield compared with only NO3 nutrition. Under a level of 50% NH4, the plants demonstrated toxicity symptoms, which appeared only at late stages of plant maturation, and 100% NH4 induced substantial plant damage, resulting in plant death. This study demonstrates a dramatic impact of N form on cannabis plant function and production, with a 46% decrease in inflorescence yield with the increase in NH4 supply from 0 to 50%. Yet, moderate levels of 10-30% NH4 are suitable for medical cannabis cultivation, as they do not damage plant function and show only little adverse influence on yield and cannabinoid production. Higher NH4/NO3 ratios, containing above 30% NH4, are not recommended since they increase the potential for a severe and fatal NH4 toxicity damage.
Collapse
Affiliation(s)
- Avia Saloner
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Rishon LeTsiyon, Israel
- The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Rishon LeTsiyon, Israel
- *Correspondence: Nirit Bernstein,
| |
Collapse
|
7
|
Ammonia–Nitrate Mixture Dominated by NH4+–N Promoted Growth, Photosynthesis and Nutrient Accumulation in Pecan (Carya illinoinensis). FORESTS 2021. [DOI: 10.3390/f12121808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although ammonia–nitrogen (NH4+–N) and nitrate–nitrogen (NO3−–N) are the two main forms of N absorbed and utilized by plants, the preferences of plants for these forms are still unclear. In this study, we analyzed the growth, photosynthesis, and nutrients of pecan under different NH4+:NO3− ratios (0/0, 0/100, 25/75, 50/50, 75/25, 100/0) by indoor aerosol incubation. The results showed that additions of different N forms promoted the growth and development of pecan seedlings. When NO3−–N was used as the sole N source, it significantly promoted the ground diameter growth of pecan and increased the leaf pigment content and photosynthetic rate. The NH4+:NO3− ratio of 75:25 and NH4+–N as the sole N source significantly increased the soluble sugars in stems and roots, starch in leaves, stems and roots, soluble protein in leaves and stems, and soluble phenols in stems and roots. Additionally, the NH4+:NO3− ratio of 75:25 increased plant height, leaf number, root soluble protein, and leaf soluble phenol contents. In conclusion, regarding the physiological aspects of pecan growth, pecans are more inclined to use NH4+–N. Considering that the NH4+–N as the only N source may lead to nutrient imbalance or even toxicity, the NH4+:NO3− ratio of 75:25 was most favorable for the growth and development of pecan seedlings.
Collapse
|
8
|
Sun Y, Zhang T, Xu X, Yang Y, Tong H, Mur LAJ, Yuan H. Transcriptomic Characterization of Nitrate-Enhanced Stevioside Glycoside Synthesis in Stevia ( Stevia rebaudiana) Bertoni. Int J Mol Sci 2021; 22:ijms22168549. [PMID: 34445254 PMCID: PMC8395231 DOI: 10.3390/ijms22168549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
Nitrogen forms (nitrate (NO3−) or ammonium (NH4+)) are vital to plant growth and metabolism. In stevia (Stevia rebaudiana), it is important to assess whether nitrogen forms can influence the synthesis of the high-value terpene metabolites-steviol glycosides (SGs), together with the underlying mechanisms. Field and pot experiments were performed where stevia plants were fertilized with either NO3− or NH4+ nutrition to the same level of nitrogen. Physiological measurements suggested that nitrogen forms had no significant impact on biomass and the total nitrogen content of stevia leaves, but NO3−-enhanced leaf SGs contents. Transcriptomic analysis identified 397 genes that were differentially expressed (DEGs) between NO3− and NH4+ treatments. Assessment of the DEGs highlighted the responses in secondary metabolism, particularly in terpenoid metabolism, to nitrogen forms. Further examinations of the expression patterns of SGs synthesis-related genes and potential transcription factors suggested that GGPPS and CPS genes, as well as the WRKY and MYB transcription factors, could be driving N form-regulated SG synthesis. We concluded that NO3−, rather than NH4+, can promote leaf SG synthesis via the NO3−-MYB/WRKY-GGPPS/CPS module. Our study suggests that insights into the molecular mechanism of how SG synthesis can be affected by nitrogen forms.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhuhoucun Village, Zhongshan Gate, Nanjing 210014, China; (Y.S.); (T.Z.); (X.X.); (Y.Y.); (H.T.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Ting Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhuhoucun Village, Zhongshan Gate, Nanjing 210014, China; (Y.S.); (T.Z.); (X.X.); (Y.Y.); (H.T.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiaoyang Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhuhoucun Village, Zhongshan Gate, Nanjing 210014, China; (Y.S.); (T.Z.); (X.X.); (Y.Y.); (H.T.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yongheng Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhuhoucun Village, Zhongshan Gate, Nanjing 210014, China; (Y.S.); (T.Z.); (X.X.); (Y.Y.); (H.T.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Haiying Tong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhuhoucun Village, Zhongshan Gate, Nanjing 210014, China; (Y.S.); (T.Z.); (X.X.); (Y.Y.); (H.T.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK;
| | - Haiyan Yuan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhuhoucun Village, Zhongshan Gate, Nanjing 210014, China; (Y.S.); (T.Z.); (X.X.); (Y.Y.); (H.T.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
9
|
Raza A, Asghar MA, Hussain S, Bin C, Shafiq I, Ahmad I, Ghafoor A, Karim H, Iqbal T, Yang W, Weiguo L. Optimal NH 4 + /NO 3 - ratios enhance the shade tolerance of soybean seedlings under low light conditions. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:464-472. [PMID: 33215799 DOI: 10.1111/plb.13219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/08/2020] [Indexed: 05/12/2023]
Abstract
In the maize-soybean intercropping system, shade is the major chronic restraint that affects normal growth of soybean. Different spatial patterns of this system affect the microclimate of soybean through shading from maize plants. However, the negative impacts of shading stress can be mitigated by providing optimal ratios of different fertilizers. Therefore, to test this hypothesis, soybean plants were grown under different light conditions (normal light or shade) to evaluate the response to varying NH4 + /NO3 - ratios. Seeds of soybean (Glycine max L. cv. Nan-99-6) were grown in nutrient solution with a total concentration of 5 mM N using different NH4 + /NO3 - ratios (T0 = 0:0, T1 = 0:100, T2 = 25:75, T3 = 50:50 and T4 = 75:25) for 40 days in a greenhouse at PPFD 320.95 μmol m-2 s-1 (low light) or 967.53 μmol m-2 s-1 (normal light). Under low light, growth and photosynthesis of soybean seedlings significantly decreased as compared to normal light conditions. However, the optimal ratios of NH4 + / NO3 - improved growth and photosynthesis of soybean seedlings under both light conditions. Our results indicated that soybean seedlings supplied with optimal NH4 + /NO3 - ratios (25:75 and 50:50) have maximum biomass yield, chlorophyll pigments, leaf gas exchange, photochemical activity and root growth as compared to low and high NH4 + /NO3 - ratios (T1 and T4 ). High ratios of NH4 + /NO3 - (T4 ) resulted in reduced plant growth due to nutrient accumulation in plant tissues; therefore, we suggest that optimal ratios of NH4 + /NO3 - (T2 and T3 ) can enhance the shade tolerance of soybean seedlings.
Collapse
Affiliation(s)
- A Raza
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - M A Asghar
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhou, 610000, China
| | - S Hussain
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - C Bin
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - I Shafiq
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - I Ahmad
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - A Ghafoor
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - H Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - T Iqbal
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Ministry of Agriculture P.R. China, Wenjiang, Sichuan, 611130, China
| | - W Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - L Weiguo
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
10
|
Nitrogen Forms Alter Triterpenoid Accumulation and Related Gene Expression in Cyclocarya paliurus (Batalin) Iljinsk. Seedlings. FORESTS 2020. [DOI: 10.3390/f11060631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cyclocarya paliurus (Batalin) Iljinsk. is a multiple function tree species distributed in subtropical areas, and its leaves have been used in medicine and nutraceutical foods in China. However, little information on the effects of nitrogen (N) forms and ratios on growth and secondary metabolite accumulation is available for C. paliurus. The impact of five NO3−/NH4+ ratios on biomass production, triterpenoid accumulation and related gene expression in C. paliurus seedlings was evaluated at the middle N nutrition supply. Significant differences in seedling growth, triterpenoid accumulation and relative gene expression were observed among the different NO3−/NH4+ ratio treatments. The highest triterpenoid content was achieved in a sole NO3− or NH4+ nutrition, while the mixed N nutrition with equal ratio of NO3− to NH4+ produced the highest biomass production in the seedlings. However, the highest triterpenoid accumulation was achieved at the treatment with the ratio of NO3−/NH4+ = 2.33. Therefore, the mixed N nutrition of NO3− and NH4+ was beneficial to the triterpenoid accumulation per plant. The relative expression of seven genes that are involved in triterpenoid biosynthesis were all up-regulated under the sole NH4+ or NO3− nutrition conditions, and significantly positive correlations between triterpenoid content and relative gene expression of key enzymes were detected in the leaves. Our results indicated that NO3− is the N nutrition preferred by C. paliurus, but the mixture of NO3− and NH4+ at an appropriate ratio would improve the leaf triterpenoid yield per area.
Collapse
|
11
|
Petrova NV, Sazanova KV, Medvedeva NA, Shavarda AL. Features of Metabolomic Profiles in Different Stages of Ontogenesis in Prunella vulgaris (Lamiaceae) Grown in a Climate Chamber. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019070100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Chen Y, Zhang X, Guo Q, Cao L, Qin Q, Li C, Zhao M, Wang W. Plant morphology, physiological characteristics, accumulation of secondary metabolites and antioxidant activities of Prunella vulgaris L. under UV solar exclusion. Biol Res 2019; 52:17. [PMID: 30935421 PMCID: PMC6442409 DOI: 10.1186/s40659-019-0225-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background Prunella vulgaris L. has been an important medicinal plant for the treatment of thyroid gland malfunction and mastitis in China for over 2000 years. There is an urgent need to select effective wavelengths for greenhouse cultivation of P. vulgaris as light is a very important factor in P. vulgaris growth. Here, we described the effects of natural light (control) and UV solar exclusion on the morphological and physiological traits, secondary metabolites contents and antioxidant activities of P. vulgaris. Results The results showed that UV solar exclusion resulted in remarkable alterations to morphological and biomass traits; significantly reduced the chlorophyll a, chlorophyll b and total chlorophyll contents; significantly enhanced the ratio of chlorophyll a to b; and significantly increased the carotenoid and anthocyanin contents in P. vulgaris. UV solar exclusion significantly increased the catalase (CAT) and peroxidase (POD) activities, increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and slightly decreased the glutathione (GSH) content. UV solar exclusion significantly increased the soluble sugar and H2O2 contents and increased the soluble protein content but significantly decreased the proline content and slightly decreased the MDA content. The secondary metabolite contents (total phenolics, rosmarinic acid, caffeic acid, hyperoside, ursolic acid and oleanolic acid) and in vitro antioxidative properties (DPPH· and ABTS·+scavenging activities) were significantly increased in P. vulgaris spicas under UV solar exclusion. Additionally, the total polysaccharide and total flavonoids contents were slightly increased by UV solar exclusion. The salviaflaside content was significantly reduced by UV solar exclusion. Conclusion Our study demonstrated that P. vulgaris activates several antioxidant defence systems against oxidative damage caused by UV solar exclusion.
Collapse
Affiliation(s)
- Yuhang Chen
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China. .,Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China. .,Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xuerong Zhang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.,Shanghai Traditional Chinese Medicine Co., LTD., Shanghai, 200002, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Liping Cao
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Qin Qin
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Chen Li
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Miao Zhao
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Wenming Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
13
|
Wang P, Wang Z, Pan Q, Sun X, Chen H, Chen F, Yuan L, Mi G. Increased biomass accumulation in maize grown in mixed nitrogen supply is mediated by auxin synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1859-1873. [PMID: 30759246 PMCID: PMC6436159 DOI: 10.1093/jxb/erz047] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 01/23/2019] [Indexed: 05/16/2023]
Abstract
The use of mixed nitrate and ammonium as a nitrogen source can improve plant growth. Here, we used metabolomics and transcriptomics to study the underlying mechanisms. Maize plants were grown hydroponically in the presence of three forms of nitrogen (nitrate alone, 75%/25% nitrate/ammonium, and ammonium alone). Plants grown with mixed nitrogen had a higher photosynthetic rate than those supplied only with nitrate, and had the highest leaf area and shoot and root biomass among the three nitrogen treatments. In shoot and root, the concentration of nitrogenous compounds (ammonium, glutamine, and asparagine) and carbohydrates (sucrose, glucose, and fructose) in plants with a mixed nitrogen supply was higher than that with nitrate supply, but lower than that with ammonium supply. The activity of the related enzymes (glutamate synthase, asparagine synthase, phosphoenolpyruvate carboxylase, invertase, and ADP-glucose pyrophosphorylase) changed accordingly. Specifically, the mixed nitrogen source enhanced auxin synthesis via the shikimic acid pathway, as indicated by the higher levels of phosphoenolpyruvate and tryptophan compared with the other two treatments. The expression of corresponding genes involving auxin synthesis and response was up-regulated. Supply of only ammonium resulted in high levels of glutamine and asparagine, starch, and trehalose hexaphosphate. We conclude that, in addition to increased photosynthesis, mixed nitrogen supply enhances leaf growth via increasing auxin synthesis to build a large sink for carbon and nitrogen utilization, which, in turn, facilitates further carbon assimilation and nitrogen uptake.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Zhangkui Wang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Qingchun Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xichao Sun
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Huan Chen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Fanjun Chen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Lixing Yuan
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guohua Mi
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Zhou Q, Gao J, Zhang R, Zhang R. Ammonia stress on nitrogen metabolism in tolerant aquatic plant-Myriophyllum aquaticum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:102-110. [PMID: 28525813 DOI: 10.1016/j.ecoenv.2017.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Ammonia has been a major reason of macrophyte decline in the water environment, and ammonium ion toxicity should be seen as universal, even in species frequently labeled as "NH4+ specialists". To study the effects of high NH4+-N stress of ammonium ion nitrogen on tolerant submerged macrophytes and investigate the pathways of nitrogen assimilation in different organisms, Myriophyllum aquaticum was selected and treated with various concentrations of ammonium ions at different times. Increasing of ammonium concentration leads to an overall increase in incipient ammonia content in leaves and stems of plants. In middle and later stages, high concentrations of NH4+ ion nitrogen taken up by M. aquaticum decreased, whereas the content of NO3- ion nitrogen increased. Moreover, in M. aquaticum, the activities of the enzymes nitrate reductase, glutamine synthetase and asparagine synthetase changed remarkably in the process of alleviating NH4+ toxicity and deficiency. The results of the present study may support the studies on detoxification of high ammonium ion content in NH4+-tolerant submerged macrophytes and exploration of tissue-specific expression systems.
Collapse
Affiliation(s)
- Qingyang Zhou
- The College of Chemistry and Molecular Engineering/Institute of Environmental Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jingqing Gao
- College of Water Conservancy and Environmental Engineering, Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Ruimin Zhang
- The College of Chemistry and Molecular Engineering/Institute of Environmental Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ruiqin Zhang
- The College of Chemistry and Molecular Engineering/Institute of Environmental Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
15
|
Lou HY, Jin L, Huang T, Wang DP, Liang GY, Pan WD. Vulgarisins B–D, three novel diterpenoids with a rare skeleton isolated from Prunella vulgaris Linn. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Chen Y, Liu L, Guo Q, Zhu Z, Zhang L. Effects of different water management options and fertilizer supply on photosynthesis, fluorescence parameters and water use efficiency of Prunella vulgaris seedlings. Biol Res 2016; 49:12. [PMID: 26906410 PMCID: PMC4765097 DOI: 10.1186/s40659-016-0069-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/05/2016] [Indexed: 11/14/2022] Open
Abstract
Background Prunella vulgaris L. is a medical plant cultivated in sloping, sun-shaded areas in China. Recently, owing to air-environmental stress, especially drought stress strongly inhibits plant growth and development, the appropriate fertilizer supply can alleviate these effects. However, these is little information about their effects on P. vulgaris growing in arid and semi-arid areas with limited water and fertilizer supply. Results In this study, water stress decreased the photosynthetic pigment contents, inhibited photosynthetic efficiency, induced photodamage in photosystem 2 (PS2), and decreased leaf instantaneous WUE (WUEi). The decreased net photosynthetic rate (Pn) under medium drought stress compared with the control might result from stomatal limitations. However, fertilizer supply improved photosynthetic capacity by increasing the photosynthetic pigment contents and enhancing photosynthetic efficiency under water deficit. Moreover, medium fertilization also increased WUEi under the two water conditions, but fertilizer supply did little to alleviate the PS2 photodamage caused by drought stress. Hence, drought stress was the primary limitation in the photosynthetic process of P. vulgaris seedlings, while the photosynthetic characteristics of the seedlings exhibited positive responses to fertilizer supply. Conclusions Appropriate fertilizer supply is recommended to improve photosynthetic efficiency, enhance WUEi and alleviate photodamage under drought stress.
Collapse
Affiliation(s)
- Yuhang Chen
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610083, People's Republic of China.
| | - Li Liu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Zaibiao Zhu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Lixia Zhang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|