1
|
Al-Snafi AE, Teibo JO, Shaheen HM, Akinfe OA, Teibo TKA, Emieseimokumo N, Elfiky MM, Al-Kuraishy HM, Al-Garbeeb AI, Alexiou A, Papadakis M, Mahana HAM, Younes AM, Elbanna OA, Qasem AEAR, Shahin IYI, Batiha GES. The therapeutic value of Myrtus communis L.: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4579-4600. [PMID: 38319389 PMCID: PMC11166855 DOI: 10.1007/s00210-024-02958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
Myrtus communis L. (Family: Myrtaceae) is naturally found in the western part of Asia, Southern Europe, and North Africa. It has been reportedly applied in pharmaceutical industry, traditional medicine, cosmetics, spices, and food. Pubmed, Google scholar, Web of Science, and Scopus were utilized to seek out relevant content concerning the therapeutic potential of M. communis. Subsequently, we conducted a review to identity noteworthy updates pertaining to M. communis. Myrtle berries, leaves, seeds, and essential oils are natural sources of several nutrients and bioactive compounds with marked health effects. The chemical analysis showed that M. communis contained oils, alkaloids, flavonoids, phenolics, coumarins, saponosides, tannins, quinines, and anthraquinones. A pharmacological investigation revealed that M. communis possessed anti-inflammatory, analgesic, antimicrobial, antiparasitic, antioxidant, antidiabetic, anticancer, antimutagenic, immunomodulatory, dermatological, cardiovascular, central nervous system, and gastrointestinal protective effects, among numerous other biological effects. This current review focused on the biochemical, pharmacological, therapeutic effects, and various biological activities of different parts of M. communis. It signifies that M. communis is a therapeutic plant with numerous applications in medicine and could be used as a drug isolate based on its safety and effectiveness.
Collapse
Affiliation(s)
- Ali Esmail Al-Snafi
- Department of Pharmacology, College of Medicine, University of Thi-Qar, Nasiriyah, Iraq
| | - John Oluwafemi Teibo
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Hazem M Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | | | - Titilade Kehinde Ayandeyi Teibo
- Department of Maternal-Infant and Public Health Nursing, College of Nursing, Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Numonde Emieseimokumo
- Department of Medical Biochemistry, Rivers State University, Rivers State, Port Harcourt, Nigeria
| | - Mohamed M Elfiky
- Anatomy Department, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Anatomy Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Garbeeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hitham Alaa Mohammed Mahana
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Ahmed Maher Younes
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Osama Ashraf Elbanna
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Abd-Elrahman Ali Radwan Qasem
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Ibrahim Yasser Ibrahim Shahin
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Zhu S, Shi J, Zhang Y, Chen X, Shi T, Li L. Combination administration of alprazolam and N-Ethylmaleimide synergistically enhances sleep behaviors in mice with no potential CNS side effects. PeerJ 2024; 12:e17342. [PMID: 38737745 PMCID: PMC11086308 DOI: 10.7717/peerj.17342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Background N-Ethylmaleimide (NEM), an agonist of the potassium chloride cotransporters 2 (KCC2) receptor, has been correlated with neurosuppressive outcomes, including decreased pain perception and the prevention of epileptic seizures. Nevertheless, its relationship with sleep-inducing effects remains unreported. Objective The present study aimed to investigate the potential enhancement of NEM on the sleep-inducing properties of alprazolam (Alp). Methods The test of the righting reflex was used to identify the appropriate concentrations of Alp and NEM for inducing sleep-promoting effects in mice. Total sleep duration and sleep quality were evaluated through EEG/EMG analysis. The neural mechanism underlying the sleep-promoting effect was examined through c-fos immunoreactivity in the brain using immunofluorescence. Furthermore, potential CNS-side effects of the combination Alp and NEM were assessed using LABORAS automated home-cage behavioral phenotyping. Results Combination administration of Alp (1.84 mg/kg) and NEM (1.0 mg/kg) significantly decreased sleep latency and increased sleep duration in comparison to administering 1.84 mg/kg Alp alone. This effect was characterized by a notable increase in REM duration. The findings from c-fos immunoreactivity indicated that NEM significantly suppressed neuron activation in brain regions associated with wakefulness. Additionally, combination administration of Alp and NEM showed no effects on mouse neural behaviors during automated home cage monitoring. Conclusions This study is the first to propose and demonstrate a combination therapy involving Alp and NEM that not only enhances the hypnotic effect but also mitigates potential CNS side effects, suggesting its potential application in treating insomnia.
Collapse
Affiliation(s)
- Siqing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Jingjing Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| |
Collapse
|
3
|
Tarbali S, Karami Mehrian S, Khezri S. Toxicity effects evaluation of green synthesized silver nanoparticles on intraperitoneally exposed male Wistar rats. Toxicol Mech Methods 2022; 32:488-500. [DOI: 10.1080/15376516.2022.2049412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sepideh Tarbali
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
| | - Saeed Karami Mehrian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
- Department of Biology, Faculty of Sciences, University of Razi, Kermanshah, Iran
| | - Shiva Khezri
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
| |
Collapse
|
4
|
Jahani R, Mojab F, Mahboubi A, Nasiri A, Tahamtani A, Faizi M. An In-Vivo Study on Anticonvulsant, Anxiolytic, and Sedative-Hypnotic Effects of the Polyphenol-Rich Thymus Kotschyanus Extract; Evidence for the Involvement of GABA A Receptors. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1456-1465. [PMID: 32641954 PMCID: PMC6934950 DOI: 10.22037/ijpr.2019.15579.13194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antidepressant-like activity of T. kotschyanus has been recently reported by scientists but insufficient attention has been so far devoted to T. kotschyanus, and there is a lack of information on the other neurobehavioral effects and side effects of this species. In the current study, the anticonvulsant, anxiolytic, and sedative-hypnotic, effects of Thymus kotschyanus extract on male NMRI mice were evaluated using pentylenetetrazole, maximal electroshock, elevated plus maze, and pentobarbital-induced sleeping tests. Since phenolic compounds and flavonoids have main roles in pharmacological effects of most plant extracts, the phenolic and flavonoid contents of the extract were measured with Folin-Ciocalteu and AlCl3 reagents. Acute toxicity, passive avoidance, and open field tests were carried out to assess the toxicity of the extract. To find out the possible mechanism of action, flumazenil as the specific GABAA receptor antagonist was used. Anticonvulsant and hypnotic effects of the extract were observed at 400 and 600 mg/kg. The extract at the dose of 200 mg/kg revealed significant anxiolytic effects, but it did not show any adverse effects on learning and memory at all the tested doses. Results of this study indicate that Thymus kotschyanus extract has anticonvulsant, anxiolytic, and hypnotic effects, which are likely related to the ability of some phenolic compounds to activate α1-containing GABAA receptors but more experiments still need to be carried out in order to find the exact mechanism, active component, and the toxicity of the Thymus kotschyanus extract.
Collapse
Affiliation(s)
- Reza Jahani
- Student Research Committee, Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraz Mojab
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Food Safty Research Center Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Nasiri
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Tahamtani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Jahani R, Khoramjouy M, Nasiri A, Sojoodi Moghaddam M, Asgharzadeh Salteh Y, Faizi M. Neuro-Behavioral Profile and Toxicity of the Essential Oil of Dorema ammoniacum Gum as an Anti-seizure, Anti-nociceptive, and Hypnotic Agent with Memory-enhancing Properties in D-Galactose Induced Aging Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:110-121. [PMID: 33680015 PMCID: PMC7757986 DOI: 10.22037/ijpr.2020.113738.14458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we focused on the neuro-behavioral profile, toxicity, and possible mechanisms of action of Dorema ammoniacum gum essential oil (DAG-EO). For this purpose, passive avoidance and Y-maze tests were performed to evaluate the potential effect of DAG-EO in the attenuation of memory impairment induced by 49 days administration of D-galactose and acute injection of scopolamine. Anticonvulsant and anti-nociceptive activities of DAG-EO were evaluated in the pentylenetetrazole and maximal electroshock-induced models of seizure and acetic acid-induced writhing tests, respectively. To find the possible mechanism of action, flumazenil and naloxone were used. Furthermore, the possible side effects were determined in the open field, grip strength, and rotarod tests. Our findings supported that 7-day administration of DAG-EO (50 and 100 mg/kg) improves memory impairment induced following administration of D-galactose and scopolamine. It was also revealed that DAG-EO possesses a dose-dependent sedative-hypnotic (100 mg/kg), anticonvulsant (ED50 ≈ 170 mg/kg), and anti-nociceptive (ED50 ≈ 175 mg/kg) activities possibly mediated via directly and/or indirectly modulation of GABAA and opioid receptors. No side effect was observed except muscle relaxation which was less than that of diazepam. The output of this study confirms anti-seizure, anti-nociceptive, sedative-hypnotic, and memory-enhancing properties of DAG-EO by modulation of GABAA receptors.
Collapse
Affiliation(s)
- Reza Jahani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mona Khoramjouy
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azadeh Nasiri
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Sojoodi Moghaddam
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yousef Asgharzadeh Salteh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Hennia A, Miguel MG, Nemmiche S. Antioxidant Activity of Myrtus communis L. and Myrtus nivellei Batt. & Trab. Extracts: A Brief Review. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E89. [PMID: 30103510 PMCID: PMC6165143 DOI: 10.3390/medicines5030089] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/05/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022]
Abstract
Myrtus communis L. (myrtle) and Myrtus nivellei Batt. & Trab. (Saharan myrtle) have been used in folk medicine for alleviating some ailments. M. communis is largely distributed in the Mediterranean Basin, whereas M. nivellei is confined in specific zones of the central Saharan mountains. The chemical composition and antioxidant activity of berry and leaf extracts isolated from myrtle are deeply documented, whereas those isolated from Saharan myrtle extracts are less studied. In both species, the major groups of constituents include gallic acid derivatives, flavonols, flavonol derivatives, and hydroxybenzoic acids. In coloured berries, anthocyanins are also present. In M. nivellei extracts are reported for some compounds not described in M. communis so far: 2-hydroxy-1,8-cineole-β-d-glucopyranoside, 2-hydroxy-1,8-cineole 2-O-α-l-arabinofuranosyl (1→6)-β-d-glucopyranoside, rugosin A, and rugosin B. Berries and leaves extracts of both species had antioxidant activity. Comparative studies of the antioxidant activity between leaf and berry myrtle extracts revealed that leaf extracts are best antioxidants, which can be assigned to the galloyl derivatives, flavonols, and flavonols derivatives, although the ratio of these groups of compounds might also have an important role in the antioxidant activity. The anthocyanins present in myrtle berries seem to possess weak antioxidant activity. The antioxidant activity of sample extracts depended on various factors: harvesting time, storage, extraction solvent, extraction type, and plant part used, among other factors. Leaf extracts of myrtle revealed to possess anti-inflammatory activity in several models used. This property has been attributed either to the flavonoids and/or hydrolysable tannins, nevertheless nonprenylated acylphloroglucinols (e.g., myrtucommulone and semimyrtucommulone) have also revealed a remarkable role in that activity. The biological activities of myrtle extracts found so far may direct its use towards for stabilizing complex lipid systems, as prebiotic in food formulations, and as novel therapeutic for the management of inflammation.
Collapse
Affiliation(s)
- Aicha Hennia
- Department of Agronomy, Faculty of Nature and Life Sciences, University of Mostaganem, BP 188/227, Mostaganem 27000, Algeria.
| | - Maria Graça Miguel
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, MeditBio, Campus de Gambelas 8005-139, Faro, Portugal.
| | - Said Nemmiche
- Department of Biology, Faculty of Nature and Life Sciences, University of Mostaganem, BP 188/227, Mostaganem 27000, Algeria.
| |
Collapse
|
7
|
Sisay M, Gashaw T. Ethnobotanical, Ethnopharmacological, and Phytochemical Studies of Myrtus communis Linn: A Popular Herb in Unani System of Medicine. J Evid Based Complementary Altern Med 2017; 22:1035-1043. [PMID: 28745081 PMCID: PMC5871300 DOI: 10.1177/2156587217718958] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022] Open
Abstract
Myrtus communis L (Myrtaceae) is one of the popular drugs being used in the Unani system of phytomedicine since ancient Greece period. From time immemorial, different parts of this plant and essential oil have been used for a variety of purposes such as cosmetics (hair fall control), flavoring of food and drinks as well as extensive therapeutic purposes. Ethnobotanical information revealed that M communis L has been a folkloric repute for the treatment of several diseases like gastric ulcer, diarrhea, dysentery, cancer, rheumatism, hemorrhage, deep sinuses, leucorrhoea, hemorrhoid, inflammation, dyspepsia, anxiety, insomnia, diabetes, hypertension, pulmonary disorders, and skin diseases. Moreover, ethnopharmacological studies revealed that the plant is endowed with extensive pharmacological activities, including antimicrobial, antidiarrheal, antidiabetic, antispasmodic, vasodilator, antiulcer, antioxidant, anticancer, anxiolytic, sedative-hypnotic, and anti-inflammatory activities, among others. The plant has been known to contain phenolic acids, tannins, flavonoids, glycosides, and terpenes. The myrtle oil was also found to be rich in a variety of bioactive monoterpenes and sesquiterpenes with their derivatives. Most of these studies validate the aforementioned traditional claims of this medicinal plant. Further studies are needed to unravel other pharmacological activities of this plant in the long run.
Collapse
|
8
|
Lee HJ, Lee SY, Jang D, Chung SY, Shim I. Sedative Effect of Sophora flavescens and Matrine. Biomol Ther (Seoul) 2017; 25:390-395. [PMID: 28190318 PMCID: PMC5499617 DOI: 10.4062/biomolther.2016.156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/19/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022] Open
Abstract
The present study investigated the sedative effects of Sophora flavescens (SF) and its bioactive compound, matrine through performing locomotor activity test and the electroencephalography (EEG) analysis in the rat. The underlying neural mechanism of their beneficial effects was determined by assessing c-Fos immunoreactivity and serotonin (5-HT) in the brain utilizing immunohistochemical method and enzyme-linked immunosorbent assay. The results showed that SF and matrine administration had an effect on normalization of caffeine-induced hyperactivity and promoting a shift toward non-rapid eye movement (NREM) sleep. c-Fos-immunoreactivity and 5-HT level in the ventrolateral preoptic nucleus (VLPO), a sleep promoting region, were increased in the both SF and matrine-injected groups. In conclusion, SF and its bioactive compound, matrine alleviated caffeine-induced hyperactivity and promoted NREM sleep by activating VLPO neurons and modulating serotonergic transmission. It is suggested that SF might be a useful natural alternatives for hypnotic medicine.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 02435, Republic of Korea
| | - Sun-Young Lee
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 02435, Republic of Korea
| | - Daehyuk Jang
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 02435, Republic of Korea
| | - Sun-Yong Chung
- Department of Oriental Neuropsychiatry, Kyung Hee University Korean Medicine Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Insop Shim
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 02435, Republic of Korea
| |
Collapse
|
9
|
Mekonnen S, Tigist G. Myrtus communis Linn: A review on ethnobotanical, ethnopharmacological and phytochemical studies. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/jpp2017.0451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Viswanatha GL, Venkataranganna MV, Prasad NBL, Ashok G. Evaluation of anti-epileptic activity of leaf extracts of Punica granatum on experimental models of epilepsy in mice. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:415-421. [PMID: 27757273 PMCID: PMC5061486 DOI: 10.5455/jice.20160904102857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/17/2016] [Indexed: 12/14/2022]
Abstract
Objectives: This study was aimed to examine the anti-epileptic activity of leaf extracts of Punica granatum in experimental models of epilepsy in Swiss albino mice. Materials and Methods: Petroleum ether leaf extract of P. granatum (PLPG), methanolic LPG (MLPG), and aqueous LPG (ALPG) extracts of P. granatum leaves was initially evaluated against 6-Hz-induced seizure model; the potent extract was further evaluated against maximal electroshock (MES) and pentylenetetrazole (PTZ)-induced convulsions. Further, the potent extract was evaluated for its influence on Gamma amino butyric acid (GABA) levels in brain, to explore the possible mechanism of action. In addition, the potent extract was subjected to actophotometer test to assess its possible locomotor activity deficit inducing action. Results: In 6-Hz seizure test, the MLPG has alleviated 6-Hz-induced seizures significantly and dose dependently at doses 50, 100, 200, and 400 mg/kg. In contrast, PLPG and ALPG did not show any protection, only high dose of ALPG (400 and 800 mg/kg, p.o.) showed very slight inhibition. Based on these observations, only MLPG was tested in MES and PTZ models. Interestingly, the MLPG (50, 100, 200 and 400 mg/kg) has offered significant and dose-dependent protection against MES (P < 0.01) and PTZ-induced (P < 0.01) seizures in mice. Further, MLPG showed a significant increase in brain GABA levels (P < 0.01) compared to control and showed insignificant change in locomotor activity in all tested doses (100, 200 and 400 mg/kg). Interestingly, higher dose of MLPG (400 mg/kg, p.o.) and Diazepam (5 mg/mg, p.o.) have completely abolished the convulsions in all the anticonvulsant tests. Conclusion: These findings suggest that MLPG possesses significant anticonvulsant property, and one of the possible mechanisms behind the anticonvulsant activity of MLPG may be through enhanced GABA levels in the brain.
Collapse
Affiliation(s)
| | | | | | - Godavarthi Ashok
- Radiant Research Services Pvt. Ltd., Peenya Industrial Area, Bengaluru, Karnataka, India
| |
Collapse
|