1
|
Xie J, Zhao Y, Dong N, Tian X, Feng J, Liu P, Li M, Wang M, Ying X, Yuan J, Li B, Tian F, Qiu Y, Yan X. Proteomics and transcriptomics jointly identify the key role of oxidative phosphorylation in fluoride-induced myocardial mitochondrial dysfunction in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112271. [PMID: 33932654 DOI: 10.1016/j.ecoenv.2021.112271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
The regulation of mitochondrial function, which is dominated by oxidative phosphorylation (OXPHOs), is important in fluoride induced cardiovascular disease. Based on the previous study of fluoride-induced mitochondrial structure and membrane potential abnormalities, this study integrated ITRAQ protein quantification and RNA-Seq methods to analyze the sequencing data of rat myocardial tissue under fluoride exposure (0, 30, 60 and 90 mg/L). A total of 22 differentially expressed genes associated with the OXPHOs pathway were screened by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) co-enrichment analysis, and were localizated by Interaction Network and calculated inter-genes and inter-omics correlations by Pearson correlation. In general, fluoride exposure can down-regulate genes related OXPHOs, particularly affecting the assembly of the complex I including Ndufa10, resulting in abnormal mitochondrial ATP synthesis and reduced myocardial energy supply. Most importantly, this study shows that the enriched information from the proteomics can explain the change process of energy production, but the specific molecules involved in energy supply cannot be obtained via transcriptomics information alone. Based on the results of transcriptional and protein analysis, our findings contribute to an innovative understanding of the pathways and molecular changes of myocardial injury induced by fluorosis.
Collapse
Affiliation(s)
- Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Nisha Dong
- Heping Hospital Affiliated To Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jing Feng
- Laboratory of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jiyu Yuan
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
2
|
Biochemical and Ultrastructural Cardiac Changes Induced by High-Fat Diet in Female and Male Prepubertal Rabbits. Anal Cell Pathol (Amst) 2018; 2018:6430696. [PMID: 29850391 PMCID: PMC5904822 DOI: 10.1155/2018/6430696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 11/30/2022] Open
Abstract
Early weight gain induced by high-fat diet has been identified as a predictor for cardiac disease, one of the most serious public health problems. Our goal is to study the influence of a HFD on biochemical, oxidant stress parameters, and the cardiac ultrastructure in both male and female prepubertal models. Experiments were carried on 24 prepubertal New Zealand white rabbits, randomly assigned to male and female control (MC and FC, resp.) or HFD (MHFD and FHFD, resp.) groups (n = 6) for 3 months. Body and heart weights and some biochemical and oxidative stress parameters such as lipids, calcium, CKMB, MDA, uric acid, ascorbic acid, and AOA are evaluated in plasma and the left ventricle. Under HFD effect, plasma parameters, such as lipids (TL, PL, and LDL-C), MDA, and CK-MB, increase more significantly in male than in female groups, when AA decreases. Some cardiac parameters such as TG and UA increase, when AA and AOA decrease; these variations are more significant in FHFD. In both male and female rabbits, HFD caused changes in heart ultrastructure, junctional complexes, mitochondria size and form, and so on. Early HFD feeding induced overweight, oxidative stress, and metabolic alterations in plasma and the heart of prepubertal rabbits, whereas lipotoxicity has especially a negative impact on male plasma but affects more the female heart ultrastructure.
Collapse
|
3
|
Burnstock G, Gentile D. The involvement of purinergic signalling in obesity. Purinergic Signal 2018; 14:97-108. [PMID: 29619754 PMCID: PMC5940632 DOI: 10.1007/s11302-018-9605-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
Obesity is a growing worldwide health problem, with an alarming increasing prevalence in developed countries, caused by a dysregulation of energy balance. Currently, no wholly successful pharmacological treatments are available for obesity and related adverse consequences. In recent years, hints obtained from several experimental animal models support the notion that purinergic signalling, acting through ATP-gated ion channels (P2X), G protein-coupled receptors (P2Y) and adenosine receptors (P1), is involved in obesity, both at peripheral and central levels. This review has drawn together, for the first time, the evidence for a promising, much needed novel therapeutic purinergic signalling approach for the treatment of obesity with a 'proof of concept' that hopefully could lead to further investigations and clinical trials for the management of obesity.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia.
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia.
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
| | - Daniela Gentile
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| |
Collapse
|