1
|
Ma S, Zhang Y, Zhu R, Wu S, Zhang S, Zeng H, Zhang W, Ye J. Integration of feature-based molecular networking and high-definition data-dependent acquisition for the comprehensive multicomponent characterization of Honghua Xiaoyao Tablet. Talanta 2025; 285:127298. [PMID: 39616758 DOI: 10.1016/j.talanta.2024.127298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025]
Abstract
Systematically identifying the chemical constituents in complex matrices is a challenge due to the inherent characteristics of compounds. The combination of liquid chromatography-tandem mass spectrometry (LC-MS) and classical molecular networking (CLMN) is a powerful technology for annotating small molecules. However, the low coverage from inappropriate acquisition modes and the inseparability of isomeric compound nodes still hinders the comprehensive metabolite characterization. A novel strategy that integrated high-definition data-dependent acquisition (HDDDA) from traveling-wave ion mobility mass spectrometry (TWIMS) and feature-based molecular networking (FBMN) was developed to improve chemical component characterization and enhance isomeric component discernment. The data-dependent acquisition (DDA) and HDDDA, were effectively and visually evaluated by CLMN and FBMN via the number of nodes, clustered nodes and clusters. Moreover, the efficiency of the three strategies was validated. The results strongly demonstrated that the HDDDA-FBMN strategy improves MS coverage and offers significant advantages for isomer identification. With the assistance of the UNIFI platform, the developed strategy was successfully applied to systematically investigate the chemical profile of Honghua Xiaoyao Tablet (HHXYT), a traditional folk empirical prescription for treating various gynecological diseases. 184 compounds were unambiguously identified or tentatively characterized, including 12 pairs of isomers, and two unreported compounds. In conclusion, this hybrid approach achieves dimensionally enhanced MS data acquisition and visual recognition of isomeric compounds, accelerating the structural characterization in complex systems. We anticipate that HDDDA-FBMN strategies will be a flexible and versatile tool for the chemical components in a complex system of TCMs.
Collapse
Affiliation(s)
- Siyi Ma
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuhao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Renwen Zhu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyu Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, 350122, China
| | - Shiyu Zhang
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Huawu Zeng
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Weidong Zhang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China; School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Ji Ye
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Zhang X, Lin W, Lei S, Zhang S, Cheng Y, Chen X, Lu Y, Zhao D, Zhang Y, Guo C. The anti-hyperlipidemic effects of Poria cocos (Schw.) Wolf extract: Modulating cholesterol homeostasis in hepatocytes via PPARα pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117532. [PMID: 38048892 DOI: 10.1016/j.jep.2023.117532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Poria cocos (Schw.) Wolf (Polyporaceae, P.cocos), which is born on the pine root, has a history of more than two thousand years of medicine in China. P.cocos was first recorded in the Shennong's Herbal Classic, studies have proved its lipid-lowering effect. AIM OF STUDY The aim of study was to investigate the underlying mechanism of P.cocos extract on hyperlipidemia. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats aged 9-12 weeks were intraperitoneally (IP) injected with Triton-WR 1339 to establish an acute hyperlipidemia model. At 0 h and 20 h after the model was established, low and high doses of P.cocos extract or simvastatin were given twice. After 48 h, the rats were sacrificed, and liver and serum samples were collected for analysis. The cell model was constructed by treating L02 cells with 1% fat emulsion-10% FBS-RPMI 1640 medium for 48 h. At the same time, low and high doses of P.cocos extract and simvastatin were administered. Oil red O staining was used to evaluate the lipid accumulation in the cells, and H&E staining was used to evaluate the liver lesions of rats. Real-time quantitative PCR and western blotting were used to detect the expressions of lipid metabolism-related genes. RESULTS P.cocos extract relieved lipid accumulation in vitro and alleviated hyperlipidemia in vivo. Both gene and protein expressions of peroxisome proliferator-activated receptor α (PPARα) were shown to be up-regulated by P.cocos extract. Additionally, P.cocos extract down-regulated the expressions of fatty acid synthesis-related genes sterol regulatory element-binding protein-1 (SREBP-1), Acetyl-CoA Carboxylase 1 (ACC1) and fatty acid synthase (FAS), while up-regulated the expressions of cholesterol metabolism-related genes liver X receptor-α (LXRα), ATP-binding cassette transporter A1 (ABCA1), cholesterol 7alpha-hydroxylase (CYP7A1) and low density lipoprotein receptor (LDLR), which were reversed by the treatment with the PPARα inhibitor GW6471. CONCLUSION P.cocos extract ameliorates hyperlipidemia and lipid accumulation by regulating cholesterol homeostasis in hepatocytes through PPARα pathway. This study provides evidence that supplementation with P.cocos extract could be a potential strategy for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Xinyu Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wei Lin
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuyue Lei
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Siqi Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yujie Cheng
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chaorui Guo
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Xie Z, Zeng H, He D, Luo J, Liu T, Shen B, Qin Y, Zhang S, Jin J. Insights into the inhibition of stomach cancer MKN45 cell growth by Poria cocos ethanol-soluble extract based on MAPK/PI3K signaling pathways and components cell fishing. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117417. [PMID: 37977426 DOI: 10.1016/j.jep.2023.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Poria cocos F.A. Wolf is an edible fungus with forming sclerotia, which has the effects of promoting diuresis, exuding dampness, invigorating the spleen, and regulating the stomach. P. cocos has a high application in the clinic of traditional Chinese medicine, and some studies have indicated that P. cocos has a good effect on tumor diseases. According to ancient records and modern studies, P. cocos wine offers beneficial effects in terms of strengthening tendons and bones and anti-tumor effects. AIM OF THE STUDY To understand the substance composition of P. cocos ethanol-soluble extract (PESE) and then further study the effect and potential mechanism of PESE components on gastric cancer. MATERIALS AND METHODS In vitro and in vivo experiments were performed to detect the cell activity and apoptotic condition. Differential expression analysis and pathway enrichment were performed based on transcriptomics and were verified by real-time polymerase chain reaction and western blotting. The mice of the stomach cancer tumor model were randomly categorized into three groups. The weight and tumor volume of the mice were measured, and the pathological characteristics of tumor tissue and immunohistochemical changes were determined. Then, the main active components of PESE were detected by MKN45 cell fishing. RESULTS In vitro experiments showed that PESE inhibited the proliferation of MKN45 cells, but it did not induce apoptosis. Based on the transcriptome and western blotting results, the inhibition of MKN45 proliferation by PESE may be influenced by mitogen-activated protein kinase (MAPK) and phosphoinositide-3-kinase-protein kinase B (PI3K-Akt) signaling pathways. In vivo experiments showed that PESE inhibited tumor growth in mice and caused partial necrosis of tumor cells but had no toxic effect on mice. Cell fishing identified nine triterpenoids of P. cocos as the major active components of PESE. CONCLUSIONS The results indicated that PESE has a significant inhibitory effect on stomach cancer, and its mechanism probably commonly affects the MAPK and PI3K-Akt signaling pathways, which could be due to the triterpenoid components.
Collapse
Affiliation(s)
- Zhenni Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China; Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, 410036, China
| | - Hongliang Zeng
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China; Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, 410036, China
| | - Dan He
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, 410036, China
| | - Ji Luo
- The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
| | - Tingting Liu
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
| | - Bingbing Shen
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
| | - You Qin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
| | - Shuihan Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China; Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, 410036, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China.
| |
Collapse
|
4
|
Stępnik K, Kukula-Koch W, Płaziński W. Molecular and Pharmacokinetic Aspects of the Acetylcholinesterase-Inhibitory Potential of the Oleanane-Type Triterpenes and Their Glycosides. Biomolecules 2023; 13:1357. [PMID: 37759757 PMCID: PMC10526139 DOI: 10.3390/biom13091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The acetylcholinesterase-inhibitory potential of the oleanane-type triterpenes and their glycosides from thebark of Terminalia arjuna (Combreatceae), i.e.,arjunic acid, arjunolic acid, arjungenin, arjunglucoside I, sericic acid and arjunetin, is presented. The studies are based on in silico pharmacokinetic and biomimetic studies, acetylcholinesterase (AChE)-inhibitory activity tests and molecular-docking research. Based on the calculated pharmacokinetic parameters, arjunetin and arjunglucoside I are indicated as able to cross the blood-brain barrier. The compounds of interest exhibit a marked acetylcholinesterase inhibitory potential, which was tested in the TLC bioautography test. The longest time to reach brain equilibrium is observed for both the arjunic and arjunolic acids and the shortest one for arjunetin. All of the compounds exhibit a high and relatively similar magnitude of binding energies, varying from ca. -15 to -13 kcal/mol. The superposition of the most favorable positions of all ligands interacting with AChE is analyzed. The correlation between the experimentally determined IC50 values and the steric parameters of the molecules is investigated. The inhibition of the enzyme by the analyzed compounds shows their potential to be used as cognition-enhancing agents. For the most potent compound (arjunglucoside I; ARG), the kinetics of AChE inhibition were tested. The Michaelis-Menten constant (Km) for the hydrolysis of the acetylthiocholine iodide substrate was calculated to be 0.011 mM.
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland;
| | - Wojciech Płaziński
- Department of Biopharmacy, Medical University of Lublin, ul. Chodźki 4a, 20-093 Lublin, Poland;
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| |
Collapse
|
5
|
Li L, Zuo ZT, Wang YZ. Identification of geographical origin and different parts of Wolfiporia cocos from Yunnan in China using PLS-DA and ResNet based on FT-NIR. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:792-808. [PMID: 35491545 DOI: 10.1002/pca.3130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Wolfiporia cocos, as a kind of medicine food homologous fungus, is well-known and widely used in the world. Therefore, quality and safety have received worldwide attention, and there is a trend to identify the geographic origin of herbs with artificial intelligence technology. OBJECTIVE This research aimed to identify the geographical traceability for different parts of W. cocos. METHODS The exploratory analysis is executed by two multivariate statistical analysis methods. The two-dimensional correlation spectroscopy (2DCOS) images combined with residual convolutional neural network (ResNet) and partial least square discriminant analysis (PLS-DA) models were established to identify the different parts and regions of W. cocos. We compared and analysed 2DCOS images with different fingerprint bands including full band, 8900-6850 cm-1 , 6300-5150 cm-1 and 4450-4050 cm-1 of original spectra and the second-order derivative (SD) spectra preprocessed. RESULTS From all results: the exploratory analysis results showed that t-distributed stochastic neighbour embedding was better than principal component analysis. The synchronous SD 2DCOS is more suitable for the identification and analysis of complex mixed systems for the small-band for Poria and Poriae cutis. Both models of PLS-DA and ResNet could successfully identify the geographical traceability of different parts based on different bands. The 10% external verification set of the ResNet model based on synchronous 2DCOS can be accurately identified. CONCLUSION Therefore, the methods could be applied for the identification of geographical origins of this fungus, which may provide technical support for quality evaluation.
Collapse
Affiliation(s)
- Lian Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, P. R. China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, P. R. China
| | - Zhi-Tian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, P. R. China
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, P. R. China
| |
Collapse
|
6
|
Li L, Zuo ZT, Wang YZ. The Traditional Usages, Chemical Components and Pharmacological Activities of Wolfiporia cocos: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:389-440. [PMID: 35300566 DOI: 10.1142/s0192415x22500161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As an endemic species,Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb. is widely distributed, such as in China, Korea, Japan, and North America, which have had a dual-purpose resource for medicines and food for over 2000 years. The applications of W. cocos were used to treat diseases including edema, insomnia, spleen deficiency, and vomiting. What's more, there have been wide uses of such edible fungi as a function food or dietary supplement recently. Up until now, 166 kinds of chemical components have been isolated and identified from W. cocos including triterpenes, polysaccharides, sterols, diterpenes, and others. Modern pharmacological studies showed that the components hold a wide range of pharmacological activities both in vitro and in vivo, such as antitumor, anti-inflammatory, antibacterial, anti-oxidant, and antidepressant activities. In addition, present results showed that the mechanisms of pharmacological activities were closely related to chemical structures, molecular signaling paths and the expression of relate proteins for polysaccharides and triterpenes. For further in-depth studies on this fungus based on the recent research status, this review provided some perspectives and systematic summaries of W. cocos in traditional uses, chemical components, pharmacological activities, separation and analysis technologies, and structure-activity relationships.
Collapse
Affiliation(s)
- Lian Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, P. R. China.,College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Zhi-Tian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, P. R. China
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, P. R. China
| |
Collapse
|
7
|
Faheem M, Ameer S, Khan AW, Haseeb M, Raza Q, Ali Shah F, Khusro A, Aarti C, Umar Khayam Sahibzada M, El-Saber Batiha G, Koirala N, Adnan M, Alghamdi S, Assaggaf H, Alsiwiehri NO. A comprehensive review on antiepileptic properties of medicinal plants. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
8
|
Jiang TT, Ding LF, Nie W, Wang LY, Lei T, Wu XD, Zhao QS. Tetranorlanostane and Lanostane Triterpenoids with Cytotoxic Activity from the Epidermis of Poria cocos. Chem Biodivers 2021; 18:e2100196. [PMID: 33830612 DOI: 10.1002/cbdv.202100196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 11/07/2022]
Abstract
Two unprecedented tetranorlanostane triterpenoids, poricolides A (1) and B (2), and two new lanostane triterpenoids, 3β-acetoxy-24-methyllanosta-8,16,24(31)-trien-21-oic acid (3) and 3β-acetoxylanosta-7,9(11),16,23-tetraen-21-oic acid (4), were isolated from the epidermis of Poria cocos. The structures of 1-4 were determined via analysis of 1 H-, 13 C-, and 2D-NMR, and HR-ESI-MS data, and the absolute configurations of 1 and 3 were established by single-crystal X-ray diffraction analysis. Compounds 1 and 2 were the first report of tetranorlanostane triterpenoid having a δ-lactone ring at C(17). Compounds 3 and 4 were rare lanostane triterpenoids having a double bond between C(16) and C(17). Compounds 1-4 exhibited potent antiproliferative effects against A549, SMMC-7721, MCF-7, and SW480 cancer cell lines with IC50 values from 16.19±0.38 to 27.74±1.12 μM.
Collapse
Affiliation(s)
- Ting-Ting Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China.,School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, P. R. China
| | - Lin-Fen Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China.,School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, P. R. China
| | - Wei Nie
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China.,School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, P. R. China
| | - Liu-Yan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China.,School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, P. R. China
| | - Tie Lei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China.,School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, P. R. China
| | - Xing-De Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| |
Collapse
|
9
|
Luo H, Qian J, Xu Z, Liu W, Xu L, Li Y, Xu J, Zhang J, Xu X, Liu C, He L, Li J, Sun C, Martin F, Song J, Chen S. The Wolfiporia cocos Genome and Transcriptome Shed Light on the Formation of Its Edible and Medicinal Sclerotium. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:455-467. [PMID: 33359677 PMCID: PMC8242266 DOI: 10.1016/j.gpb.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/13/2019] [Accepted: 02/15/2019] [Indexed: 11/26/2022]
Abstract
Wolfiporia cocos (F. A. Wolf) has been praised as a food delicacy and medicine for centuries in China. Here, we present the genome and transcriptome of the Chinese strain CGMCC5.78 of W. cocos. High-confidence functional prediction was made for 9277 genes among the 10,908 total predicted gene models in the W. cocos genome. Up to 2838 differentially expressed genes (DEGs) were identified to be related to sclerotial development by comparing the transcriptomes of mycelial and sclerotial tissues. These DEGs are involved in mating processes, differentiation of fruiting body tissues, and metabolic pathways. A number of genes encoding enzymes and regulatory factors related to polysaccharide and triterpenoid production were strikingly regulated. A potential triterpenoid gene cluster including the signature lanosterol synthase (LSS) gene and its modified components were annotated. In addition, five nonribosomal peptide synthase (NRPS)-like gene clusters, eight polyketide synthase (PKS) gene clusters, and 15 terpene gene clusters were discovered in the genome. The differential expression of the velevt family proteins, transcription factors, carbohydrate-active enzymes, and signaling components indicated their essential roles in the regulation of fungal development and secondary metabolism in W. cocos. These genomic and transcriptomic resources will be valuable for further investigations of the molecular mechanisms controlling sclerotial formation and for its improved medicinal applications.
Collapse
Affiliation(s)
- Hongmei Luo
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jun Qian
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhichao Xu
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wanjing Liu
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lei Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ying Li
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jianhong Zhang
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiaolan Xu
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chang Liu
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Liu He
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianqin Li
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chao Sun
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Francis Martin
- INRA, Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, 54280 Champenoux, France; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Institute of Microbiology, Beijing Forestry University, Beijing 100083, China.
| | - Jingyuan Song
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Shilin Chen
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
10
|
Dose-Dependent Behavioral and Antioxidant Effects of Quercetin and Methanolic and Acetonic Extracts from Heterotheca inuloides on Several Rat Tissues following Kainic Acid-Induced Status Epilepticus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5287507. [PMID: 31949879 PMCID: PMC6939434 DOI: 10.1155/2019/5287507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/12/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
Kainic acid (KA) has been used to study the neurotoxicity induced after status epilepticus (SE) due to activation of excitatory amino acids with neuronal damage. Medicinal plants can protect against damage caused by KA-induced SE; in particular, organic extracts of Heterotheca inuloides and its metabolite quercetin display antioxidant activity and act as hepatoprotective agents. However, it is unknown whether these properties can protect against the hyperexcitability underlying the damage caused by KA-induced SE. Our aim was to study the protective effects (with regard to behavior and antioxidant activity) of administration of natural products methanolic (ME) and acetonic (AE) extracts and quercetin (Q) from H. inuloides at doses of 30 mg/kg (ME30, AE30, and Q30 groups), 100 mg/kg (ME100, AE100, and Q100 groups), and 300 mg/kg (ME300, AE300, and Q300 groups) against damage in brain regions of male Wistar rats treated with KA. We found dose-dependent effects on behavioral and biochemical studies in the all-natural product groups vs. the control group, with decreases in seizure severity (Racine's scale) and increases in seizure latency (p < 0.05 in the ME100, AE100, Q100, and Q300 groups and p < 0.01 in the AE300 and ME300 groups); on lipid peroxidation and carbonylated proteins in all brain tissues (p < 0.0001); and on GPx, GR, CAT, and SOD activities with all the treatments vs. KA (p ≤ 0.001). In addition, there were strong negative correlations between carbonyl levels and latency in the group treated with KA and in the group treated with methanolic extract in the presence of KA (r = ‐0.9919, p = 0.0084). This evidence suggests that organic extracts and quercetin from H. inuloides exert anticonvulsant effects via direct scavenging of reactive oxygen species (ROS) and modulation of antioxidant enzyme activity.
Collapse
|
11
|
Comparative Analysis of the Characteristics of Triterpenoid Transcriptome from Different Strains of Wolfiporia cocos. Int J Mol Sci 2019; 20:ijms20153703. [PMID: 31362345 PMCID: PMC6696085 DOI: 10.3390/ijms20153703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
The dried sclerotia of Wolfiporia cocos (Schwein.) Ryvarden & Gilb., a traditional Chinese medicine, has triterpenoid as its main active component. Breeding high-yield triterpenoid in W. cocos is an important research topic at present. We screened out two monosporal strains from the same W. cocos 5.78, high-yielding DZAC-Wp-H-29 (H) and low-yielding DZAC-Wp-L-123 (L), and cultured mycelia for 17 days, 34 days, and 51 days, respectively. Transcriptome analysis results showed that triterpenoid synthesis is closely related to gene expression in triterpenoid synthesis pathways (hydroxymethyl glutaryl-CoA reductase (HMGCR), farnesyl diphosphate synthase (FDPS), 4-hydroxybenzoate polyprenyltransferase (COQ2), C-8 sterol isomerase (ERG2), sterol O-acyltransferase (ACAT), tyrosine aminotransferase (TAT), torulene dioxygenase (CAO2), and sterol-4alpha-carboxylate 3-dehydrogenase (erg26)), and is limited by the expression of enzyme M20 combined with domain protein peptide (Pm20d2), aryl-alcohol dehydrogenase (norA), ISWI chromatin-remodeling complex ATPase ISW2, GroES-like protein (adh), cytochrome P450 (ftmP450-1), and unknown proteins unigene0001029 and unigene0011374. In addition, maintaining high triterpenoid accumulation in W. cocos may require a stable membrane structure, so the accumulation ability may be related to the high synthesis ability of sterols. The low accumulation of triterpenoid in W. cocos may be due to the products of key enzymes increasing flow to other pathways.
Collapse
|
12
|
|
13
|
Fangjing decoction relieves febrile seizures-induced hippocampal neuron apoptosis in rats via regulating the Akt/mTOR pathway. Biosci Rep 2018; 38:BSR20181206. [PMID: 30287501 PMCID: PMC6209604 DOI: 10.1042/bsr20181206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Fangjing decoction is a Traditional Chinese Medicine that exhibits anticonvulsive effects in treating febrile seizures (FS). Its action mechanism and the regulation on Akt/mammalian target of rapamycin (mTOR) pathway were revealed in the present study. Methods: FS model was established in Sprague–Dawley rats with or without Fangjing decoction treatment. On day 5, following initiation of drug treatment, seizures were monitored. Hippocampal neuron apoptosis was assessed using terminal dUTP nick end-labeling method. The levels of Bax, protein kinase B (Akt), phospho-Akt (p-Akt), mTOR, and p-mTOR proteins were analyzed using Western blotting. The content of hippocampal γ-aminobutyric acid (GABA) was measured by using ELISA assay. Results: Compared with the control group (n=8), Fangjing decoction effectively shortened escape latency and duration of FS and decreased the frequency of FS in rats (n=8). Concomitantly, the apoptosis of hippocampal neurons, as well as Bax protein levels were also decreased in FS rats which were treated with Fangjing decoction. In addition, the Akt/mTOR signaling was found to be activated in rat hippocampus following FS, as evidenced by increased p-Akt and p-mTOR, while Fangjing decoction could inhibit the activation of Akt/mTOR signaling. Furthermore, the low GABA content in rat hippocampus following FS was significantly elevated by Fangjing decoction treatment. More importantly, SC79, a specific activator for Akt, apparently attenuated the protective effects of Fangjing decoction on FS rats. Conclusion: These results suggest that Fangjing decoction protects the hippocampal neurons from apoptosis by inactivating Akt/mTOR pathway, which may contribute to mitigating FS-induced brain injury.
Collapse
|
14
|
Zhao Z, He X, Ma C, Wu S, Cuan Y, Sun Y, Bai Y, Huang L, Chen X, Gao T, Zheng X. Excavating Anticonvulsant Compounds from Prescriptions of Traditional Chinese Medicine in the Treatment of Epilepsy. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:707-737. [PMID: 29737210 DOI: 10.1142/s0192415x18500374] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditional Chinese medicine (TCM) has a long history and been widely used in prevention and treatment of epilepsy in China. This paper is intended to review the advances in the active anticonvulsant compounds isolated from herbs in the prescription of TCM in the treatment of epilepsy. These compounds were introduced with the details including classification, CAS number specific structure and druggability data. Meanwhile, much of the research in these compounds in the last two decades has shown that they exhibited favorable pharmacological properties in treatment of epilepsy both in in vivo and in vitro models. In addition, in this present review, the evaluation of the effects of the anticonvulsant classical TCM prescriptions is discussed. According to these rewarding pharmacological effects and chemical substances, the prescription of TCM herbs could be an effective therapeutic strategy for epilepsy patients, and also could be a promising source for the development of new drugs.
Collapse
Affiliation(s)
- Zefeng Zhao
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Xirui He
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China.,‡ Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, P. R. China
| | - Cuixia Ma
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Shaoping Wu
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Ye Cuan
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Ying Sun
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Yajun Bai
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China.,† College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Linhong Huang
- ‡ Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, P. R. China
| | - Xufei Chen
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Tian Gao
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Xiaohui Zheng
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
15
|
Tyrosinase Inhibitory Activity of Total Triterpenes and Poricoic Acid A Isolated from Poria cocos. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60111-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
The Phosphatome of Medicinal and Edible Fungus Wolfiporia cocos. Curr Microbiol 2017; 75:124-131. [DOI: 10.1007/s00284-017-1356-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
|
17
|
Lee D, Lee S, Shim SH, Lee HJ, Choi Y, Jang TS, Kim KH, Kang KS. Protective effect of lanostane triterpenoids from the sclerotia of Poria cocos Wolf against cisplatin-induced apoptosis in LLC-PK1 cells. Bioorg Med Chem Lett 2017; 27:2881-2885. [DOI: 10.1016/j.bmcl.2017.04.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/14/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
|
18
|
Lee SR, Lee S, Moon E, Park HJ, Park HB, Kim KH. Bioactivity-guided isolation of anti-inflammatory triterpenoids from the sclerotia of Poria cocos using LPS-stimulated Raw264.7 cells. Bioorg Chem 2016; 70:94-99. [PMID: 27912907 DOI: 10.1016/j.bioorg.2016.11.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022]
Abstract
Poria cocos Wolf (Polyporaceae) has been used as a medicinal fungus to treat various diseases since ancient times. This study aimed to investigate the anti-inflammatory chemical constituents of the sclerotia of P. cocos. Based on bioassay-guided fractionation using lipopolysaccharide (LPS)-stimulated Raw264.7 cells, chemical investigation of the EtOH extract of the sclerotia of P. cocos resulted in the isolation and identification of eight compounds including six triterpenoids, namely poricoic acid A (1), 3-O-acetyl-16α-hydroxydehydrotrametenolic acid (2), polyporenic acid C (3), 3β-hydroxylanosta-7,9(11),24-trien-21-oic acid (4), trametenolic acid (5), and dehydroeburicoic acid (6), as well as (-)-pinoresinol (7) and protocatechualdehyde (8). The structures of the isolated compounds were determined by spectroscopic analysis, including 1H and 13C NMR spectra, and LC/MS analysis. The anti-inflammatory activities of the isolates were evaluated by estimating their effect on the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated Raw264.7 as well as on the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Compounds 1-5 inhibited NO production and iNOS expression in LPS-stimulated Raw264.7 cells. Among them, compound 1 exerted the highest anti-inhibitory activity and reduced PGE2 levels via downregulation of COX-2 protein expression. The findings of this study provide experimental evidence that the sclerotia of P. cocos are a potential source of natural anti-inflammatory agents for use in pharmaceuticals and functional foods. Furthermore, the most active compound 1, seco-lanostane triterpenoid, could be a promising lead compound for the development of novel anti-inflammatory agents.
Collapse
Affiliation(s)
- Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Eunjung Moon
- Charmzone R&D Center, Charmzone Co. Ltd., Seoul 135-851, Republic of Korea
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 461-701, Republic of Korea
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
19
|
Wei W, Shu S, Zhu W, Xiong Y, Peng F. The Kinome of Edible and Medicinal Fungus Wolfiporia cocos. Front Microbiol 2016; 7:1495. [PMID: 27708635 PMCID: PMC5030230 DOI: 10.3389/fmicb.2016.01495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/07/2016] [Indexed: 01/10/2023] Open
Abstract
Wolfiporia cocos is an edible and medicinal fungus that grows in association with pine trees, and its dried sclerotium, known as Fuling in China, has been used as a traditional medicine in East Asian countries for centuries. Nearly 10% of the traditional Chinese medicinal preparations contain W. cocos. Currently, the commercial production of Fuling is limited because of the lack of pine-based substrate and paucity of knowledge about the sclerotial development of the fungus. Since protein kinase (PKs) play significant roles in the regulation of growth, development, reproduction, and environmental responses in filamentous fungi, the kinome of W. cocos was analyzed by identifying the PKs genes, studying transcript profiles and assigning PKs to orthologous groups. Of the 10 putative PKs, 11 encode atypical PKs, and 13, 10, 2, 22, and 11 could encoded PKs from the AGC, CAMK, CK, CMGC, STE, and TLK Groups, respectively. The level of transcripts from PK genes associated with sclerotia formation in the mycelium and sclerotium stages were analyzed by qRT-PCR. Based on the functions of the orthologs in Sclerotinia sclerotiorum (a sclerotia-formation fungus) and Saccharomyces cerevisiae, the potential roles of these W. cocos PKs were assigned. To the best of our knowledge, our study is the first identification and functional discussion of the kinome in the edible and medicinal fungus W. cocos. Our study systematically suggests potential roles of W. cocos PKs and provide comprehensive and novel insights into W. cocos sclerotial development and other economically important traits. Additionally, based on our result, genetic engineering can be employed for over expression or interference of some significant PKs genes to promote sclerotial growth and the accumulation of active compounds.
Collapse
Affiliation(s)
- Wei Wei
- Institute for Interdisciplinary Research, Jianghan University Wuhan, China
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Wenjun Zhu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University Wuhan, China
| | - Ying Xiong
- Hefei Inzyme Information Technology Co., Ltd Wuhan, China
| | - Fang Peng
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University Wuhan, China
| |
Collapse
|