1
|
Jouhara H, Chauhan A, Guichet V, Delpech B, Abdelkarem MA, Olabi A, Trembley J. Low-temperature heat transfer mediums for cryogenic applications. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
2
|
Arutyunyan I, Elchaninov A, Sukhikh G, Fatkhudinov T. Cryopreservation of Tissue-Engineered Scaffold-Based Constructs: from Concept to Reality. Stem Cell Rev Rep 2022; 18:1234-1252. [PMID: 34761366 DOI: 10.1007/s12015-021-10299-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Creation of scaffold-based tissue-engineered constructs (SB TECs) is costly and requires coordinated qualified efforts. Cryopreservation enables longer shelf-life for SB TECs while enormously enhancing their availability as medical products. Regenerative treatment with cryopreserved SB TECs prepared in advance (possibly prêt-à-porter) can be started straight away on demand. Animal studies and clinical trials indicate similar levels of safety for cryopreserved and freshly prepared SB TECs. Although cryopreservation of such constructs is more difficult than that of cell suspensions or tissues, years of research have proved the principal possibility of using ready-to-transplant SB TECs after prolonged cryostorage. Cryopreservation efficiency depends not only on the sheer viability of adherent cells on scaffolds after thawing, but largely on the retention of proliferative and functional properties by the cells, as well as physical and mechanical properties by the scaffolds. Cryopreservation protocols require careful optimization, as their efficiency depends on multiple parameters including cryosensitivity of cells, chemistry and architecture of scaffolds, conditions of cell culture before freezing, cryoprotectant formulations, etc. In this review we discuss recent achievements in SB TEC cryopreservation as a major boost for the field of tissue engineering and biobanking.
Collapse
Affiliation(s)
- Irina Arutyunyan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Research Institute of Human Morphology, Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Human Morphology, Moscow, Russia.
- Department of Histology, Cytology and Embryology, Peoples' Friendship University of Russia (RUDN University, 6, Miklukho-Maklaya Street, 117198, Moscow, Russia.
| |
Collapse
|
3
|
Becherucci V, Bisin S, Ermini S, Piccini L, Gori V, Gentile F, Ceccantini R, De Rienzo E, Bindi B, Pavan P, Cunial V, Allegro E, Brugnolo F, Bambi F. Comparison of CryoMACS Freezing Bags with Maco Biotech Freezing-Ethinyl Vinyl Acetate Bags for Hematopoietic Progenitor Cells Cryopreservation Using a CD34 +-Enriched Product. Biopreserv Biobank 2020; 18:454-461. [PMID: 32813549 DOI: 10.1089/bio.2019.0135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Hematopoietic progenitor cells (HPCs) cryopreservation have applications, especially in the autologous setting, allowing therapeutic use several years after collection. Cryopreservation aims to preserve the therapeutic properties of HPCs, and successful cryopreservation depends on several factors such as preservation procedures, biopreservation media, freezing rates, and thawing procedures. In this context, the choice of the freezing bag is critical as it provides mechanical protection during the freezing process. Since Maco Biotech Freezing-ethinyl vinyl acetate (EVA) Bags® are no longer available in our country, a comparative study was developed to verify bioequivalence with the Miltenyi CryoMACS® freezing bag. Methods: In this study, a CD34+-enriched product was used to better reproduce HPC apheresis. Freezing bags were filled with the same volume, cryopreserved with controlled rate freezing, and stored in the vapor phase of liquid nitrogen for at least 6 months. After thawing, all bags were tested for integrity and sterility using a microbial challenge. In addition, a comparison was developed by evaluating recovery of white blood cells, mononuclear cells, lymphocytes, and CD34+ cells. Results: No significant differences between the two manufacturers' bags have been observed in terms of the evaluated parameters. Data were confirmed, even comparing bags according to filling volume. Data presented in this study support the conclusion that CryoMACS freezing bags are bioequivalent to Maco Biotech Freezing-EVA Bags for HPC cryopreservation.
Collapse
Affiliation(s)
- Valentina Becherucci
- Immunohematology, Transfusion Medicine and Laboratory, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Silvia Bisin
- Immunohematology, Transfusion Medicine and Laboratory, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Stefano Ermini
- Stem Cell Collection and Therapeutic Apheresis Unit, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Luisa Piccini
- Immunohematology, Transfusion Medicine and Laboratory, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Valentina Gori
- Immunohematology, Transfusion Medicine and Laboratory, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Francesca Gentile
- Immunohematology, Transfusion Medicine and Laboratory, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Riccardo Ceccantini
- Immunohematology, Transfusion Medicine and Laboratory, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Elena De Rienzo
- Immunohematology, Transfusion Medicine and Laboratory, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Barbara Bindi
- Immunohematology, Transfusion Medicine and Laboratory, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Paola Pavan
- Immunohematology, Transfusion Medicine and Laboratory, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Vanessa Cunial
- Immunohematology, Transfusion Medicine and Laboratory, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Elisa Allegro
- Stem Cell Collection and Therapeutic Apheresis Unit, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Francesca Brugnolo
- Stem Cell Collection and Therapeutic Apheresis Unit, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Franco Bambi
- Immunohematology, Transfusion Medicine and Laboratory, "A. Meyer" University Children's Hospital, Florence, Italy
| |
Collapse
|
4
|
Optimizing recovery of frozen human peripheral blood mononuclear cells for flow cytometry. PLoS One 2017; 12:e0187440. [PMID: 29091947 PMCID: PMC5665600 DOI: 10.1371/journal.pone.0187440] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022] Open
Abstract
Introduction Live peripheral blood mononuclear cells (PBMCs) can be frozen and thawed for later analyses by adding and removing a cryoprotectant, such as dimethyl sulfoxide (DMSO). Laboratories across the world use various procedures, but published evidence of optimal thawing procedures is scarce. Materials and methods PBMCs were separated from blood collected from healthy Danish blood donors, and stored at -80°C after adding of DMSO. The essential steps in the thawing procedure were modified and performance was evaluated by flow cytometry with respect to the percentage and total yield of viable PMBCs. Results The best-performing washing medium was Roswell Park Memorial Institute (RPMI) 1640 at 37°C with 20% fetal bovine serum. When using 10 mL washing medium in a 15-mL Falcon tube, samples should be centrifuged for at least 10 minutes at 500 g. We failed to detect any differences between the tested methods of mixing PBMCs with washing medium. Likewise, neither the thawing duration nor centrifugation temperature (20°C and 37°C) had any effect. PBMCs could be incubated (rested) for up to eight hours in a 37°C 5% CO2 incubator without affecting cell counts, but incubating PBMCs for 16 hours significantly decreased viability and recovery. In general, high viability was not necessarily associated with high recovery. Conclusion Changing the thawing procedure significantly impacted PBMC viability and live cell recovery. Evaluating both viability and live PBMC recovery are necessary to evaluate method performance. Investigation of differential loss of PBMC subtypes and phenotypic changes during thawing and incubation requires further evaluation.
Collapse
|
5
|
Kilbride P, Lamb S, Gibbons S, Bundy J, Erro E, Selden C, Fuller B, Morris J. Cryopreservation and re-culture of a 2.3 litre biomass for use in a bioartificial liver device. PLoS One 2017; 12:e0183385. [PMID: 28841674 PMCID: PMC5572048 DOI: 10.1371/journal.pone.0183385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 07/28/2017] [Indexed: 12/29/2022] Open
Abstract
For large and complex tissue engineered constructs to be available on demand, long term storage using methods, such as cryopreservation, are essential. This study optimised parameters such as excess media concentration and warming rates and used the findings to enable the successful cryopreservation of 2.3 litres of alginate encapsulated liver cell spheroids. This volume of biomass is typical of those required for successful treatment of Acute Liver Failure using our Bioartificial Liver Device. Adding a buffer of medium above the biomass, as well as slow (0.6°C/min) warming rates was found to give the best results, so long as the warming through the equilibrium melting temperature was rapid. After 72 h post thaw-culture, viable cell number, glucose consumption, lactate production, and alpha-fetoprotein production had recovered to pre-freeze values in the 2.3 litre biomass (1.00 ± 0.05, 1.19 ± 0.10, 1.23 ± 0.18, 2.03 ± 0.04 per ml biomass of the pre-cryopreservation values respectively). It was also shown that further improvements in warming rates of the biomass could reduce recovery time to < 48 h. This is the first example of a biomass of this volume being successfully cryopreserved in a single cassette and re-cultured. It demonstrates that a bioartificial liver device can be cryopreserved, and has wider applications to scale-up large volume cryopreservation.
Collapse
Affiliation(s)
- Peter Kilbride
- Asymptote, General Electric Healthcare, Cambridge, United Kingdom
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
- * E-mail:
| | - Stephen Lamb
- Asymptote, General Electric Healthcare, Cambridge, United Kingdom
| | - Stephanie Gibbons
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
| | - James Bundy
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
| | - Eloy Erro
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
| | - Clare Selden
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
| | - Barry Fuller
- Department of Surgery, Royal Free Hospital Campus, University College London, London, United Kingdom
| | - John Morris
- Asymptote, General Electric Healthcare, Cambridge, United Kingdom
| |
Collapse
|
6
|
Dijkstra-Tiekstra MJ, Hazelaar S, Gkoumassi E, Weggemans M, de Wildt-Eggen J. Comparison of cryopreservation bags for hematopoietic progenitor cells using a WBC-enriched product. Transfus Apher Sci 2015; 52:187-93. [DOI: 10.1016/j.transci.2014.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/25/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
|
7
|
Kilbride P, Morris GJ, Milne S, Fuller B, Skepper J, Selden C. A scale down process for the development of large volume cryopreservation. Cryobiology 2014; 69:367-75. [PMID: 25219980 PMCID: PMC4271741 DOI: 10.1016/j.cryobiol.2014.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/13/2022]
Abstract
The process of ice formation and propagation during cryopreservation impacts on the post-thaw outcome for a sample. Two processes, either network solidification or progressive solidification, can dominate the water–ice phase transition with network solidification typically present in small sample cryo-straws or cryo-vials. Progressive solidification is more often observed in larger volumes or environmental freezing. These different ice phase progressions could have a significant impact on cryopreservation in scale-up and larger volume cryo-banking protocols necessitating their study when considering cell therapy applications. This study determines the impact of these different processes on alginate encapsulated liver spheroids (ELS) as a model system during cryopreservation, and develops a method to replicate these differences in an economical manner. It was found in the current studies that progressive solidification resulted in fewer, but proportionally more viable cells 24 h post-thaw compared with network solidification. The differences between the groups diminished at later time points post-thaw as cells recovered the ability to undertake cell division, with no statistically significant differences seen by either 48 h or 72 h in recovery cultures. Thus progressive solidification itself should not prove a significant hurdle in the search for successful cryopreservation in large volumes. However, some small but significant differences were noted in total viable cell recoveries and functional assessments between samples cooled with either progressive or network solidification, and these require further investigation.
Collapse
Affiliation(s)
- Peter Kilbride
- Institute of Liver and Digestive Health, Royal Free Hospital Campus, UCL, London NW3 2PF, UK.
| | - G John Morris
- Asymptote Ltd., St. John's Innovation Centre, Cowley Road, Cambridge CB4 0WS, UK
| | - Stuart Milne
- Asymptote Ltd., St. John's Innovation Centre, Cowley Road, Cambridge CB4 0WS, UK
| | - Barry Fuller
- Department of Surgery, Royal Free Hospital Campus, UCL, London NW3 2PF, UK
| | - Jeremy Skepper
- Multi Imaging Centre, Anatomy Building, Downing Site, Cambridge University, CB2 3DY, UK
| | - Clare Selden
- Institute of Liver and Digestive Health, Royal Free Hospital Campus, UCL, London NW3 2PF, UK
| |
Collapse
|
8
|
Perseghin P, Marchetti M, Pierelli L, Olivieri A, Introna M, Lombardini L, Accorsi P, Petrini C, Risso M, Bosi A. A policy for the disposal of autologous hematopoietic progenitor cells: report from an Italian consensus panel. Transfusion 2014; 54:2353-60. [PMID: 24654567 DOI: 10.1111/trf.12619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Autologous stem cell transplantation (ASCT) requires collection and cryopreservation of hematopoietic progenitor cells (HPCs), which in turn may be partially or never reinfused. Thus, HPC storage has become a logistic, ethical, and economic issue. SIDEM, GITMO, and CNT/ISS endorsed a project aimed to define national criteria for HPC disposal aimed to guarantee appropriateness and equity. STUDY DESIGN AND METHODS A multidisciplinary panel was convened including HPC harvest and manipulation experts from apheresis units, hematologists with clinical expertise in ASCT, a representative of the national health authority, and a bioethicist. An analytic hierarchy process (AHP) was carried out to select disposal criteria. RESULTS The AHP selected two criteria for prompt disposal of freshly collected HPCs: an abnormal freezing procedure causing highly reduced viability or major microbiology contamination. Moreover, AHP selected six major criteria, each one of them allowing for the disposal of stored HPC units: patient death, withdrawal of consent to ASCT, contraindications or loss of indications to ASCT, a damaged label that prevents correct identification of the unit, and time elapsed since harvest longer than 10 years. Three minor criteria were additionally identified that allowed to anticipate disposal only provided that viability levels are below the limit of acceptance: a documented cold chain interruption, loss of bag integrity, and total amount of stored CD34+ cells lower than 1 × 10(6) /kg or lower than 2 × 10(6)/kg in patients with a successfully completed stem cell transplantation program. CONCLUSIONS A formal consensus process allowed SIDEM and GITMO to propose a policy for autologous HPC disposal that fulfills clinical, ethical, and economic criteria.
Collapse
Affiliation(s)
- Paolo Perseghin
- Servizio di Immunoematologia e Trasfusionale, UOS Aferesi e Nuove Tecnologie Trasfusionali, A. O. San Gerardo, Monza, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Massie I, Selden C, Hodgson H, Fuller B, Gibbons S, Morris GJ. GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process. Tissue Eng Part C Methods 2014; 20:693-702. [PMID: 24410575 DOI: 10.1089/ten.tec.2013.0571] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to -60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze-viabilities at 93.4% ± 7.4%, viable cell numbers at 14.3 ± 1.7 million nuclei/mL alginate, and protein secretion at 10.5 ± 1.7 μg/mL/24 h were obtained which, compared well with control ELS (viability -98.1% ± 0.9%; viable cell numbers -18.3 ± 1.0 million nuclei/mL alginate; and protein secretion -18.7 ± 1.8 μg/mL/24 h). Large volume GMP cryopreservation of ELS is possible with good functional recovery using the VIA Freeze and may also be applied to other regenerative medicine applications.
Collapse
Affiliation(s)
- Isobel Massie
- 1 UCL Institute for Liver and Digestive Health-Liver Group, University College Medical School , London, United Kingdom
| | | | | | | | | | | |
Collapse
|